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Temporal networks are commonly used to represent dynamical complex systems like social networks,
simultaneous firing of neurons, human mobility or public transportation. Their dynamics may evolve on
multiple time scales characterizing for instance periodic activity patterns or structural changes. The detec-
tion of these time scales can be challenging from the direct observation of simple dynamical network
properties like the activity of nodes or the density of links. Here, we propose two new methods, which rely
on already established static representations of temporal networks, namely supra-adjacency and temporal
event graphs.We define dissimilarity metrics extracted from these representations and compute their power
spectra from their Fourier transforms to effectively identify dominant periodic time scales characterizing
the changes of the temporal network. We demonstrate our methods using synthetic and real-world data sets
describing various kinds of temporal networks. We find that while in all cases the two methods outper-
form the reference measures, the supra-adjacency-based method identifies more easily periodic changes in
network density, while the temporal event graph-based method is better suited to detect periodic changes
in the group structure of the network. Our methodology may provide insights into different phenomena
occurring at multiple time scales in systems represented by temporal networks.

Keywords: temporal networks, power spectrum

1. Introduction

Many complex systems, commonly described as networks, are evolving dynamically as their elements
and the interactions between them are subject to changes in time. The recent availability of temporally
resolved network data sets has stimulated the emergence of the new field of temporal networks [1–3],
which has been useful to describe a wide range of phenomena, from human behaviour [4–6] to biological
and ecological systems [7, 8] or public transportation [9, 10]. The temporal network representation pro-
vides an effective tool to investigate the structure and dynamics of these systems, as well as the potential
dynamical processes occurring on top of them [1, 11]. In particular, this representation goes beyond the
conventional static description of networks [12], as it keeps track of the temporal order of successive
interactions between elements. This allows for instance to identify notions of potential causality through
the definition of temporal paths between nodes, that is, series of successive interactions along which
information can be transmitted [13, 14].

Temporal networks present different time-dependent properties at different structural scales. For
instance, single nodes can be characterized by their instantaneous degree (number of neighbours at a given
time) or other instantaneous centrality measures, which may vary as a function of time [3, 12, 15, 16].

© The Author(s) 2023. Published by Oxford University Press. This is an Open Access article distributed under the terms
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2 E. ANDRES ET AL.

Links are also temporal objects: connections between nodes appear and disappear, often following bursty
and correlated dynamics, as well as circadian patterns, which are all typical of human dynamics [17–
19]. At mesoscopic scales, temporal networks can exhibit temporal motifs [20–22], communities [23],
core–periphery [24, 25] or other cohesive structures and hierarchies [26, 27]. These various dynamical
properties may evolve at different time scales [28], including overall changes between global states at
the macroscopic level [25, 29, 30]. In particular, periodic variations can emerge, for example, driven by
the circadian fluctuations of human behaviour [19, 31], regular scheduling in different contexts like in
transportation or schools, or the repetition of metabolic reactions in biological systems [32]. Interesting
relevant examples of such variations are given by changes in the connection density in the network, or in
the way nodes form and dissolve groups or communities. For example, the number and structure of social
interactions vary due to daily rhythms and schedules in contexts such as workplaces, scheduled social
gatherings or in schools, where students interact within a class during lectures, but also with other classes
during breaks [31, 33]. The identification of the temporal scales of periodic variations in a temporal net-
work is an important step for the characterization and understanding of the system under investigation.
However, their measure represents a challenge as they co-appear with other arbitrary non-periodic tem-
poral scales, which appear as noise and hinder the possibility to detect the periodic behaviour by simply
following the temporal evolution of simple network summary measures.

Some recent works have addressed the detection of relevant temporal scales in temporal networks,
for example, by optimizing the overlap between the sets of events on consecutive time intervals [34] or
by searching for the precise recurrence of connections between nodes in different time windows [35].
Another approach consists in defining the correlation between instantaneous adjacency matrices of the
temporal graph [36]. Finally, computing a whole similarity matrix between all pairs of timestamps can
make it possible to detect states in which the network structure remains stable [25, 29, 30], but this method
requires rather heavy computations.

Here, we contribute to this endeavour by defining a new method to measure the periodic time scales
of changes of temporal networks. Given a temporal network as input, we first divide it into temporal
sub-networks using successive sliding windows. We then use lossless mappings of these temporal sub-
networks to get a sequence of static networks and quantify the dissimilarity between them successively to
obtain a dissimilarity function describing the changes between the successive temporal sub-networks.We
extract the timescales of this function by computing its power spectrum to identify its main frequencies
and harmonics. We focus here on applying this method to the detection of periodic changes in the link
density and group structure of temporal networks. To this aim, first we consider synthetic networks in
which we impose periodic variations of density and structure with tunable frequencies. We show that the
method is able to retrieve the actual time scales of the networks. We then apply our methods on several
empirical temporal networks presenting periodic dynamics. In each case, the method captures correctly
the system’s main characteristic times, which could most often not be extracted by simple measures of
the network overall activity. Our work opens the door to a better characterization of the time scales of
changes of temporal networks, essential in the understanding of the dynamics of the underlying complex
systems.

2. Methods

Let us consider a temporal network GT = (V ,ET ,T) defined as a set V of nodes, and a set ET of events
over a time interval T measured in discrete time: each event e(i, j, t) ∈ ET describes a temporal interaction
between two nodes (i, j) ∈ V × V at a certain time t ∈ T .
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POWER SPECTRUM OF TEMPORAL NETWORKS 3

(a) (b) (c)

Fig. 1. Example of the representations of a temporal network (a) realized with the Supra-Adjacency (SA) (b) and the Event-Graph
(EG) (c) methods. In the original temporal network Gm

T , the time-lines of the nodes are represented by horizontal lines depicting
the activity of each node through time (the direction of the time goes from left to right). Each event occurring between two nodes
is symbolized by a line linking those two nodes at the corresponding time. The SA and EG representations are static directed
networks. In the SA case, the nodes are pairs (node,timestep) of the temporal network. In the EG, the nodes are events, that is,
triplets (node,node,timestep) of the temporal network.

Temporal sub-networks.

With such a temporal network as an input, we first extract a sequence of temporal sub-networks of GT

by using sliding windows of length �tw and stride tw (shift between the start of successive windows).
Successive windows can thus overlap. Specifically, the sub-network Gm

T is composed of the nodes of V
and of the subset ETm of events of ET taking place in the time interval starting at time m ∗ tw and ending
at m ∗ tw + �tw:

Gm
T = (V ,ETm ,Tm = [m ∗ tw : m ∗ tw + �tw]) for m ∈ N and Tm ⊆ T . (1)

Based on this definition, we can obtain a sequence of temporal sub-networks Gm
T to compute a dissimi-

larity function characterizing the dynamical changes in the structure and the overall activities present in
the original temporal network GT . More precisely, we want to compute the dissimilarity between con-
secutive temporal sub-networks, Gm

T and Gm+1
T . However, while there exist several methods to compare

static networks, few exist to quantify the dissimilarity between two temporal networks. We thus choose to
map the temporal sub-networks into static network representations in order to use an already known and
validated comparison method for static networks [37], that we adapt to our purposes (see next paragraph
and Appendix A).

Static network representations.

We thus first map each temporal sub-network onto a static network representation using two different
methods described in Fig. 1. Note that both of these representations are lossless and contain the same
amount of information as the temporal network they represent (in particular, they have been designed to
conveniently encode information on all the temporal paths existing in the original temporal network):

• The Supra-Adjacency (SA) representation [38, 39] GSA = (VSA,ESA) of a temporal network GT is a
static directed network, in which each node vSA ∈ VSA represents a pair (node, time) of the original
temporal network: the node (i, t) ∈ VSA denotes that the node i ∈ V was active at time t ∈ T , that
is, had at least one interaction at t. A directed edge eSA ∈ ESA between two nodes of VSA, (i, ta) and
(j, tb) (with ta < tb), encodes the fact that an information can propagate on GT from node i at ta to
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4 E. ANDRES ET AL.

node j at tb, without intermediary events. If i = j, this is possible if ta and tb are successive interaction
times for i (there is no event involving i at times ta < t < tb). Edges of type (i, ta) → (i, tb) in ESA

thus simply correspond to following the successive interaction times of i in GT . For instance in Fig. 1,
node n2 is involved in the events e1 and e2, happening respectively at times t1 and t2. As it is the same
node in two consecutive events, there is an edge in the SA representation between (n2, t1) and (n2, t2).
For i �= j instead, the event (i, j, ta) ∈ ET results in two directed edges in ESA: (i, ta) → (j, tb) and
(j, ta) → (i, tc), where tb (resp. tc) is the first time after ta in which j (resp. i) is active again. In Fig.
1, there is an edge in the SA representation between (n2, t1) and (n3, t3) and another edge between
(n3, t1) and (n2, t2) as the nodes n2 and n3 are linked at time t1 in the original temporal networks. The
direction of edges in GSA respects the arrow of time, and the set of edges ESA allows to preserve the
information about all possible temporal paths of the original temporal network.

• The Event-Graph (EG) representation GEG [40, 41] is a static weighted directed acyclic network
representation of a temporal network. Each event in GT is represented by a node in GEG, and two
nodes of GEG are connected if the two corresponding events in GT were adjacent [40], that is, share
at least one node (in V) and are consecutive. For instance, there is an edge in Fig. 1 between the
nodes of the EG representation corresponding to the events e1 (n1

EG) and e2 (n2
EG) as they share the

node n2. Each edge between two nodes in GEG is directed along the direction of time (from the earlier
event to the later one) and is weighted by the time difference between the two corresponding events.
Consequently, GEG encodes also all information of time respecting paths emerging in the original
temporal network.

These representations can be applied to any temporal network. In particular, we apply them to each
temporal sub-network Gm

T defined above to map them into a sequence of static representations Gm
SA and

Gm
EG. In the following, we use the symbol ∗ to refer to the static representation method: it replaces the

abbreviation SA or EG, as every object from now on can be calculated using one method or the other.

Network dissimilarity function.

As a next step we compute a dissimilarity function D∗(m) between successive static networks, Gm
∗ and

Gm+1
∗ , for each sequence of static representations {Gm

∗ ,m = 1, . . .}. To this aim, we consider here an
extension of the method of [37] that summarizes the properties of a network in a matrix where the ele-
ment (k, l) gives the number of nodes that can reach k other nodes in l hops in the structure (see Appendix
A for more details). As we originally deal with temporal networks, and as the nodes of the SA and EG
representations do keep temporal information, we instead describe each Gm

∗ by a tensor Bm
∗ (j, k, τ), which

gives the number of nodes in Gm
∗ from which one can reach, in two hops on Gm

∗ , other nodes of Gm
∗ involv-

ing j nodes, k events and τ timestamps of Gm
T . The dissimilarity function Dm

∗ is finally computed as the
Kullback–Leibler divergence between Bm

∗ and Bm+1
∗ . At that step, we have to ensure that the dissimilar-

ity function respects the Nyquist–Shannon sampling theorem [42], that is, that its sample rate is at least
twice bigger than the observation frequency of the temporal network. It is also worth noticing that the
method which compares the temporal sub-networks should be asymmetric because it has to be able to
differentiate between the transition of the original network from one state to another, from the opposite
transition.
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POWER SPECTRUM OF TEMPORAL NETWORKS 5

Fig. 2. Methodology pipeline to measure the time scales of changes of a temporal network GT . From top to bottom: the initial
temporal network is divided into sub-temporal networks through a sliding window of parameters tw (shift between two consecutive
windows) and�tw (length of the slidingwindow). The sub-network is denotedGm

T . A static representation of each sub-network (Gm∗ )
is generated through the method * (either Supra-Adjacency or Event-Graph). Each Gm∗ is then described by a three-dimensional
tensor Bm∗ (j, k, τ) that encodes information about the paths and distances in the sub-network (see Appendix A). We compare con-
secutive tensors with a dissimilarity measure, obtaining the dissimilarity function D∗. Finally, we compute the power spectrum of
D∗ and measure the frequencies of the main harmonics.

Power spectrum of dissimilarity function.

Each dissimilarity function D∗ provides an overall signal that reflects the structural and activity changes
in the original temporal network. It presents higher values when the network goes through larger and
abrupt transformations and takes smaller values when the network is more stable or changing only grad-
ually with time. It can thus provide insights into the time scales of dynamical changes in the original
temporal network. In particular, periodic patterns of network changes can be revealed by taking the power
spectrum of the dissimilarity function, which should present harmonics at the characteristic frequencies
of the temporal network. More precisely, we compute the magnitude-square of the discrete-time Fourier
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6 E. ANDRES ET AL.

transform of D∗ defined as:

PSk =
∣∣∣∣∣∣

Nsample∑

j=0

D∗(j)ei2πkj/Nsample

∣∣∣∣∣∣

2

, (2)

where Nsample is the length of D∗ and k ∈ [0,Nsample − 1]. The frequency corresponding to the harmonic
PSk is fk = k

twNsample
, where tw is the time shift between two successive sub-networks Gm

T . The main

harmonics of the PS function (appearing as the largest modes in the transformed function) correspond
to the principal frequencies of the temporal network. Their inverse yield the characteristic time scales of
the main periods present in the network dynamics.

In the following, we refer to the full methodology pipelines using respectively the SA and EG
representations as the SA-method and EG-method. The whole generic pipeline is summarized in Fig. 2.

3. Validation on synthetic data sets

To better understand the temporal properties that the above defined dissimilarity functions and their power
spectra can capture, we focus on synthetic temporal networks with controlled structural and temporal
properties. In particular, we consider networks with tunable changes in activity (number of events per
timestamp) and group structure. We utilize the Activity-Driven temporal network (ADN) model [43] for
these purposes, defined by a set of N nodes i = 1, . . . ,N, each having an intrinsic activity ai taken from a
given distribution. At each time step, node i becomes active with probability ηai and, if active, establishes
connections with m other nodes chosen randomly. Connections are erased after each time step thus the
model does not present any memory nor correlations between time steps. Here, we consider networks of
size N = 100 with a power-law node activity distribution with minimum value ε = 0.001 and parameters
γ = 1.8, m = 4, η = 4 and | T |= 9200.

Using these parameters as baseline, we build three types of periodically varying temporal networks,
to model the following settings:

• Change of activity: we simulate an ADN in which the density of edges varies periodically in time. We
assign to each node i two activity values a1

i and a2
i , respectively extracted from two power-law dis-

tributions with exponents γ1 = 1.8 and γ2 = 2.8. We then alternate periodically (and synchronously
for all nodes) between the two activity values, with a period Ta. This results in periodic changes in
the overall activity of the network, as illustrated in Fig. 3a.

• Change of grouping: we consider an ADNmodel of N = 100 nodes forming groups of 5 nodes each,
and we periodically alternate, with a period of Tg, between time intervals in which connections are
made at random with no restriction as in the baseline and intervals in which only connections within
groups are allowed. The average activity is kept constant over time (Fig. 3b).

• Change of activity and grouping: finally, we consider an ADN in which both activity and group
structure change periodically over time, by combining the previous two mechanisms, each with its
own period, respectively Ta and Tg (see Fig. 3c).
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POWER SPECTRUM OF TEMPORAL NETWORKS 7

(b) (c)

(d) (e) (f)

(a)

Fig. 3. Schematic representation of three settings simulatedwith theActivity-Driven temporal networkmodel with periodic changes
of parameters (N = 100, ε = 0.001, η = 4). (a) The Change of activity case presents networks with activity periods of Ta = 200;
(b) the Change of grouping case presents recurrent structural changes with period Tg = 150; while (c) the Change of activity
and grouping setting is defined as a mix of both dynamics. Panels (a-c) display the number of events as a function of time for
a realization of each experiment; Gray areas in panels b and c indicate the intervals in which interactions can only occur within
groups. Panels (d-f) depict the power spectra of these networks obtained respectively through the SA-method and EG-method, as
well as the power spectrum of the activity timeline. The first and second harmonics of each power spectrum are shown respectively
with a full symbol and an empty symbol. In each case, the SA-method and EG-method are able to retrieve the correct period of the
networks, while the power spectrum of the activity signal fails in measuring temporal structural changes. In the Change of activity
and grouping case, the SA-method identifies the frequency of activity changes as the main harmonic, while the EG-method detects
the structural changes frequency as the dominant one.

For each case, we apply the SA and EG methods to compute the power spectra of the resulting tem-
poral networks. As a baseline method, we compute directly the power spectrum of the activity function,
that is measured as the link density at each time step of observation (see Fig. 3). This is a simple summary
metrics that describes the overall changes in the temporal network and can be computed for any system.

3.1 Results

The settings we consider involve either one or two types of periodic changes in the synthetic temporal
networks: a periodic fluctuation in the amount of activity and/or in the network structure in terms of
inter and intra group interactions. Our first goal is to investigate whether the SA- and EG-methods can
uncover the corresponding periods Ta and Tg through the measure of the dominant frequencies in the
associated power spectrum. As shown in Fig. 3d and e, when only one type of periodic change is present,
both methods are able to detect the corresponding period. It is evident from the depicted symbols that
indicate the largest mode in the frequency scale, correctly positioned at the right frequency corresponding
to the period of the actual periodic changes. At the same time, the baseline method, computed as the PS
of the activity timeline, strongly underperforms as compared to the other two methods. While in case
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8 E. ANDRES ET AL.

(a) (b)

Fig. 4. Periods corresponding to the two first harmonics measured through the SA-method (a) and the EG-method (b), for periodic
synthetic temporal networks generated through the Change of activity and grouping setting (N = 100, ε = 0.001, η = 4, | T |=
9200) with respective periods Ta (x-axis) and Tg (y-axis). For each pair of values (Ta, Tg), we generate 100 realizations of the
temporal network and apply the SA- and EG-method to extract the two main harmonics. We show in blue around a small black
disk (resp. grey disk) the fraction of realizations in which the main frequency (resp. the second main) corresponds to Ta, in pink the
fraction of cases in which it yields Tg, and in yellow the cases in which it corresponds to neither (we consider a tolerance of 10%
for both periods). In most cases, both periods are correctly inferred, with the main frequency corresponding to Ta in the SA-method
and to Tg in the EG-method.

of activity changes (see Fig. 3d) it at least identifies approximately the value of the period, in case of
periodical group changes it does not succeed to capture the rightful period at all. This was expected as
in this case the overall activity does not reflect any periodicity but simply fluctuates randomly around a
constant value.

When both types of periodic changes are present, an interesting distinction emerges between the
results of the SA- and EG-methods. Indeed, both methods correctly detect the Ta and Tg periods as
the first two dominant frequencies in the power spectrum. However, in the SA-method the frequency
describing the periodic activity changes is identified as the dominant frequency and the periodic group
frequency to the second largest value (TSA

1 = Ta = 200, TSA
2 = Tg = 150 in Fig. 3f), while this is

reversed for the EG-method (TEG
1 = Tg = 150, TEG

2 = Ta = 200 in Fig. 3f). These results suggest that
the SA-method is more sensitive to periodic changes in activity, while the EG-method is more suited to
detect periodic structural fluctuations. We also note that the PS of the baseline method yields as dominant
timescales T1 = 156.7 and T2 = 78.3, the first one describing approximately the activity periods of the
network, while the second one does not correspond to the period of either of the underlying processes.

To check the robustness of the proposed methods against the relative values of the periods, we further
investigate this point by exploring systems with different values of Ta and Tg in the Change of activity and
grouping setting. We generate 100 synthetic temporal networks for each pair of values (Ta, Tg), compute
the dissimilarity function and power spectra of these realizations, and extract the corresponding first two
harmonics for each method (SA and EG).

Figure 4 summarizes the results by showing in each case the fraction of realizations which detected
the periods of Ta, Tg correctly, or failed to detect any of them. These results demonstrate again that the
SA-method identifies predominantly Ta (the activity change period) through the first harmonic and Tg
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POWER SPECTRUM OF TEMPORAL NETWORKS 9

(change of group structure) through the second, while the reverse is observed for the EG-method. Some
deviations from this behaviour are observed at large values of the periods and/or when Ta and Tg are close
to each other.

3.2 Parameter dependencies and limitations

Both the synthetic temporal networks and the analysis method involve some parameters. In particular, we
explore their dependencies on the network size, temporal length and ratio between total temporal length
and periods of changes Ta or Tg, with results presented in Appendix B. We observe that at large network
size, both methods identify as main frequency a value corresponding to the half value of the original
period. Moreover, evidently, for correct time scale detection the observation period of the temporal net-
work needs to cover at least two full periods of any kind of changes. In addition, regarding the experiment
Change of activity, both methods are very sensitive to this kind of changes. Even small variations of the
density of links through time, obtained by changing the exponent γ of the ADN, are detected.

The first step of our pipeline moreover involves the definition of sliding windows with stride tw and
length �tw. Naturally, these parameters affect the amount of information contained in each sub-temporal
network and consequently influence the resulting dissimilarity function [44–46]. We explore the effect of
these parameters in Appendix B, while keeping tw ≤ �tw to have a non-zero overlap between successive
time windows. We also ensure that the two parameters under study have values below the time span of
the network’s period (their maximum value is 20 while the period is 100).

As shown in Appendix B in Fig. B.5, the two methods show the best performance if the tw stride is
not too large and if�tw length is neither too high nor too small. If the time interval between two temporal
sub-networks tw is too high, we collect less information about the similarity between successive sliding
windows. The dissimilarity function is then less precise and our methods perform less well to identify
the characteristic temporal scales. Moreover, if �tw is too small, each sliding window contains too little
information to obtain an accurate measure of the time-scale of the original network. On the opposite, if
�tw is too large, each temporal sub-network may summarize too much information and loose the specific
characteristic of the activity or the structure of the network on a certain time or interval of time. As an
observation bias this could smooth dissimilarities between consecutive temporal network slices as they
average too much information, and not because the network does not present significant changes through
time. It is also worth noticing that both methods measure systematically half of the period as dominant
modes for very large values of tw and �tw (Appendix B, Fig. B.5). In that case, every half-period of the
network is covered by a small number of temporal sub-networks, leading to a lack of resolution in the
dissimilarity function, in which only the peaks of dissimilarity at half-periods are well marked, leading
to the detection of the half-period as typical timescale. Another limitation of these methods is that they
cannot measure time scales of networks having periods equal to their time resolutions. It is because it is
not feasible to create a sliding window capable of detecting the changes, as it should be smaller than the
period, which is the time resolution in this case.

4. Applications on real networks

After validating our methods on synthetic networks with controlled properties, to explore further the
capabilities of our methods, we consider empirical temporal networks representing different systems.
We note that in such systems, in contrast to the cases studied above, several time scales, that correspond
both to periodic or non-periodic fluctuations, may co-exist, as well as structural changes of different
nature.
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10 E. ANDRES ET AL.

4.1 Data sets

We consider four temporal networks describing interactions of different nature, with various sizes and
over different observation lengths. For more details about their temporal dynamics, see Appendix C.

• US middle school network: this data set describes close proximity interactions between students of a
middle school in the USA, during 1 day with temporal resolution of 20 s [47], recorded by Radio
Frequency Identification (RFID) wearable devices. It involves several periods of class-times and
inter-class breaks including two lunch periods, when students freely mix while changing classroom
or eating together. The network consists of 591 nodes (each node corresponding to a student) and
contains 473, 755 records of pairwise temporal interactions between them.

• US flight network: this air-transportation network describes the direct flight connections between 278
airports in the USA [48]. In our observation period, we concentrate on 4 days of data that records
71, 315 flights between the airports that we consider as undirected temporal interactions. This network
is expected to show strong periodicities in activity, reflecting the daily recurrent flight schedules,
while structural changes may not be strong as almost always the same airports are connected every
day.

• Conference network: these data also describe face-to-face contacts between individuals, with a tem-
poral resolution of 20 s, obtained from the SocioPatterns collaboration [49] by RFID devices built
on a different architecture. The contacts were measured during a scientific conference, namely the
IC2S2 conference that took place in Cologne (Germany) in 2017 [50]. Our observation period spans
over the three first days of the conference, and records 229,536 temporal contacts between 274 par-
ticipants. This data set is expected to show periodic behaviour both in terms of activity and structural
changes, by reflecting the circadian pattern characterizing the daily life of the participants.

• Resistance game network: it is an eye-contact network between participants of the Resistance game
[51, 52], which is a role game where some of the players are hidden ‘defeaters’, and the goal of the
other players is to uncover them. The game involves multiple rounds of around 4 min each, starting
with a discussion involving every participant, and ending with a vote. The recorded network is built
from directed events between participants who looked at each other at a given time t. The network
is recorded between eight individuals and contains 52,731 temporal interactions that we deem undi-
rected for simplicity. This network provides an example where the interaction level should not reflect
strong periodicity but the grouping of participants changes between each session.

4.2 Results

After applying our pipeline on each data set using both the SA- and EG- and the baseline methods, in
Fig. 5, we depict the power spectra of the obtained dissimilarity functions, with symbols indicating the
dominant frequencies. Interestingly, both the SA- and EG-methods identify the relevant timescales of
changes inmost networks, while the baselinemethod consistently failed to detect them. For theUS middle
school network, both methods yield a timescale of about 46 min, coherent with the length of a class.
Meanwhile, the baseline activity timeline PS would estimate the dominant frequency as corresponding to
a period of 139 min. In the case of the US flight network, where the main changes are expected to be ruled
by circadian fluctuations, both SA- and EG-methods also correctly identified periods of around 24 h. This
time-scale is also captured by the baseline method, but recognised only as its third largest harmonic. The
two first harmonics are identified as periods of 5 and 10 min, which may correspond to the characteristic
times between consecutive departures of planes from the same airport. The Conference network also
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POWER SPECTRUM OF TEMPORAL NETWORKS 11

(a) (b)

(d)(c)

Fig. 5. Power spectra of dissimilarity and activity functions of four real-world data sets (a) a US middle-school, (b) a US flight
network, (c) a conference, and (d) a resistance game network. Dissimilarity functions were calculated by the SA-method (in orange
with star symbols) and the EG-method (in blue with diamond symbols), while results computed for the baseline model using
activity signals are shown in purple with round symbols. The highest harmonics are highlighted with a symbol for each PS, and the
corresponding values of the period is indicated below each panel. The parameters of the sliding windows (tw,�tw) are (2 minutes,
5 minutes) for the US middle school, (2 minutes, 10 minutes) for the US flight, (2 minutes, 5 minutes) for the Conference and (1/3
minute, 1 minute) for the Resistance game.

presents strong signs of circadian changes of activity. This is reflected by all computed power spectra,
which show a harmonic corresponding to a period of about 24 h for both the SA-method and the EG-
method, captured as well by the baseline method. Finally, regarding the Resistance game, which presents
only structural changes, the EG-method measures accurately the time scales of periods characterizing a
single round in the game, around 4 min. Since no periodic change of activities characterise this network,
both the SA-method (more sensitive to activity changes) and the baseline method fail to identify any
meaningful time-scale. The power spectrum of the SA-method suggests the dominant mode to correspond
to 0.53 min, while the baseline method detects 13 min.

It is worth noticing that we have used different sliding window parameters for the different data sets:
(tw,�tw) are (2 min, 5 min) for the US middle school, (2 min, 10 min) for the US flight, (2 min, 5 min)
for the Conference and (1/3 min, 1 min) for the Resistance game. It is due to the fact that the temporal
characteristics of the networks under study vary a lot: from the order of magnitude of the minute for the
Resistance game to the daily pattern of the Conference. The parameters tw and�tw should be chosen in an
appropriate manner with respect to the data set and its characteristic time scales, if an a priori knowledge
of their order of magnitude is available (cf paragraph 3.2). If it is not possible to know a priori which range
of parameters to use according to the data set, one should investigate a spectrum of potential parameters
and check that the extracted timescale is robust on a range of parameter values (cf Appendix D).

4.3 Shuffling of the data

Empirical temporal network data entail structural and temporal correlations of different nature. To explore
which of their characteristics play the main role in determining their relevant time scales, a common
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12 E. ANDRES ET AL.

method consists in shuffling the data to create randomized reference models [53] in which specific cor-
relations are destroyed while others are preserved. In other words, through shuffling we create a sample
from a uniformly sampled microcanonical ensemble of randomized networks, where certain network
properties are kept constrained, while the networks are maximally random otherwise. Specifically, here
we consider shuffling methods that remove the periodicity of the activity and/or of the group structure. In
turn, we apply the SA- and EG-methods to compute the power spectra of the shuffled data and check how
these methods capture the modification of the time scales due to shuffling. We consider the following
random reference models, following the canonical notations introduced in [53]:

• Pp(	) shuffling: To remove both activity and structural correlations, we randomly shuffle the order
of the temporal network snapshots, keeping fixed the structure of each snapshot. This procedure
destroys any structural correlations between consecutive snapshots, removing the effects of structural
reorganizations and randomizing also the activity timeline.

• Pτ shuffling: We rewire randomly all links in each snapshot of the temporal network. This is equiva-
lent to creating a configuration random network [54] in each snapshot, with the same number of nodes
and edges as the original snapshot. The activity timeline is thus preserved while the group structure
and its changes are removed.

Results are shown in Fig. 6 for the four data sets and the two shuffling procedures. When the networks
are shuffled with the Pp(	) procedure (a–d), the original periods of changes are not recovered, which is
expected since the shuffling destroys any periodicity in the data.

However, when we shuffle the networks using the Pτ method, which removes the structural effects but
keeps the fluctuations in the overall activity, our methods present some capacity to identify the residual
time scales of changes in some of the data sets. In particular, two of the data sets present large peri-
odic activity variations, that is, the US flight and the Conference networks. After shuffling, these regular
changes are still present, as the Pτ method preserves their activity time lines, while any other pattern has
been destroyed by the shuffling. Consequently, we may still measure their original circadian period from
their Pτ -shuffled versions. Indeed, both the SA- and the EG-methods applied to the Conference network
recover the dominant time scales, while in case of the US flight data set, the EG-method captures the
expected time scale of around one day. We also find a time scale of 5 min with the SA-method applied to
the US flight data set, which corresponds to another characteristic times of activity of this network (see
Fig. 5).

In contrast, both the SA- and the EG-methods miss the identification of the original time scales when
applied on the Pτ -shuffled Resistance game. Since the original network has no periodic fluctuations in
terms of activity, its shuffled counterpart does not present either any regular changes in term of activity.
Thus, the detected time scales are only induced by some noise in the data.

Finally, the US middle school network presents activity variations that are not easily assessed even
in the original network. Once shuffling with the Pτ method, only the SA-method, which is overall more
sensitive to activity changes, retrieves the original period (≈ 46 min) in the shuffled network. The EG-
method overestimates this time by detecting a period of ≈ 59 min.

5. Conclusion

In this work, we have put forward a new methodology to uncover periodic time scales of changes in
temporal networks. In our proposed pipeline, first we locally aggregate the original temporal network
by using a sliding window to build a sequence of temporal sub-networks. Subsequently, we map these
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(a)

(c)

(e) (f)

(h)(g)

(d)

(b)

Fig. 6. Power spectra for the data sets US school, US flight, Conference and Resistance game networks shuffled using the two
shuffling methods Pp(	) (panels a-d) and Pt (panels e-h), obtained with the SA-method (orange curve with star symbols) and the
EG-method (blue curve with diamond symbols). The period of each original data set is indicated with a black vertical line. For data
shuffled using the Pp(	) method, the original period is never recovered. In the case of the Pt shuffling instead, the SA- and EG
methods still measure original periods if the network presents large activity changes (US flight and Conference data sets). In the
case of the US middle school network, only the SA-method is able to assess the original time scale as this method performs better
to detect activity changes. Finally, none of the method can measure the original period of the Resistance game network shuffled
with the Pt method as it does not present any periodic variations.
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14 E. ANDRES ET AL.

temporal sub-networks into a sequence of static networks, using known lossless higher-order temporal
network representations, namely supra-adjacency matrices or event-graphs. We further extend a method
for the comparison between the consecutive static network samples to define a dissimilarity function that
reflects activity and structural changes in the original temporal network. Finally, we take the power spec-
trum of the dissimilarity function to detect the relevant periodic time scales from the dominant frequencies
characterizing the original network.

We have explored this pipeline, focusing on changes in the activity and group structure of temporal
networks. Using synthetic data sets with prescribed changes, we have shown that while both methods
are able to recover the time scales of the modelled periodic dynamics, they perform differently in the
identification of changes in activity and structure. Specifically, the SA-method is more sensitive to over-
all activity changes while the EG-method captures better periodic structural fluctuations, which cannot
instead be obtained through the power spectrum of the activity timeline. We have also shown that these
methods are able to highlight relevant periods in more complex empirical data sets.

The methodology presented here have certain limitations. First, its performance depends on some
parameters of the aggregation method and the temporal network observed. The observation needs in
particular to span a long enough interval: at least two periods of changes need to be observed. The slid-
ing window parameters also have some impact on the performance: each temporal sub-network should
encode enough information but should not be too long to average out relevant changes. The stride should
be small enough to keep a reasonable temporal resolution and a substantial overlap between successive
windows. Also, the methods presented in this article cannot measure temporal changes if they are smaller
or equal to the time of resolution of the network. Overall, if no prior external knowledge is available on
the expected order of magnitude of the network timescales, the method should be tested on a range of
parameter values, and the robustness of the extracted timescale should be checked.

The proposed methodology pipeline opens the door to the investigation of several interesting exten-
sions and research questions. Possible extensions of the present method could include the consideration
of other static representations as well as other similarity measures between successive temporal sub-
networks1, which could potentially be more sensitive to various types of structural changes of the
temporal network. For instance, it would be interesting to explore whether changes in the instanta-
neous core–periphery structure [25] could be uncovered. Future work could also explore extensions to
time-varying hypergraphs [55, 56] or the interaction between the detected time scales of the underly-
ing temporal network and ongoing dynamical processes. Our work presents a proof of concept for a
new methodological direction that will contribute to the better characterization of time varying complex
structures.
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Appendix

A. Comparing temporal networks

An important step in our methodology is to quantify the similarity between successive temporal sub-
networks. We first map each temporal sub-network to a static one, as described in the main text, and
compare these static representations. To this aim, we adapt a method proposed by Bagrow and Bollt [37],
which allows to compare static networks at multiple scales. The first step of this method is to compute,
for each static network, its “portrait” B defined as

Bl,k = number of nodes which have k nodes at distance l.

The dissimilarity between two networks is then given by the Kullback–Leibler divergence between their
respective portraits.

In our case, the static networks that we need to compare are representations of temporal networks,
with either the Supra-Adjacency or the Event-Graph method, noted Gm

∗ . Nodes and edges in these net-
works contain information about nodes, interactions and times of the original temporal network. To take
this into account, we adapt and modify the definition of network portrait, and define the tensor portrait
of Gm

∗ by relying on BDm
∗ (j, k, τ) which is the number of nodes of Gm

∗ which can reach, in two hops, j
nodes, k events and τ timestamps of the original temporal network. In other words, we consider for each
node of the static representation Gm

∗ its ego-network at distance 2, and count the number of distinct nodes,

(a)

(c)

(b)

Fig. A.1. Sketch of the method to compute the tensor portraits BDm∗ of the temporal network Gm
T displayed in (a). The static SA and

EG representationsGm
SA andGm

EG are shown respectively in (b) and (c).We first evaluate the number of nodes, events and timestamps
from the temporal network accessible within two hops from each node of the static networks. We illustrate the computation for n2∗
(purple dashed highlight). We then count the number of nodes of the static representation that can reach j nodes, k events and τ

timestamps of the original temporal network to compute the element BDm∗ (j, k, τ) of the tensor portrait.
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16 E. ANDRES ET AL.

timestamps and events of the original temporal network Gm
T involved. We then collect this information

for all nodes of Gm
∗ and summarize the resulting histogram as the portrait BDm

∗ . We illustrate this method
to compute the tensor portrait BDm

∗ in Fig. A.1.
We also note that the static representation of the temporal networks are directed, with edge directions

following the arrow of time. The ego-network of a node of the static representation involves only future
timestamps and events. To take also into account how each node can receive information from events in
the past, we create for each Gm

∗ its reversed version Gm
∗,R by inverting the direction of each edge of the

representation and compute its portrait BRm
∗ . We then obtain the final tensor Bm

∗ by summing BDm
∗ and

BRm
∗ .
Finally, we compute the dissimilarity between each pair of consecutive tensors Bm

∗ and Bm+1
∗ , as their

Kullback–Leibler divergence (if the two tensors Bm
∗ and Bm+1

∗ differ in size, we adjust the size of the
smaller one to the size of the biggest one by filling the missing entries with zeros). The dissimilarity
function is defined as:

D∗(m) = KL(Bm
∗ ,B

m+1
∗ ) for m ∈ N

Note that, in the event of an empty network, the Kullback–Leibler divergence is not defined. We then
assign one single event to the corresponding empty temporal sub-network Gm

T .

B. Sensitivity analysis: size and length of the temporal network, sliding window parameters

To evaluate the reliability of our results, we perform a sensitivity analysis on the parameters of the exper-
iments Change of activity and Change of grouping. We change one parameter in both experiments while
keeping the other constant (N = 100, ε = 0.001, η = 45, μ oscillating between 1.8 and 2.8 for the
Change of activity and μ = 2.8 for Change of grouping, Ta = Tg = 100, | T | is adjusted to have 12
periods, �tw = 5 and tw = 2).

When we vary the number of nodes of the networks (Fig. B.1), the original period is almost always
measured properly except when the number of nodes is high. In that case, the measured period is 50
(corresponding to a frequency of 0.02), which is half of the original period. In fact, when the networks
change from a high-activity state to a low-activity state, we observe a peak in the dissimilarity function.
This situation happens twice in a period: when changing from low to high and from high to low activity.
The measured period is then the half period (Note that this happens at all sizes, and the half-period is
indeed always recovered as one of the harmonics, but it seems here to become dominant at large sizes).

The same analysis has been realized by changing the length of the period (Fig. B.2) and in every
case, the original period is correctly measured: the length of the period does not influence the observa-
tion. Instead, when we change the number of periods observed (Fig. B.3), we observe that we need a
minimum of two periods to measure the original time scale. Also, by diminishing the activity difference
in the Change of activity experiment, by turning the exponents of the activity distribution (Fig. B.4), we
show that our methods can detect very small variations of activity. Namely, it can effectively distinguish
between variations if the difference between the exponents corresponding to low and high activity is
higher than 0.2 for the EG-method and 0.4 for the SA-method.

We finally study the influence of the parameters of the sliding window tw and �tw on the results.
In Fig. B.5, we compute the power spectra of the AD network with the SA-method and the EG-method
having different parameters tw and �tw. Indeed, in the case of empirical data sets, if no prior information
is available on the orders of magnitude, one should explore a range of possible parameters and check the
robustness of the extracted timescales. The correct period (100) is properly measured if tw is not too large
and if �tw has an intermediate value.
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POWER SPECTRUM OF TEMPORAL NETWORKS 17

Fig. B.1. Power spectra of the temporal network from the Change of activity experiment (left column) and the Change of grouping
experiment (right column) measured from the SA-method (first row, yellow background) and the EG-method (second row, blue
background). The number of nodes of the AD networks varies from 50 to 1000. The correct frequencies are indicated with vertical
dashed lines. Those original periods are well-measured in the majority of the cases. However, when the number of nodes is too
important, the method measures the semi-period.

Fig. B.2. Power spectra of the temporal network from the Change of activity experiment (left column) and the Change of grouping
experiment (right column) measured from the SA-method (first row, yellow background) and the EG-method (second row, blue
background). The period varies from 25 to 300. The correct frequencies are indicated with vertical dashed lines and are here always
well recovered.
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18 E. ANDRES ET AL.

Fig. B.3. Power spectra of the temporal network from the Change of activity experiment (left column) and the Change of grouping
experiment (right column) measured from the SA-method (first row, yellow background) and the EG-method (second row, blue
background). The number of periods of the AD networks observed during T varies from 1 to 6. The correct frequencies are indicated
with vertical dashed lines. Those proper periods are well-measured as long as the data set contains at least two periods.

Fig. B.4. Power spectra of the temporal network from the Change of activity experiment measured from the SA-method (left
column, yellow background) and the EG-method (right column, blue background). The parameter γ1 of the AD networks corre-
sponding to periods of high activity varies from 1.8 to 2.8, while the other parameter γ2 characterizing the low-activity state remains
constant equal to 2.8. The correct frequencies are indicated with vertical dashed lines. Those proper periods are well-measured as
long as γ1 is different than γ2.
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POWER SPECTRUM OF TEMPORAL NETWORKS 19

Fig. B.5. Period measured through the SA-method (first row, orange background) and the EG-method (second row, blue back-
ground) for the Change of activity experiment (first column) and the Change of grouping experiment (second column). We change
the parameters of the sliding window: the x-axis presents different values of the stride tw and the y-axis different values of time-
window lengths (�tw). The period of the initial networks is 100 and the results are averaged over 10 realisations. The results are
displayed as the average period over the different realisations ± the standard deviation.

C. Empirical data

We observe the changes of activity over time of the empirical networks for the four data sets (Fig. C.1).
The US school presents periodic patterns, varying from low contact periods when the students are in class
to high contact periods when there is a recreational time. The US flight and Conference networks have
circadian patterns as there are respectively less flights and less contacts at night. Finally, the Resistance
game does not present any periodic change in its activity as every player of the game is looking at someone
else at each time step.
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(a) (b)

(c) (d)

Fig. C.1. Number of events as a function of time for the four data sets: the US school (a), the US flight (b), the Conference (c) and
the Resistance game (d). The US school network contains high activity periods during recreational moments of the students’ day,
while the US flight and the Conference networks present circadian patterns. The Resistance game network does not have particular
periodic activity changes.

Fig. D.1. Measures of the time scales of changes of the US middle school temporal network with the SA-method (left panel) and
the EG-method (right panel) for different parameters (tw,�tw). The measure of 46 min is robust over the parameter pairs (tw,�tw).

D. Choice of the parameters (tw,�tw)

If one has prior knowledge of the order of magnitude of the time scale of the temporal network under
study, the parameters tw and �tw should be selected in a manner that is suitable for the data set and its
characteristic time scales. Indeed, �tw must be chosen large enough to avoid noise in the measure and
small enough to avoid a flattening of the dissimilarity function. Also, the parameter tw must respect the
Nyquist–Shannon theorem (cf paragraphs 2 and 3.2).
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If it is not the case, one should explore several parametrizations (tw,�tw) and check that the measured
time scale is robust over a spectrum of parameter values. This has been proceeded for example on the data
set US middle school (cf Fig. D.1) and the same period of 46 min is obtained for most of the parameter
pairs (tw,�tw). The only different value appears when the parameter �tw =2 min with the EG-method.
This is because when the sub-networks are too short, the noise perturbs the measure.
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