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Internal Variables and Dissipative Structures

The formalism of interoal state variables is estabfIJshed when gradients of these variables are involved, thus allowing for a spatial localization of dissipative effects that give rise to dissipative structures. Therefore, evolution-diffusion equ ations, rather than usual evolution equations, are obtained. TfÑs leads to a com parison between dissipative structures and local structures exhibited by conser vative systems. Three illustrative cases are bfŁefĦy sketched out: nematic liquid crystals, localization of damage coupled to elasticity or plasticity, and localiz ation of plastic strains in plasticity with hardening. Thanks to the absorption of some tefés in the extra entropy flux, the approach is valid to any order in the gradients and the accompanying heat equation has always the same form, pro viding in fact a possible basis for the observation of some of the dissipative structures of interest.

Introduction

The use of theféodynamical internal variables of state has been advocated as an efficient means of dealing with relaxation and hysteresis effects in complex ther modynamical systems [START_REF] Bampi | Nonequilibrium Thermodynamics -A Hidden Variable Approach[END_REF][START_REF] Maugin | Thermodynamique a variables intemes[END_REF][START_REF] Maugin | Thermodynamics of Hysteresis[END_REF]. However, several recent works [START_REF] Maugin | Vectorial Internal Variables inMagnetoelasticity[END_REF][START_REF] Grmela | Bracket Formulation of Diffusion-convection Equations[END_REF][START_REF] Aifantis | Remarks on Media with Microstructures[END_REF] emphasize that such internal variables should be determined by "complete balance laws" including both a rate term and a divergence term and not according to usual "evolution laws" where the divergence term is absent and with which plasticity, viscoplasticity, damage and fracture in solid mechanics [START_REF] Maugin | Thermomechanics of Plasticity and Fracture[END_REF] and solutions of macromolecules [8-1 O] have accustomed us. That is, although the origin of theféodynamical interpal variables is to be traced back to the description of reacting chemical systems [START_REF]tive Laws and Microstructure[END_REF] and fĦuids with internal degrees of freedom [START_REF] Muller | Thermodynamics[END_REF], where diffusion of the interqal variable is of no practical importance, it seems that many physical phenomena exhibiting a spatial localization or a marked diff usion of dissipative processes are directly amenable by means of spa tially non-uniform internal variaeles. It is the purrose of the present paper to show that the con temporarx framework of irreversible thermodynamics accommodates directly this type of approach. Then the thefêodynamical force associated with the inter nal variable is none other than the (spatial) Erãer-Lagrange derivative of the free energy răth respect to this variable, and the extra entropy flux is shown to include contributions from the flux of internal variables. Of necessity, thermal equations need to be developed simultaneously.

Short illustrations of the general theory are proposed which pertain to nematic liquid crystals, brittle or ductile damage in defofłable solids, and plastic strain localization in plasticity with hardening. Together with nonlinearities the spatial gradients thus introduced allow on e ' to exhibit a general structure which is none other than the one of so-called dissipative structures (see, e.g., Ref. [START_REF] Vasilev | Autowave Processes in Kinetic Systems[END_REF]). These are markedly difÏerent from sofIJtonic structures which rather follow from a de scription by means of thermodynamical observable state variables relevant to conservative systems. Essential difÏerences between these two types of structures are emphasized. Finally, it is noticed that the heat equation in the presence of dissipative structures offers a direct means to appraise the dissipation carried by these structures through experimental techniques such as infrared thermography.

Contents

The general balance laws and basic thermodynamical statements are recalled in Section 2. State laws and the residual dissipation inequality are given in Section 3 when spatial gradients of the internal variables are taken into account. The corre sponding general form of the heat equation is obtained in Section 4. In Section 5 we show how to exploit the dissipation inequality by using dissipation potentials. The ensuing general fofê of dissipative structures is given in Section 6. These structures and solitonic ones are contrasted in Section 7 by emphasizing that these two difÏerent types of localized structures follow from two difÏerent limit processes.

Three examples pertaining to nematic liquid crystals (the internal variable is a vector field), damage coupled to elasticity or plasticity (the internal variable is a scalar damage parameter) and plasticity with hardening (the internal variable is the cumulated plastic strain) illustrate our formal considerations in Section 8. General concluding comments are given in Section 9.

We shall use the notation, and work in the spirit, of our forthcoming book on the thefêomechanics of plasticity [START_REF] Maugin | Thermomechanics of Plasticity and Fracture[END_REF].

General equations

We consider a continuous medium which is a simple material in appearance, conducts heat and, to fix ideas more precisely, we specify that its thermodynami cally recoverable behaviour will be of the elastic type in small strains (this will be relaxed in one of the examples). Irreversible processes, other than heat conduc tion, taking place in the medium will be taken care of through a thermodynam-ical internal variable ex and its spatial non uniformity (e. g., its first gradient �ex).

Here ex denotes an n vector of f'ltn, i.e., it is the ordered list of then independent components of a certain geometrical object, a scalar (n = 1) yielding the simplest case. As our medium apparently is a simple material, the following Euler Cauchy equations of motion hold true as the notion of simple material is stfŁctly related to that of Cauchy's stress ( [START_REF] Maugin | The Principle of Virtual Power in Continuum. Mechanics: Application to Coupled Fields[END_REF]; here T = transpose):

{}V =diva+/, a=aT a • n = T on o Q, a • n = 1' u =-Ii in 0, on oQT, on auu, (2.1) (2.2) (2.3)
wherein e is the matter density, vis the velocity f®eld, a is Cauchy's stress tensor,/ and 1' represent volume and surface prescribed forces, -Ii is a prescribed displace ment f®eld, and n is the unit outward normal to the regular boundary f}Q = f}QT u f}Qu of the open simply connected set Q of 8 3 occupied by the material at time t. In the small strain approximation v � ri, where a superimposed dot denotes the material time derivative hereby reduced to a partial time derivative.

The thermodynamical aspect of the problem is approached through the two laws of thermodynamics here wfŀtten in global form for Q as:

First law of thermodynamics:

K + E = @>( ex t) + Q;
Second law of thermodynamics:

where 1 K = L 2 e v 2 dv , E = L eedv &'(ext) = J f • v dv + J T • v da , Q = -J q • n da, u an an % = J (}17dv, N = -J S • n da . n an (2.4) (2.5) (2.6)
Here Kand E are the total kineti � energy and internal energy, &> < ext> is the power developed by prescribed forces, Q is.the total flux of heat, % is the total entropy, and N is the total flux of entropy. Because of complex dissipative mechanisms occurring in the material we assume that S and q are related by the somewhat unconventional relation (cp. Ref. [START_REF] Muller | Thermodynamics[END_REF])

(2.7)
where e is the thermodynamical temperature ( e > 0, inf e = 0), and k is an extra entropy flux density to be determined in the subsequent procedure.

Accounting for the scalar product of equations (2.1) and (2.2)1 with v in equation (2.4), we are led to the classical energy equation where

E + &> <i > = Q , &><i> = -J a : s dv, a 1 . 8 = (Vu)s = 2 [Vu + (Vu)T].
On localization this yields at all regular points in Q:

t = P <i > - V .
q' P <i >tr : . 8'

(2.8)

(2.9)

(2. 10)

where E = ee is the internal energy per unit volume (we account for the small strain hypothesis), and P <i > is the elementary power developed by the Cauchy stress. The localization of equation (2.5) directly yields the local entropy inequ ality as (S = erJ)

S + V•S>O (2. 11)
or (as e > 0)

es + v • ( e S) -(S • v) e > o .
(2. 12)

Now we combine (2.10) and (2.12) in the usual manner by introducing the Helm holtz free energy per unit volume by 'l'=E-Se .

(2.13)

The following Clausius Duhem (CD) inequality fo llows at once:

-(P + s B) + P(i) + v. (e k) -(S. V) e > 0.

(2.14)

State laws and dissipation inequality

We need to specify the functional dependence of 'I' to proceed with the exploit ation of the CD inequality (2.14). It is only at this point that internal variables enter the picture. We assume (small-strain hypothesis) that s splits additively in an elastic part s e and .an anelastic part s P :

(3.1)

In the spirit of plasticity and viscoplasticity, we suppose that tp depends on sonly through se, and it further depends on e and ex, and possibly on the first gradient of the latter, i. e., Vex (see Appendix for the second gradient). 'I' is assråed to be concave in 8 but it is not necessarily convex in ae and ex, although it may be so in many special cases. Convexity with respect to J7 ex holds good. Thus, symbolically, 

a J7 ex .91 = A -J7 • B = -l>'P/l>rx., l> a a - = --J7 •- {> ex a rx.
a J7 rx. Verw often this is split in two parts (resulting thus in stronger conditions):

cpintr = Cl : BP + ,9/ cX > 0, <P1 h = -(S • V )e > 0, (3.11) 
. (3.12) where, in some sense, we recognize the different qualitative nature of the two classes of dissipative processes. <P i n tr and <P 1 h are the intrinsic and thermal dissip ations, respectively. The split (3.11)-(3.12) will be assumed in all applications.

At this point we have at hand the thermodynamical state laws (3.8) and the defĥnition of d and the explicit form of S, and the inequalities governing dissipa tive processes, (3.10), or (3.11) and (3.12). The latter are in the standard bilinear form in terms of fluxes and associated forces:

(3.13)
as used in standard irreversible thermodynamics [START_REF] De Groot | Non-equilibrium Thermodynamics[END_REF]. Before exploiting (3.13) we examine the general expression of the heat equation.

Heat equation

The heat equation is none other than equation (2.10) 1 in a disguise. Indeed, on using (2.13), (3.3) and (3.8) in (2.10)1 or, equivalently, just comparing (2.12) and (3.10), we deduce the fĥrst (general) form of the heat equation:

e S + J7 • ( e S) = <Pi n tr,
where the intrinsic dissipation acts like a body source of heat. where the non-negativity of the specific heat C follows from the concavity of 'P with respect toe, (iJ2 'f' /iJ e 2 s 0). -r, together with I and m, are thermoelasticity coeflicients. Equation (4.2) emphasizes the role of body heat source played by both <Pinar and <P,h once a simple constitutive law (such as Fourier's) is assumed for the flux S (and not for q).

Exploiting the dissipation inequality

Leaving aside the case of S for which a simple law Ziegler [START_REF] Ziegler | An Introduction to Thermomechanics[END_REF].

Thermodynamical equilibrium is defined by the condition of spatially uniform temperature and the two conditions:

i,P = 0, d=O.

(5.2)

Therefore, it is natural to postulate the existence of a dissipation potential a positive function which is homogeneous of a cerr¿in degree in a and ci, and is convex in these two variables so that £P and d be given by the derivatives is homogeneous of degree one in tP, then the dissipative mechanical behaviour will be of the plastic type (no strain-rate dependence; no time scale). The homo geneity property is conserved in the Legendre-Fenchel transform so that t'J)r( ;;u a, ex, • . • = up a . s - ;;u s , ex, •.• sP is also homogeneous of degree one in a.

(5. 5 )

If both� and�* are homogeneous of degree two in a or if P , then the complemen tary constitutive equation ( 5 . 3)1 will exhibit a characteristic (relaxation) time while there may exist a convex set limiting the values of a so that we have vis coplasticity (cp. Ref. [START_REF] Maugin | Thermomechanics of Plasticity and Fracture[END_REF]). W e shall comment more thoroughly on the second of these. For instance, if � is quadratic in a. and lJ' is highly nonquadratic in ex while remaining quadratic and convex in Vex, equation (6.1)1 will result in an evolution diff usion equation of the general type

(6.2)
where Df is an operator of diffusion (e. g., 17 2 ) and f is highly nonlinear in ex depending, in addition, on the state of stresses and the field of temperature, these two fĥelds being themselves governed by the evolution-diffusion equations (2.1) and ( 4.2) in the bulk of the material. The system thus obtained for the fields v, u

(such that Ii = v, a simple evolution equation by itself),sP, ex and e clearly offers a formidable potential fer the erĊstence of so-called dissipative structures and auto wave phenomena (cf. Vasilev et al. [START_REF] Vasilev | Autowave Processes in Kinetic Systems[END_REF]) which are so fashionable in contemporary nonlinear physics. The essence of the phenomena here is contained in equations (6.1)1 or (5.3)1 and (5.6h, the fofłer of which deserves greater. attention.

Dissipative and solitonic structures

The udissipative., nature of equation (6.1)1 directly stems from the m anner in which it was obtained and, obviously, from the fact that a is considered as an internal variable. As a consequence of this very formulation no boundary con• dition is a priori associated with (6.1)1 while its diffusion like nature, when 'P depends on J7 a, is evident. Thus accompanying boundary conditions will have to be deduced from (6.1)i by using a ••1ocal .. method, e.g., the so.called pill•box method. However, whether a indeed is an internal variable or a more classical observable variable of state often is a matter of decision at the outset from the part of the scientist, i.e., it depends on the respective scales (most often time scales) at which the processes related to internal and observable variables pro• ceed. Had we considered the new variable a as an additional observable variable, then internal powers associa ted with the generalized velocities ci and P ci would In spite of their common appearance, the philosophies underlying the rAEo equ ations (5.7) and (7.1) are qráte different. Obviously, if time scales are such that relaxarÄon effects dominate over inersial ones (this is pracrÅcally always the case in nematic liqrâd crystals where ex is the director field dcp. de Gennes [START_REF] De Gennes | The Physics of Liquid Crystals[END_REF], Kats and Lebedev [START_REF] Kats | Dynamics of Liquid Crystals[END_REF]), then we can write (7.1) as (7.4) emphasiręng with a scaling factor e the fact that there are inertial effects wfÑch will be discarded. But these will generally be second-order derivatives in time, so that (7.4) may present a singular perturbation in the time domain. On the con• dition that nothing dramatic occurs as e goes to zero, (7.4) will render our equ ation for dissipative strtctures obtained from intefëal-variable theory, i.e., (7.5) On the contrary, in many cases described by equation (7 .1) the problem is almost conservative and dissipation produces only a regular perturbation, so that (7 .1) may be rewritten as (7.6) where the e has been shifted to the dissipative contribution. As e goes to zero, the resulting conservative (albeit, in general, nonlinear and dispersive) equation

(7.7)
will follow without ambiguity.

The two writings (7.4) and (7.6) of (7.1) highlight the essential differences be tween nonlinear evolution-diffusion systems that may exhibit dissipative struc tures and auto-waves as e � 0, and nonlinear conservative systems slightly per turbed by dissipation wfÑch may exhibit pure solitonic structures as e � 0. Structures in nonlinear dissipative systems of the first kind and those in nonlinear conservative systems may have some features in common. Solitary excitation fronts (E. g., motion of a phase-transition interface) and pulses propagating with a stable shape (so-called travelling pulses) are examples of structures which may propagate in both schemes. However, the physical nature and the b'ehaviour of these structures are quite diferent in these two schemes, as one can gather from the two limits obtained in (7.4) and (7.6) as e goes to zero. An example of this is the well known fact that, in the second scheme, colliding solitons penetrate through each other and then recover their individuality up to a possible alter ation in phase, whereas in the case of travelling dissipative s tru<;:tures, colfIJsion of two travelling pulses or fronts usually results in their m�tual annihilation. Fur thermore, while shape and propagation veiocity of stationary travelling pulses are practically unsensitive to i ni tial conditions for dissipative structures, both shape and propagation .velocity of solitons are completely fixed by the initial excitation. This was noticed by Vasilev et al. [START_REF] Vasilev | Autowave Processes in Kinetic Systems[END_REF], p. 15.

• • ..

The above lack of distinction between obseruable and internal natures of some state variables unfortl:lllately exhibits a prevailing ambiguity. For instance, per manent electric dipoles in elastic f erroelectrics are governed by an equation such as (7 .6) in which the second term involves strong nonlinearities, dispersion, and coupling with elasticity. Electroelastic solitons propagate in such a structure [START_REF] Pouget | Solitons and Electroacoustic Interactions in Ferroelectric Crystals-II-Interactions between Solitons and Radiations[END_REF]. In that case the electric polarization is viewed as an observable variable (additional degree of freedom). But to study electromechanical hysteresis in ceramics, an internal variable akin to an electfèc polarization (residual polariz-ation vector, cumulated (scalar) electric polarization) can be introduced [�3]. However, diffusion of this last variable is not yet envisaged, but it could be. Similar remarks hold for the magnetic spin density in elastic ferromagnets (e. g., [START_REF] Maugin | Solitary Waves in Elastic Ferromagnets[END_REF] and [START_REF] Maugin | Thermodynamics of Hysteresis[END_REF]).

It seems that the internal-variable thermodynamical approach is the best suited general framework for the first scheme (dissipative structures). This should come as no surprise if we recall the origin of the concept of internal variables in the kinetics of reactive systems [START_REF]tive Laws and Microstructure[END_REF]. Altogether, however, specific results can only be obtained once the physical and geometrical (tensor order) nature of the relevant internal variables has been specified (see below). Here N, the director velocity, is defined as the Jaumann co-rotational time de rivative of the director field. This is a so-called objective time rate (cf. Ref. [START_REF] Maugin | Continuum Mechanics of Electromagnetic Solids[END_REF], p. 83). As a matter of fact, tP is entirely expressed in terms of objective quantities. The last of (8.9) shows that the fluid considered does not obey Euler's hydrody namics at rest unless the distribution of d's is spatially uniform. In fact, it is not difficult to recognize in (8.1)-(8.10) the equations govefëing the thefêodynamics of nematic liquid crystals [START_REF] Muller | Thermodynamics[END_REF][START_REF] De Gennes | The Physics of Liquid Crystals[END_REF][START_REF] Kats | Dynamics of Liquid Crystals[END_REF], where IJ' is specified as Frank's energy density, the director inertia is neglected, and N is written as a fijnear function of d, thus providing an evolution-diffusion equation for the internal variable d. The evolution equation for the fluid velocity (equarÃon of motion (2.1)1) will be highly nonlinear ind as iiv depends on d. The extra entropy flux (8.10) agrees with the one obtained by Kats and Lebedev ([21], p. 23, equation ( 16)) once N is taken fijnear ind.

The above-given scheme would also apply to semi-dilute solutions of elongated (uncoiled) macromolecules when some kind of orientational order prevails (cf. Maugin and Drouot [START_REF] Maugin | Internal Variables and The Thermodynamics of Macromolecule Solutions[END_REF]). It easily generalizes to the case where the internal variable is a symmetric second-order tensor, the "conformation" of not neces sarily elongated macromolecules [10, 25].

B . Scalar internal variable (localization of d amage)

. .

We return to a soli d -like behaviour. Damage is the • reduction in elastic pr,operties (decrease in Young's modulus) as a result of the irreversible growth of microcav ities and microcracks . .In a simple modelling, following the original idea of Ka chanov [START_REF] Kachanov | Time of Rupture Process under Creep Conditions[END_REF], this can be described by a scalar variable D, such that 0 < D < 1; which measures the decrease in material surface transmitting internal forces (stresses) independently of the orientation of that surface (isotropy hypothesis). It appears that damage is localized and it is subjected to diffusion under the action of stresses. The idea of considering D an as internal variable is not new (cf.

Lemaitre and Chaboche, [START_REF] Lemaitre | Mechanics of Materials[END_REF]).

(a) We first consider damage coupled to elasticity for which plasticity effects•��n be discarded. Hence se = s, and we write tp = 'l' ( s, e, D, VD) . (8.11) The formulation of Sections 2 through 6 applies directly with ix= D. A sensible expression for lJJ which steers the whole problem, is given by

1 lJJ = (1 -D) � (s, e) + 2 v (VD) 2 , (8. 12 
)
where � is the thermoelastic energy of the undamaged (virgin) material. Thus, (b) For ductile damage, plasticity with hardening can interfere with damage. Thus we take (8.16) where f3 is the internal variable that accounts for strain hardening (cf. Ref. [START_REF] Maugin | Thermomechanics of Plasticity and Fracture[END_REF]). Assume that the three dissipative processes involved in (8.18) present no time scale, so that the rates {iP, p , fJ} derive from a pseudo-potential of dissipation which is the indicator function of a convex set C whose boundary in (a , !14, d ) space has equation f (a , f!4, d) = 0 (cf. Ref. [START_REF] Maugin | Thermomechanics of Plasticity and Fracture[END_REF]). Then we have the evolution equations

u = o lJJ = c1 -D) o � 0 8 0 8 ' 1 . k = e (V D)D ,
. o f where 1 > 0 if/= 0 andj = 0, and 1 = 0 if/< 0 or/= 0 andj < 0. Fpr instance, we can have (W0, y and u0 are material coefficients)

f (a, !!4, d) = ( 1-D) -1 ll a ll+P4+ 0 --u 0 , [ w, (d )y + l] y+1 W0
from which there follows through (8.19) that and

/3( t) = J (lfP: £P)lf2d t'' p = 1 o 1-D • p -1 if • _ i (J#)Y 8 -W' D -(1 -D) W0 '
where ii is the efective stress (see above).

Furthermore, we need to specify fû. For instance, The quantity h = d K/d eP = 82 Y'a./8(eP)2 is called the hardening modulus (cf.

Ref.

[7], Chapter 5). Writing the consistency condition J 0 to determine i allows one to obtain the following differential equation for eP:

(8.37)

Equations (8.37) and (8.33) 1 and the balance laws of continuum mechanics re called in (2.1)-( 2.3) are none other than the equations that govern the localization of plastic strains and shear-band evolution in metals according to Zbib and Aif antis [START_REF] Zbib | A Gradient-dependent Flow Theory of Plasticity: Application to Metal and Soil Instabilities[END_REF]. Here these equations are given a fully thermodynamical basis which justifÐes why only even-order gradients occur in (8.37) -this comes from the defÐnition of /J//J� -while the fĦow rule (8.32) keeps a priori a very usual form. That is, this approach does not suppose an a priori gradient-dependent flow rule -it is the free energy which is gradient dependent (like in phase transition theory a la Ginzburg-Devonshire). Furthermore, it shows that contrary to what is as sumed by Zbib and Aifantis [START_REF] Zbib | A Gradient-dependent Flow Theory of Plasticity: Application to Metal and Soil Instabilities[END_REF], it is h which is involved in (8.37) and not a more complex expression herr involving both hand de 1/ deP and dc2/ d eP. Had we consi dered sP-dependent c1 and c2, expression (8.37) would have been much more involved, not only through the denominator.

Concludb�g remarks

In spite of their relarÂve complexity and somewhat awkward formulation, the examples briefly treated in Section 8 highlight some of the essential features of our "thermodynamically admissible" approach to dissipative structures. In par ticular, apart from the unconventional form of the entropy flux, it appears that the remainder of the usual framework of irreversible theféodynamics is left unchanged. That is, the standard bilinear form (3.13) using only classical fluxes (e.g., (j) is still valid. Simultaneously, the accompanying heat equation keeps its standard form (4.2). Not unlike the case of conservative structures, most of the relevant physics still is in the definition of the force d whose vanishing valuecp. (5.2h -defines static structures in a way that recalls elementary equilibrium solutions for the order parameter in Landau's theory of phase transition.

The second important point is that evolution-difusion equations seem, with some reason, to take over simple evolution equations and this goes in the direc tion indicated by Grmela [START_REF] Grmela | Bracket Formulation of Diffusion-convection Equations[END_REF] of a general analytical-mechanics formulation of both reversible and irreversible processes. In the course of this development, what made the essence of the notion of internal variables [START_REF] Maugin | Thermodynamique a variables intemes[END_REF], seems to be alienated. That is, while intefëal variables are generally conceived, for the least, as not easily measurable, they were rñewed in all cases as non-controllable. However, with the introduction of diffusion, the notion of accompanying boundary conditions enters the picture and thus control of the said "internal" variables through boundaries appears, contrary to the very notion of being "internal". Hence it seems prefer able to consider equations such as (7.5) as resulting from a simplifÐcation of

(3. 2 )

 2 Through a straightforvard calculation, this allows us to obtain ..P in the form where we have defined the following free energy derivatives:

  space" Euler-Lagrange derivative with respect to rx.. Substituting from (3.3) into (2.14) and accounting for (3.1), we obtain As Sand a are assumed not to depend on 8 and se while the remaining coeffi cients in (3.7) may in general depend on their respective factors, and (3.7) has to remain in one sign for any 8 and s e (see the argument on p. 112 in Ref.[START_REF] Maugin | Continuum Mechanics of Electromagnetic Solids[END_REF]At this point it is astute to select the extra entropy flux k as k =!_ Bri.

8 '

 8 so that (3. 7) reduces to the following residual dissip ati on inequality

(4. 1 )

 1 In the present state of progress we can also use the fact that we know S through (3.8h. Hence, evaluating S and accounting for (3.8) we readily obtain the second form of the heat equations asC B+ J7 •(BS)= <Pin t r + <Pi e 'in which we have defÐned the "thermoelastic" dissipation <P te by

S

  = -K(s;e, 8; O!) • J7 8 (5.1) with A T . (K . A) > "A 2 > 0 for any vector A, K > O. is sufficient, we examine the exploitation of the inequality (3.11) in the light of dissipation potentials in the manner of Rayleigh [1 7] or

• p ofĆ 8 =

 8 o a ' ...A =().@ .w aa • (5.3) With Euler's identity for homogeneous functions the dissipation inequafijty is automatically satisf®ed and, thus, (5.1) and (5.3) are thermodynamically admi ssible. The degree of homogeneity specifies the type of dissipative process consi dered. For instance, iffĆ is homogeneous of degree one in ii, d will not in fact depend on ii, and the behaviour with respect to the variable rx. will be of the "plastic" type, exhibiting no time scale. Similarly, for the more traditional behaviour described by (5.3)1, if the partial Legendre-Fenchel transform fš * defined by fš*(iP, a; . .. ) == Sup [d: £P -fĆ (a, ci; . . . )](5.4) "

  For the time being, on account of (3.5) we record the following possible set of constitutive. equations:

  6. Dissipative structures Equation (5.7) reads {)tp + a� -0 with {)ex a a.tp = tp (se, e; ex, vex) �=�(a, a.; 8e, e, ex, vex).

have( 7 . 3 )

 73 contributed to p(l) and &'m-cp.[START_REF] Maugin | The Principle of Virtual Power in Continuum. Mechanics: Application to Coupled Fields[END_REF]-and a new balance law would govern a with, in general, a kinetic energy, and thus an inertia, associated with ex. Then, after complementing this by a simple study of allied dissipative processes the a• field equation would have read (7.1) where (7.2) is the Lagrangian per unit volume and a a The latter is nothing but the total Euler•Lagrange defŁvative with respect to a. Equation (7.1) is the celebrated equation of Rayleigh ((17], Vol.1, p. 78), used by Maxwell in his famous treatise ((19], Vol. 2, p. 396).

  Vectorial internal variable (liqui d crystals) Let a. = { d i; i = 1, 2, 3} a vector f®eld d called director. Mechanically, the cont inuous medium considered does not present any plasticity-like behaviour. It rather is a fluid of the viscous type, although incompressible. It is easy to see that 8 is replaced by the exact rate-of-strain tensor D = (V v)8 and p ( i ) in (2.10) reads <Iv= <I+ pl, (8.1) where pis the mechanical pressure. Equation (3.2) is replaced by 'P = 'Pc e; d, v d) .

(8. 2 ) 4 )

 24 This free-energy function satisfies a space-isotropy requirement and thus, classi cally, we must check the invariance requirement (obtained by invariance of (8.2) through an infinitesimal rotation of the spatial frame; square brackets indicate anti-symmetrization): Through an elementary computation this allows one to show that equation (3.3) is replaced by 'ii = -s ea : Dd . N + J7 -(B . N)' (8.5) wherein Ni= (DJd); = d; -Qii d i, ll = (Jl v)Aii;i = B <ilkl d k,i > ' subscript A denotes antisymmetfŀzation and parentheses denote sym metrization. Proceeding then as in Section 3 one is led to the following residual dissipation

  <P= dD-(S• V)e ?0.

( 8 . 13 )

 813 If there was no difusion of damage d would simply be the thermoelastic energy of the virgin sample (D = 0). Separating intrinsic and thermal dissipations and assuming linear relations for the dissipative laws, renormalizing the evolution difusion equation for D, and writing the time increment form of the stress-strain relations, we finally obtain the following system of evolution-difusion which summarizes the problem:u =v, i=(Vu)5, (! v = div u, ti =a fJ + (1 -D )(E:i--r B), -r:fJ = (�JUI;, )+ IE v 2 D' CB+ V • (0S) = <Pintr + <Pte'where we have set a= u/(1-D), 'r =osoe'

  and Wais a reference e nergy, -r is a characteristic time an d In is a characteristic length. The stress a is the effective stress of damage theory (cp.[START_REF] Lemaitre | Mechanics of Materials[END_REF], p. 347).

  Only the gradient of cx 2 = D is accounted for (compare Paragraph C below). The thermodynamic laws of state are ofû The intrinsic dissipation reads <l>intr = lT : gP + f!4 iJ + d fJ•

1 KM 1 fû= -( 1 -

 111 D) W (e e ) -13 < 1 + M)/M + -v( Jl D) 2 Mand v are material coefficients. From the consistency conditionj • . 0 (the only case where 1 =t= 0 possibly) it is found that .(ll a ll) (1-D)A.= Kp 1 1M + cro(d/Wo),,'(8.24) where ( ... ) denotes the positive part of its enclosure. Then the "evolution" equation for damage will read with • (ll a ll) D = Kpt!M(Wo/d),, + Uo (8.25) This is strongly coupled to a and s P through equations (8.21) and (8.22)1• Equ ation (8.25) is not, per se, an evolution equation as it contains no time scale. Furthermore, the dynamical behaviour described by (8.21), (8.22)1 and (8.25) is highly singular unless unloading never occurs (for unloading, 1 = 0). But if we are only in a loading phase so that II a II varies monotonically in time, er = II a II can be used as a plastic time and for y � 1, (8.25) will render the following equation: where (linear elasticity) • p -p• O' should be capable of describing the localization of damage (D < 1) during the monotone loading of an elastic-plasrÀc material with hardening. C. Localization of plastic strains an d shear-band evolutionWe consider the free .. energy density(8.28) in elastoplasticity with hardening. Spatial gradients of the scalar internal vafŀ able, up to the second order, are considered (See Appendix). The intrinsic dissip ation will read v. o P a. + VP : oPPcx . . We envisage a rate-independent behaviour. Therefore (compare Paragraph B or Ref.[START_REF] Maugin | Thermomechanics of Plasticity and Fracture[END_REF], Chapters 2 and 3) we hav � the "plastic" evolution equations . af £P =A-, oa(8.31)where 1 is the plastic multiplier and/ is the loading funcrÁon. For the latter we take a direct generalization of the Huber-Mises yield critefèon by writing (this is an expefèmental daträ)f (a, d) = 11a11 + d -u 0 • (8.32) Wehave fŠ >O if/::;:;: Oandf= O, and fŠ = Oif/< Oor/= O andf< O.From(S.31) there follows then that and thus, by eliminating 1 between these two equations t -• a.( t) = J (sP: £P)112 dt ' = e P ' so-called cumulated plastic strain (in fact already introduced as p in (8.21)). We may say that the choice of /has granted a physical meaning to the scalar internal variable a.. If 'Pis further specified as (8.35) we may, for instance, obtain din a fofł such as . . (8.36) where c1 and c2 are constant coefficients [otherwise we should keep if

balance equations (7.4) , although there remains the troublesome question of singular perturbation in the latter as e goes to zero.

Finally, in all practical cases of interest in Section 8, the heat equation ( 4.2) provides, like in the elastic-plastic case (Ref. [7], Chapter 12) , the theoretical support for the observation and measurement of temperature distribution due to localized dissipative structures by means of infrared thermography as intemal vafèable dissipation and the allied "thermoelastic" process provide the heat source in this equation. This is to be further elaborated upon.

A last remark is in order concefëing nonlocality. The introduction of gradients to describe damage effects in Paragraph 8B corresponds to a so-called weak non locality. Other approaches [START_REF] Pigaudier-Cabot | Nonlocal Damage Theory[END_REF]- [START_REF] Saanouni | On the Creep Crack-growth Prediction by a Non local Damage Formulation[END_REF] envisage simple fu nctionals over space to describe these effects, although not in the proper thermodynamical framework. Such a framework for strong nonlocality can be found in Eringen and Mau gin [32] , following many works by A. C. Eringen, a strong advocate of nonlocal continuum mechanics. Whether strong or weak nonlocality is needed to account for localization still is a debated matter (in this regard, see Ref. [START_REF] Maugin | Nonlocal Theories or Gradient like Theories: A Matter of Convenience?[END_REF]).

Appendix

In most of Sections 3 through 8, 'I' is assumed to depend on the first gradient of ex only. The question may be raised about what happens when fÑgher-order gra dients, e.g., the second ones V Vex, are considered? It is a straightforward matter to show that accounting for the second gradient yields �'I' d=-�ex =A-V•B+(V® V) :C, while (3.9) will be replaced by as

With this it is shown that (4.1) is left unchanged as 4> in tr is formally left unaltered, d being still the spatial functional derivative. Equation ( 4.2) is also formally unchanged but for 4>te that will contain a second-gradient of <i, i.e., an additional term n • (V ® V) <i within parentheses with n = "'"-OC/oe.

All conclusions concerning the use and interpretation of ( 4.2) apply also to this more general case. The same proof will apply to gradients of order higher than two as (A.1) will generalize automatically while other terms appearing in the computation will enter the divergence term in (A.3) , and this may always be accommodated ink.