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A Normal Form-based Power System Out-of-step
Protection

N.S. Ugwuanyi, X. Kestelyn, , O. Thomas, B. Marinescu, , B. Wang,

Abstract—This paper proposes a new system-level application
for monitoring out-of-step (OOS) events in power systems. As
already known, amplitude-dependent frequency shift is a non-
linear phenomenon of electromechanical oscillations under large
disturbances. The frequency shift indicates the system’s nearness
to instability. This new tool utilizes the Normal Form method
to identify the named phenomenon, leading to accelerated OOS
detection. The proposed strategy is illustrated and compared
to the equal-area criterion method in a single-machine-infinite-
bus power system. Extensive tests on IEEE 3- and IEEE 50-
machine power systems prove the efficacy and potential of the
proposed method for online warnings of instability and ranking
of vulnerable system modes.

Index Terms—Normal form, oscillation frequency drift, out-
of-step prediction, transient stability.

I. INTRODUCTION

THE he ultimate goal of any well-designed power system
is to recover quickly following large disturbances such

as faults, line switching, loss of large generation, e.t.c. Cer-
tain disturbances may cause the system to fail, resulting in
a loss of synchronism. Out-of-step (OOS) or asynchronous
operation refers to the loss of synchronism of one or more
generators. OOS protection typically focuses on detecting an
asynchronous operation as soon as it occurs. As a result,
preventive measures such as islanding the affected generators,
load-shedding, etc., are implemented.

Detecting OOS usually entails spotting significant changes
in power system parameters at the start of an asynchronous
action. These parameters include line impedance, rotor angle,
phase, current, voltage, bus voltage frequency, e.t.c. Depend-
ing on the quantity tracked, different methods for detecting
OOS exist in the literature. The authors in [1] extended the
equal-area-criterion (EAC), which was previously restricted
to two-machine systems, to multi-machine systems to detect
OOS. This technique based on analysis of the power-angle
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characteristics is valuable for oscillations between two groups
of generators or between an individual generator and the
rest of the system. Ref. [2] employs it for OOS detection
in protection applications based on power-time analysis. To
find the cluster solution that gives the position leading to
controlled islanding, [3] uses graph theory combined with
time-domain EAC. The method’s strength lies in its use of
local OOS protection to detect system-wide instability. Using
Clarke’s transformation and analytic geometry evaluation, [4]
proposes an OOS protection method. It boasts a real-time im-
plementation that combines time-domain analysis in Clarke’s
domain with the sudden-change-in-voltage (SCV) approach
to enhance OOS protective feature action. Zhang et. al, [5]
convert the bus voltage phase angles obtained from phasor
measurement units into a new coordinate system in which all
of the bus voltage phasor ends are stable during the out-of-step
oscillation process, while only the common beginning moves.
The out-of-step center position criterion and the bus grouping
criterion are then proposed. This method, like the wide-area
measurement (WAM) methods in [6], [7], depends on the
accuracy of the measurement units and the fidelity of wide-
area communications to fully use it. Other existing approaches
include variation in voltage frequency-based method [8], line
differential current-based method [9], instantaneous active
power deviation-based method [10], adaptive method [11],
decision tree method [12] and turbine generator behavior-
based method [13]. The majority of those references use
EAC to supplement their approaches (e.g., [1]–[3], [11]), so it
appears to be the most commonly published.

Most of the previous methodologies concentrate on locating
the OOS incident and separating the affected generators, which
means that OOS must have occurred. As a result, most of
them need the fault clearing time fed as an input to the
relay. They include details in the form of a switch’s—YES
or NO—much like time-domain simulations. They do not
give sufficient information on how close the system is to
going down. Some OOS symptoms are hidden but dangerous,
manifesting fully solely when the only available defense may
be islanding. Furthermore, most of the methods examined
are local, making them incapable of detecting system-wide
instability. Any method that detects the power system’s gradual
descent into the OOS regime in a system-wide manner will
undoubtedly improve its protection. Whether current, voltage,
impedance or other parameters are monitored, they all lead to
one thing: controlling the natural mode of the power system.
The dynamics of a power system are related to its natural
mode, in addition to the subjected disturbance.

In this paper, we propose to monitor the variations in the
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power system’s electromechanical modal parameters (in this
case, oscillation frequency) prior to the commencement of
the asynchronous regime to detect and mitigate the OOS.
Our attention is the electromechanical dynamics, which is
the principal stability effect in many systems. There are
practical reasons for this proposal. As examples, the Western
Interconnection power grid experienced a massive breakup on
August 10, 1996. According to measurement-based research,
the 0.25-Hz oscillation, which was suggestive of an imminent
breakup, resulted from a gradual decrease in oscillation fre-
quency from 0.27 Hz to 0.25 Hz, as well as a decrease in
oscillation damping ratio from 7.0% to 1.2% [14]. On June 4,
2003, there was another widespread oscillation resulting from
weakened system conditions. Prony analysis determined the
oscillation frequency to be 0.584 Hz and the mode shape to
be an east-west interaction between the Colstrip and Kemano
plants, although the dominant modes for these plants are
typically near 0.78 Hz and 0.63 Hz, respectively [14]. The
preceding real events indicate that the reported instabilities
were accompanied by a decrease in modal frequency and
damping, which can help detect the onset of an OOS. When
the initial conditions of a power system change, the frequency
of electromechanical oscillations (EOs) changes. In a linear
case, the new frequency is constant and may be viewed as a
new fundamental frequency at the new initial condition. In a
nonlinear scenario, the EO’s frequency does not keep constant
but varies with the amplitude, a phenomenon often known as
a frequency shift. In this paper, we use frequency shift for
the two cases and view the former as a shift for a constant
amplitude. This phenomenon has piqued the interest of re-
searchers, notably the Pacific Northwest National Laboratory,
which is currently developing tools for real-time monitoring
of electromechanical modes’ parameters, a technology Hauer
et. al, [14] dubbed ”Mode Meter.” This paper employs the
Normal Form (NF) method to detect the dominant mode’s
frequency shift towards the asynchronous regime. The efficient
detection of oscillation frequency changes will supplement
existing methods and increase the power system’s reliability.
The strength of the proposed method lies in its ability to detect
system-wide instability speedily and easily. It is so because
it is not based on any particular machine, but the prevailing
system condition. Controlling the responsible generators is
a second step, which can be done with any other method,
e.g., participation factor analysis. While identifying the ex-
act time for OOS and the responsible generators is crucial
for islanding, the proposed method boasts the capability of
indicating imminent OOS before it ever occurs. This added
feature is key to preventive controls. In summary, this paper’s
contributions include (i) a new way to estimate and monitor
the oscillation frequency without repeating the small-signal
analysis (SSA), (ii) a new application of Normal Form method
to power system protection, (iii) the proposed OOS detection
algorithm is much fast, system-wide, and has potential for
real-time implementation. Moreover, the proposed tool may
be coordinated to work parallel with existing tools like WAM,
EAC, e.t.c., to enhance system reliability.

The rest of the paper is structured as follows: Section II
discusses the theoretical foundations of the NF method. Sec-

tion III provides the reader with clear motivational examples
to help them understand the concept for the proposed tech-
nique. Consequently, the new method is presented. Section IV
is devoted to in-depth simulations and discussions. Finally,
Section V concludes the paper and suggests future research.

II. NORMAL FORM THEORIES

The Poincaré and Poincé-Dulac NF theory [15] uses a
polynomial transformation to simplify nonlinear differential
equations. The NF method requires, to begin with, the rep-
resentation of the nonlinear system with a polynomial of
appropriate degree followed by a transformation that removes
or simplifies the nonlinear couplings. Ref. [16] conducted
detailed studies that revealed that a polynomial of degree 3
substantially retains the power system’s nonlinear behavior
in some vicinity of the stable equilibrium point. The NF
method is particularly useful in power systems for studying
the effects of modal interactions in control designs [17],
[18] and power system stability [19]–[22]. This technique
has also been used in vibration mechanics to investigate the
frequency shift phenomenon of a natural mode subjected to
a displacement [23]. The frequency shift phenomenon occurs
in power systems as well, but it is not given the attention it
deserves. These critical applications sparked a slew of studies
aimed at easing NF’s computational burden [24]–[26]. In the
following subsections, the NF theory for first and second-order
systems is reviewed.

A. Normal Form of First-order System

Consider a dynamical system:

ẋ = f(x), (1)

where x is the N -dimensional state vector, f is a smooth
vector field. The system in (1) is assumed to have a stable
equilibrium point at the origin, i.e. f(0) = 0, (otherwise, a
coordinate transformation can move it to the origin) and can
be approximated by Taylor series around the equilibrium point.

Therefore, system (1) can be written as:

ẋ = Āx + Γ(x), (2)

where Ā is the Jacobian of f , Γ(x) represents nonlinear terms
expanded in polynomial series and Γ(0) = 0.

Assuming that Ā is diagonalizable, a linear transformation
x = Φy decouples the linear part of (2) as

ẏ = Λy + fnl(y), (3)

where Λ is a diagonal matrix of the eigenvalues of Ā and
fnl(y) = ΦTΓ(Φy) gathers the nonlinearities in the new
coordinates. Φ is the right eigenvector of Ā, normalized such
that ΦTΦ = 1. In power systems, Λ has complex elements.

NF theorem states that if no resonance exist among the
eigenvalues of Ā, there is a nonlinear transformation

y = z + h(z), (4)

which simplifies the system (3) to

ż = Λz. (5)
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h(z) is a higher order polynomial. In other words, in (5),
the counterpart of the nonlinear terms in the system (3) is
removed. In the case of resonances, all mononomial terms
in fnl(y) that are resonant cannot be removed. NF finds h
to eliminate the removable nonlinear terms. The NF for the
first-order system has a conceptual disadvantage in that the
physical meanings of the state variables may be unclear, and
using second-order systems can relieve this nuisance.

B. Normal Form of Second-order Systems

The NF derivations for second-order mechanical systems
have been extensively discussed in the literature and will not
be replicated in this article. For details, see [23] and references
therein, however, the basic steps required to understand the
method are presented here. This paper will present a novel
application of previous NF findings to the study of power
system oscillations, inspired by the relationships between
second-order mechanical and electrical models.

1) Power System Model: The equation of motion for an
N -machine classical model power system can be represented
by a 2nd-order differential equation (6).

Miδ̈i + Ciδ̇i + Pei = Pmi
, (6)

Pei = E2
i Gii +

N∑
k=1,k 6=i

EiEk[Gik cos δik + Bik sin δik].

Mi, Ci, Pei , Pmi , δi are respectively inertia constant, damping
constant, electrical power, mechanical power and absolute
rotor angle of generator i, and δik = δi − δk. Gik and
Bik are respectively the conductance and suceptance between
generator i and k while Ei is the constant emf behind the
transient reactance of generator i.

2) Taylor Expansion: The 3rd-order Taylor expansion of
(6) for a constant input reads:

Mij δ̈j + Cij δ̇j +

N∑
j=1

Kijδj +

N∑
j=1

N∑
k=1

F2i
jkδjδk + . . .

N∑
j=1

N∑
k=1

N∑
l=1

F3i
jklδjδkδl = 0,

(7)

where Kij =
∂Pei

∂δj
|δ=δ0 , F2ijk = 1

2

∂2Pei

∂δj∂δk
|δ=δ0 ,

F3ijkl = 1
6

∂3Pei

∂δj∂δk∂δl
|δ=δ0 . The eigenvalues of K are all real.

In the conventional NF, the Taylor expansion of (6) has to be
re-written in first-order, an operation that doubles the size of
the system and leads to the computation of complex quantities.

3) Linear Transformation: Let Ω be a vector of the eigen-
values, obtained by solving (K− Ω2

iM)Φi = 0. Let the i-th
element be Ω2

i . If uniform damping is assumed, matrices M,
C and K can be diagonalized simultaneously, leading to:

ΦT
i MΦj = σij ∀i, j

ΦT
i KΦj = Ω2

iσij ∀i, j
ΦT

i CΦj = 2ζiΩiσij ∀i, j,
(8)

where ζ is the damping factor, and σij = 1 ∀i = j, 0 ∀i 6= j.
If Φip denotes the ith element of Φp and using one generator
as a reference, a linear transformation

δ = Φy =⇒ δi = Φipyp (9)

transforms (7), ∀p = 1, . . . N , to

ÿp = −Ω2
pyp −

N∑
q=1

N∑
r=1

Gp
qryqyr −

N∑
q=1

N∑
r=1

N∑
s=1

Hp
qrsyqyrys, (10)

where Gpqr = F2ijkΦipΦjqΦkr, H
p
qrs = F3ijklΦipΦjqΦkrΦls.

y is the modal variable. The damping term has been canceled
in (10) by subtracting the equation corresponding to the
reference generator from all other equations.

To avoid complex quantities, (10) is put to first-order using
the velocity ȳp = ẏp as auxiliary variable and then, each os-

cillator represented by a block diagonal matrix
(

0 1
−Ω2

p 0

)
.

The auxiliary variable allows (10) to be written in the form
of (3) and can always be canceled to recover 2nd-order-
like oscillator equations. The first difference compared to the
traditional NF method is that the 2nd-order system model is
expanded by the Taylor series before putting it to first-order.
The frequency of the undamped linear mode is unchanged
while admitting simpler computation.

4) Nonlinear Transformation: To decouple (10), the non-
linear change of variables defined in (11) is used.

yp = Rp +

N∑
i=1

N∑
j≥i

(apijRiRj + bpijSiSj) +

N∑
i=1

N∑
j≥i

N∑
k≥j

rpijkRiRjRk

+

N∑
i=1

N∑
j≥i

N∑
k≥j

up
ijkRiSjSk.

(11a)

ȳp = Sp +

N∑
i=1

N∑
j=1

γp
ijRiSj +

N∑
i=1

N∑
j≥i

N∑
k≥j

µp
ijkSiSjSk

+

N∑
i=1

N∑
j≥i

N∑
k≥j

vpijkSiRjRk.

(11b)

Rp and Sp are new variables, respectively corresponding
to the angle and speed. The unknown coefficients apij , b

p
ij ,

γpij , u
p
ijk, r

p
ijk, v

p
ijk, µ

p
ijk (equivalence of h-coefficients in first-

order case), are determined by just solving sets of linear
equations formulated by equating like terms. Details of their
computations can be found in [23], [27, Appendix C]. Unlike
the h-coefficients in (4), these coefficients are all real.

By substituting (11) into (10), followed by simplifications,
the NF for the p-th mode is given by [23]:

R̈p = −Ω2
pRp − (Apppp +Hp

ppp)R
3
p −BppppRpṘ2

p, (12)

where the coefficients Apijk and Bpijk are the third-order resid-

ual terms expressed as Apijk =
N∑
l≥i

Gpila
l
jk+

N∑
l≤i

Gpila
l
jk, B

p
ijk =

N∑
l≥i

Gpilb
l
jk +

N∑
l≤i

Gpilb
l
jk. Equation (12) assumes that there is

no strong modal resonance, thereby neglecting the effects
of cross-coupling nonlinearities. A reverse transformation is
possible via (11) and (9).

III. PROPOSED METHOD FOR OUT-OF-STEP TRACKING

The proposed method for OOS protection is described in
this section. To begin, the reader is given clear motivational
examples to help them understand the key concept that follows.
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A. Motivations for the Proposed Technique
Firstly, consider a single-machine-infinite-bus (SMIB)

power system whose data and model are described in Sec-
tion IV-A and equation (6) respectively. It can easily be shown
that if (6) is written in first-order and C is zero, its eigenvalues
are given by:

λ1,2 =

ω2
s

Mω2
0
Peo ± j

√[
ω2

s

Mω2
0
Peo

]2
− 4

ω2
s

Mω0

EV
Xs

cos δ0

2
,

(13)

where Peo is the electrical power output of the generator, δ0,
the initial rotor angle, ωs, the synchronous speed, and ω0, the
initial rotor speed. Note that the simplifying assumption ωs =
ω0 was not used in (13). Equation (13) shows the effects of the
generator loading on the oscillation’s damping and frequency.

As reported in [28], if the generator’s output increases,
the frequency and damping decrease, as shown in Fig. 1a.
To show this quantitatively, let the equilibrium point of the
SMIB system be 15◦. The frequency of the mode is 7.82
rad/s (1.24 Hz). Using the EAC, the stability bound for this
operating point is 165◦ (2.88 rad). Now, consider an initial
condition (δ = 164.90◦, ω = 0), i.e., 99.94% of the stability
bound. The nonlinear response of this condition is shown in
Fig. 1b. The oscillation frequency estimated from the two
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Fig. 1. Power output and fault affect the frequency and damping

peaks indicated in the figure is 0.65 Hz (4.0841 rad/s), which
is 48% less than the linear frequency. It implies that the
two principal causes of OOS (loading and faults) manifest
in decreasing the oscillation frequency.

One can, therefore, conclude that in a stable mode, the
frequency decreases as the generator output or fault level
increases. This frequency’s descent reaches a critical point
below which the mode loses stability, and the probably af-
fected generators are those participating significantly in that
oscillation mode. This phenomenon motivates the mode’s
stability monitoring for OOS protection.

B. Out-of-step Detection Criterion
The OOS detection criterion in this paper is quite simple

and based on careful exploitation of (12). As seen in Fig.
1b, a nonlinear phenomenon of EOs under large disturbances
is amplitude-dependent frequency drift. With the first-order
representation, an analytical expression of the frequency shift
(or nonlinear frequency) can be found for (12) using the
perturbation methods, e.g. the multiple-scale method, as:

Ωpnl
= Ωp

(
1 +

3(Apppp +Hp
ppp) + Ω2

pB
p
ppp

8Ω2
p

a2

)
, (14)

where Ωpnl
is a frequency, which depends on the amplitude a

considered, while Ωp is the fundamental frequency. The term
in parenthesis is a correction to the fundamental frequency
as the amplitude changes. Equation (14), also known as the
backbone curve in mechanics, has already been derived and
used to investigate the hardening and softening behavior of
nonlinear structural vibration [23]. To the best of the authors’
knowledge, the application of such a concept to the study of
multi-machine power system oscillation is original.

Estimating the critical frequency shift necessitates an evalu-
ation of the critical amplitude of the oscillation. Since the rotor
angle δ is transformed to NF, the maximum displacement of
R = Rcr can be obtained from (12) by setting R̈ = Ṙ = 0 as:

Rpcr = Rp =

√
−Ω2

p

(Apppp +Hp
ppp)

, (15)

where Rpcr stands for the critical displacement of p-th NF
variable, R. Since a is the amplitude of the p-th mode, the
critical displacement Rpcr has to be projected to the modal
coordinate using the modal model (11a) as follows:

apcr = yp(Rpcr) = Rpcr + apppR
2
pcr + rppppR

3
pcr . (16)

Therefore, the critical frequency shift is computed using (14)
with a = apcr . With the critical frequency shift computed, the
stability is evaluated anytime as follows:

1) Obtain the system condition δsc, where sc means system
condition.

2) Obtain the modal amplitude of the system condition
using (9) as apsc = ypsc .

3) With the amplitude determined, compute the frequency
shift, Ωpnlsc

using (14).
4) If Ωpnlsc

> Ωpnlcr
, the system condition is considered

stable; otherwise, it is unstable.
The following benefits of the proposed method are noteworthy:
• Since it is based on the oscillation mode, a system-wide

parameter, it detects system-wide instability.
• It does not need the fault clearing time fed as an input to

the relay, so it has a similar advantage advertised in [1].
• It requires only computations related to the mode of

interest, making it fast and easy, thanks to the selective
computation technique promoted in [25].

• It does not require computing the initial conditions in the
NF space, so this challenging step is avoided.

• It is unnecessary to transform each system initial condi-
tion to NF space as in [19], [20].

• The impact of generator loading, load loss/addition,
faults, e.t.c, on the oscillation frequency may be investi-
gated for warnings of impending OOS.

The proposed method may incur errors due to modal
interactions besides the inherent truncation error caused by
Taylor expansion. Simplification to NF (12) assumes negligible
effects of inter-modal interactions. This assumption is more
valid for the SMIB, which has one mode or if the initial
conditions for k 6= p are zero for the multi-machine system.
When a multi-machine power system experiences a large
disturbance, the initial condition for k 6= p is not zero in
general, and the effect of modal interaction increases. Close
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to the stability boundary, cross-coupling interactions, as well
as 4th and higher-order interactions, may be significant. As a
result, Ωpnl

could be slightly farther/closer, leading to a lightly
conservative or optimistic outcome. A normalizing factor is
added to steer the cumulative effects of all modes to the
particular mode of interest, which improves the challenge of
inter-modal interactions. The normalizing factor is discussed
in the next paragraph.

Following the definitions in [29] for mechanical systems,
the modal mass m∗p = ΦTp MΦp is equal to the sum of (mass)
× squared (mode displacement) for each mode (i.e., m∗p =
N∑
q=1

mqΦ
2
pq). Similarly, the modal stiffness k∗p = ΦTp KΦp is

the sum of the strain energy stored in each oscillator, and
the total strain energy indicates that k∗p = mpΩ

2
p. Thus, we

define Tsep = mpΩ
2
p, T sepnl

= mpΩ
2
pnl
, where Tsep and

Tsepnl
are the total modal strain energies of the pth mode at

linear and nonlinear frequencies, respectively. The normalizing
factor is thus defined for p-th mode as

S.F =
Tsepnl

Tsep
. (17)

So, for any system condition, the frequency shift is tuned as:

Ω̃nlsc = Ωnlsc × S.F. (18)

The results will later show that the proposed approach incurs
tolerable errors for the considered model. In the following sec-
tions, numerical simulations are presented to test the method.

IV. POWER SYSTEM CASE STUDIES

In this section, the proposed method is first illustrated with
an SMIB power system and then applied on the IEEE 3- and
the IEEE 50-machine power systems.

A. Case Study 1 — SMIB Power System

Consider the previously mentioned SMIB power system,
which is shown in Fig. 2.

The proposed method is applied following the steps below:

Xs = j0:95

V = 0:995
6 = 0

◦

E = 1:123
6 = δ0 = 15

◦

M =
7

120π

Pe

Fig. 2. Single-line diagram of a SMIB Power System

• The electrical output power Pe = EV
Xs

sin δ.
• Evaluate the Taylor expansion terms in (7) as: K =

EV
Xs

cos δ0 = 1.1361,
F2 = − EV

2Xs
sin δ0 = −0.1522, F3 = − EV

6Xs
cos δ0 =

−0.1894.
• Solve (K − Ω2M)Φ = 0 to get Ω = 7.8222 and Φ = 1.
• Use (8) and (9) to obtain the modal model (10) as:
ÿ + 61.1866y − 8.1974y2 − 10.1978y3 = 0.

• Following [23], compute the NF coefficients in (11) as:
a = 0.0447, b = 0.0015, γ = −0.0893, r = u = µ =
v = 0, and in (12) as A = −0.7322, B = −0.0239.

• Therefore, the NF model (12) becomes:
R̈ = −61.1866R+ (0.7322 + 10.1978)R3−0.0239RṘ2.

• With R̈ = Ṙ = 0, evaluate the critical amplitude in R
from (15) as Rcr = 2.366, and substitute into (16) to get
the critical modal amplitude as:
acr = 2.366 + 0.0447× (2.366)2 + 0 = 2.616.

• With the critical modal amplitude acr determined, use
(14) to calculate the critical frequency shift as:
Ωnlcr = 7.8222×

(
1− 3×10.93−61.1866×0.0239

8×61.1866 × 2.6162
)

= 4.0764 rad/s.
• Therefore, the oscillation frequency should not go below

4.0764 rad/s to maintain synchronism.
• Since the SMIB has one mode only, the normalizing

factor S.F = 1. Thus, Ω̃nlsc = Ωnlsc for any disturbance.

Observe that the critical frequency shift we just calculated is
nearly identical to the one estimated in [Fig. 1b, Section III-A].

Because it only has one mode, it may not be obvious what
the NF did in the preceding example, but the job of the NF is to
decouple the multi-oscillator system into separate oscillators of
the type exemplified, which will be shown in next subsection.

The SMIB was subjected to various disturbances by varying
the rotor angle initial condition to put the criterion to the test.
The frequency shift is computed for each initial condition, and
the nonlinear solution is evaluated by integrating the nonlinear
model in MATLAB®. In this and subsequent sections, the
nonlinear solution obtained with MATLAB® is regarded as
the ”true” solution. The outcomes for the various conditions
are presented in Table I. For comparison, the result of the
equal-area criterion is also shown. We assume the reader is
familiar with the EAC method, so we leave out the specifics.

TABLE I
COMPARING PROPOSED METHOD WITH EAC ON SMIB POWER SYSTEM

Post-fault Ωnlcr = 4.0764 rad/s Proposed EAC True
(rad) Ω̃nlsc (rad/s) Decision Decision Decision

1.7453 6.6175 Stable Stable Stable
2.4435 5.2168 Stable Stable Stable
2.6180 4.7833 Stable Stable Stable
2.8798 4.0705 Unstable Stable Stable
2.8815 – Unstable Unstable Unstable

The Table shows that when the rotor angle amplitude
reaches 2.8798 rad, the proposed method classifies the system
as unstable because the Ω̃nlsc = 4.0705 rad/s, which is less
than the Ωnlcr = 4.0764 rad/s. The EAC and the true solution
are stable up to 2.8815 rad, implying that the proposed method
is conservative with an error of only 0.06% in angle in this
case. The response of the reconstructed NF, linear, and true
solutions is shown in Fig. 3, confirming that the proposed
method becomes unstable almost at the same time as the true
solution. The NF’s accuracy originates from the frequency
shift against the constant frequency during a disturbance, as the
linear solution assumes. It is noteworthy that if the swinging
of a generator against the rest is of interest, as is the concept
of multi-machine EAC [1], the proposed method will work
very similarly to the EAC. Such limitations, however, are
unnecessary. In the sections that follow, the proposed method
will be deployed for multi-machine applications.
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Fig. 3. Response of the system during unstable fault

B. Case Study 2 — The IEEE 3-Machine System

The IEEE 3-machine power system [30] shown in Fig. 4
has two electromechanical modes of frequencies 13.72 rad/s
(Mode 1) and 8.82 rad/s (Mode 2). According to participation
factor analysis, Mode 1 is most associated with generator
G3, whereas Mode 2 is associated with G2. Mode 2 also
has inter-area effects because it is excited regardless of the
fault location. A three-phase fault was added to Bus 4, and it

G1

G2 G3

2 7 8 9 3

65

4
1

Fig. 4. One line representation IEEE 3-machine power system

was cleared over time by removing the fault until instability
occurred. Mode 2 is dominant in this case. The values of
Ω̃nlsc after each clearing time are listed in Table II. According

TABLE II
CASE STUDY 2: FAULT AT BUS 4

MODE 1 (Ω1nlcr
= 8.55), MODE 2 (Ω2nlcr

= 5.44 )

Fault Ω̃1nlsc
Ω̃2nlsc

Proposed True
duration (s) (rad/s) (rad/s) Decision Decision

0.15 13.65 8.32 Stable Stable
0.22 13.41 6.67 Stable Stable
0.24 13.30 5.89 Stable Unstable
0.25 13.22 5.36 Unstable Unstable

to Table II, the proposed method detects instability at 0.25s,
while the true instability occurs at 0.24s. In this case, the
results also show that for the chosen fault conditions, Mode
2 is less stable than Mode 1. This can be seen in the table,
where the frequency of Mode 2 decreases faster as the stress
increases, whereas the frequency of Mode 1 decreases slowly.

A second case is considered by adding a three-phase fault to
Bus 9 and clearing the fault at increasing time intervals until
instability occurs. Mode 1 is dominant in this case. Table III
lists the values of Ω̃nlsc after each clearing time. According
to the table, the proposed method detected instability at 0.26s,
which is earlier than the true solution (i.e., 0.29s). The table
also shows that Mode 1 is driving the instability in this

case. The numbers in the 3rd column, i.e., Ω̃2nlsc
, are the

same, which appears quite ideal based on the participation
factors. Notice that by observing a significant decrease in

TABLE III
CASE STUDY 2: FAULT AT BUS 9

MODE 1 (Ω1nlcr
= 8.55), MODE 2 (Ω2nlcr

= 5.44)

Fault Ω̃1nlsc
Ω̃2nlsc

Proposed True
duration (s) (rad/s) (rad/s) Decision Decision

0.15 13.00 8.81 Stable Stable
0.22 10.67 8.81 Stable Stable
0.25 9.00 8.81 Stable Stable
0.26 8.30 8.81 Unstable Stable
0.29 – 8.81 Unstable Unstable

the oscillation frequency, one can already tell if there is
an intended OOS. The affected generators can be controlled
to reinforce the system, preventing the OOS and potential
blackout. Such insight is in contrast to traditional tools’ YES
or NO feedback.

C. Case Study 3 — IEEE 50-Machine Power System

The proposed method is tested using the IEEE 50-machine
power system to show the application to large systems. A
section of the test system is shown in Fig. 5. The power

Fig. 5. Portion of one-line diagram of the IEEE 50-machine system [31]

flow data was extracted from [32], [33] while the dynamic
data was taken from [34]. We know from previous studies
that a fault at Bus 7 causes very high amplitude oscillation,
which is primarily associated with local modes and leads to
early instability. Besides, a fault at Bus 34 activates both local
and inter-area modes, resulting in the simultaneous instability
of several generators. Thus, two scenarios are thoroughly
examined: 1) a fault on Bus 7 and 2) a fault on Bus 34.

The results of mode stability monitoring for fault at Bus 7
using the proposed method are shown in Table IV. Because
mode 8 is the first to exhibit instability, only its stability is
displayed in Table IV. It is discovered that Mode 8 becomes



7

TABLE IV
CASE STUDY 3: FAULT AT BUS 7; MODE 8 (Ω8nlcr

= 9.05)

Fault Ω̃8nlsc
Proposed True

duration (s) (rad/s) Decision Decision
0.15 15.27 Unstable Stable
0.22 11.78 Unstable Stable
0.25 9.27 Unstable Stable
0.26 8.33 Unstable Stable
0.27 – Unstable Unstable

unstable at a time 0.26s with Ω̃8nlsc
less than its critical value

9.05 rad/s. The true instability occurs at 0.27s when generator
7 (G7) loses synchronism with the rest of the system (see
Fig. 6a). Mode 8 is local, and is associated most with G7 as
confirmed by its shape (see Fig. 6b).
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Fig. 6. (a) Trajectory at 0.27s for fault at Bus 7, (b) Shape of Mode 8

In the second case of fault at Bus 34, we observed Mode
18 and Mode 28 becoming unstable almost simultaneously,
resulting in widespread instability. Table V shows the results
for monitoring these two modes. The results show that syn-

TABLE V
CASE STUDY 3: FAULT AT BUS 34

MODE 18 (Ω18nlcr
= 8.21), MODE 28 (Ω28nlcr

= 5.76)

Fault Ω̃18nlsc
Ω̃28nlsc

Proposed True
duration (s) (rad/s) (rad/s) Decision Decision

0.15 13.26 9.16 Stable Stable
0.25 12.83 8.75 Stable Stable
0.35 11.44 7.67 Stable Stable
0.40 9.25 6.41 Stable Unstable
0.44 8.13 5.83 Unstable Unstable

chronism is lost at 0.44s with our method because Ω̃18nlsc
falls

below its critical value of 8.21 rad/s (see column 2). At the
same time, Ω̃28nlsc

is about 1% away from its critical value,
as shown in column 3. As shown in Fig. 7a, the true instant
of instability is 0.40s. Mode 18 is associated with a single
generator, whereas Mode 28 involves multiple generators. The
shape of Mode 28, shown in Fig. 7b, confirms the separation
of G1, G3, and G4 from the rest, as observed in Fig. 7a.

Table VI provides a detailed comparison of the proposed
method’s decisions with the true decisions for different cases.
Our observation after other tests is that the method tends to
be more accurate when several modes are not simultaneously
excited. The maximum error in the 5th column is 10%.
However, the cases are not exhaustive, and higher errors
may exist because NF results are only reliable within the
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Fig. 7. (a) Trajectory at 0.40s for fault at Bus 34, (b) Shape of Mode 28

TABLE VI
ERROR ESTIMATION FOR THE PROPOSED METHOD

Fault Case True Proposed Error
Bus OOS Time (s) OOS Time (s) (%)

4 Case Study 2 0.24 s 0.25 s -4%
9 Case Study 2 0.29 s 0.26 s +10%
7 Case Study 2 0.32 s 0.32 s 0%
5 Case Study 2 0.43 s 0.40 s +7%
7 Case Study 3 0.27 s 0.26 s +3%

34 Case Study 3 0.40 s 0.44 s -10%

approximation’s validity boundary. Modern power systems
also include additional equipment such as FACTS, HVDC,
IBR, etc. As a result, the proposed method should be tested on
such a system in the future. We emphasize that the method’s
strength is in the warning for impending OOS. As a result,
even when the precise time eludes the proposed method,
it remains faithful in indicating impending OOS. Thus, the
proposed method should be used for mode instability warning
signals.

D. Computational Complexity and Scalability

The NF method is generally considered difficult because:
(i) it needs nonlinear iterations to find the initial condition in
the NF space for any considered operating point, which can be
time-consuming; and (ii) it requires Taylor and modal expan-
sions to construct its model, which is also time-consuming
when considering large systems. Fortunately, the proposed
method avoids these primary challenges. It does not require
the computation of the initial conditions in the NF space. The
NF model is constructed once and may merely be repeated
if the power flow is updated. The solution to attempting a
very large system (already used in [35] for systems with over
300 generators) is to reduce the network and concentrate on a
specific region of the network when constructing the model.
Remarkably, only the computations related to the modes of
interest are necessary with our method. The computation can
drastically reduce if the dominant modes are identified, and
then the analysis can focus on them.

Once the NF model is constructed, the proposed tool is
very speedy. It takes about 3.5 milli seconds (4th column,
Table VII) to check all the modes in the IEEE 50-machine
power system with an Intel(R) Core (TM)i7-7700HQ, 2.8GHz
personal computer. Construction of the NF model is the only
step that takes a little longer. The total time to develop the NF
model in the case of the IEEE 50-machine power system is
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approximately 5.13 minutes (2.21 minutes for (6)–(7) and 2.92
minutes for (11)–(16) ). As earlier noted, the NF is built once
and may be updated if the power flow updates. This runtime
for developing NF is not prohibitively expensive and can be
performed regularly in power system operation. The proposed
method is therefore useful for online applications. For very
large systems, the NF model can be built offline and then
used online. It should be noted that the runtime for developing
NF can reduce drastically if (i) more powerful computing
resources are utilized, e.g., HPC, or (ii) only selected modes
are analyzed, which deserve further detailed investigations.

A computational comparison with similar works [19], [20],
where the modal model (i.e, (6)–(7)) is built in first order is
shown in Table VII. Indeed, avoiding first-order representation
saves enormous time, especially for large systems.

TABLE VII
COMPUTATIONAL COMPARISON WITH SIMILAR WORKS

[19], [20] Proposed
Case MMT∗ MMT∗ OOS Assessment

Case Study 2 0.120s 0.029s 0.0017s
Case Study 3 15, 355s 132.43s 0.0035s

∗MMT = time to build modal model

Fig. 8 is a pictorial representation of the necessary steps
of the proposed method. The left half of the figure repre-
sents the construction of the NF model, which is a one-time
process, while the right portion represents OOS monitoring
and admits online operation. Because the NF method is local
and based on an asymptotic expansion in the neighborhood
of an equilibrium point, the NF model can be reinitialized if
the power flow changes to reset the critical frequency shift.
This action, however, updates all prior computations and may
be an issue for online applications in terms of computation.
Instead of the traditional power flow, static state estimation can
be utilized to improve measurement errors. The first block in
the right section, which regularly scans the system condition
(i.e., checks the rotor angles), may be realized by real-time
measurement tools. We have assumed that the rotor angles
will be estimated correctly.

Start
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New
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Fig. 8. Summary of the proposed method

E. Practical Significance

The proposed method has the potential for online imple-
mentation, and power system operators can use it to estimate
the proximity of modes to instability quickly and roughly. The
proposed approach, like many others, inherits the shortcomings
of classical modeling. However, the nature of the EO is the
same regardless of the model used, and detailed modeling does
not significantly change the frequency of the oscillation. The
inability to detect the exact time of OOS, unlike many previous
schemes, does not rule the proposed tool out because the new
tool can provide useful insights for controls by e.g., ranking
vulnerable modes and suggesting generators to regulate based
on their participation in those modes. The proposed method
may also be utilized as an extra tool by power system planners
to plan system operation and expansion, taking OOS mitiga-
tion measures into account. Given the current state of this
study, we advocate the proposed approach as a backup tool.
For practical application, the new tool can be run routinely (say
every 10 minutes) in the power system operation for warning
signals. Once it raises a warning flag, one can use other more
robust approaches to analyze the concerned generators in detail
for appropriate control actions.

F. Compatibility with Existing Tools

As stated at the outset of this article, the proposed tool may
be used in conjunction with existing ones to improve system
reliability. The algorithm for the majority of previous methods
is as follows: Is there an OOS? If yes, isolate the responsible
generators. If no, no control actions are needed. The new
scheme adds more decision questions: If there is no OOS, will
it occur soon? If so, control the potential generators (e.g., load-
shedding). The new tool may supplement WAM techniques, in
which the proposed method determines the critical frequency
shift while WAM estimates the modal frequency in real-time.
Since our scheme requires only the rotor angle as an input,
one may use it parallel with EAC-based methods. One step of
the EAC-based approach reported in [1], for example, is a fast
estimation of the rotor angle, based on local measurements of
voltages and currents at the generator terminal. Both meth-
ods can use the same input estimated by [1]. However, the
coordination between the proposed method and the existing
OOS detection scheme may be a concern that merits further
investigation.

V. CONCLUSIONS

This paper expanded the real-valued Normal Form proposed
in [23] to investigate practical power system oscillations.
Employing second-order modeling of the power system, the
NF allows multi-machine power systems decoupled as separate
oscillators. A novel method for monitoring out-of-step occur-
rence is proposed using the NF that results. The new approach
was demonstrated with an SMIB power system, which showed
favorable competition compared to the well-known equal area
criterion, and then applied successfully to the IEEE 3- and
IEEE 50-machine power systems with promising results.

Compared to time-domain simulation, the proposed tool
has a maximum error of ±10% and computes quickly for
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tested cases. Thus, it has potential for online applications, and
power system operators can use it to make a quick and rough
estimation of OOS proximity and rank vulnerable modes.
Therefore, the tool may provide important information leading
to efficient corrective/preventive control actions. The paper
considered only short-circuit scenarios, but the idea is general,
as illustrated in Section III-A, and can extend to investigate
other contingencies such as loss of load or generation.

Future work will compare the method with other OOS
protection approaches. Strategies for pre-selecting modes to
check for any disturbance should be investigated; to further
reduce the computation time. The frequency shift phenomenon
is general, and we envisage the extension of the proposed
method to detailed models. However, with detailed generator
models, putting the entire system model into the 2nd-order
form can be challenging and should be re-visited.
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