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Abstract
During the plastic deformation of metallic materials, part of expended mechan-
ical energy diffuses as heat. The fraction of plastic work converted into heat is
called the Taylor-Quinney Coefficient (TQC), which is often assumed to be a
constant parameter of about 0.9. The remaining portion of the plastic work is
called stored energy. The stored energy is known as the main driving force for dy-
namic or static recovery and recrystallization. Therefore, numerical predictions
and experimental measurements of the stored energy and TQC are essential to
optimize thermomechanical material processing. An adequate prediction of the
stored energy and the TQC using existing crystal plasticity models in line with
the experimental measurements remains a challenging problem. In this work, a
thermodynamic class of crystal plasticity models is used to predict the stored
energy and TQC of copper and aluminum single crystals. Then, the numerical
stored energy predictions are extended to polycrystalline austenitic steel 316L
and compared with the experimental measurements from the literature. An ad-
hoc factor is introduced in the numerical expression of stored energy in order to
compensate for the difference with the experimental measurement. To this end,
the contributions of statistically stored dislocations (SSDs) and geometrically
necessary dislocations (GNDs) for the stored energy prediction are analyzed to
understand the physical origin of the ad-hoc factor. The contribution of GNDs
to stored energy and enhanced hardening is accounted for by means of a strain
gradient plasticity model. The present systematic finite element crystal plastic-
ity simulations also include specific interface conditions at grain boundaries. The
presented computational analysis indicates that, compared to the experiment,
there remains dark energy in the evaluation of energy storage as predicted by
the proposed thermodynamically consistent crystal plasticity framework.

Keywords: Stored energy; Crystal plasticity; Taylor-Quinney coefficient; Single
crystals; Polycrystals; Strain gradient plasticity; GND; Micromorphic crystal plasticity
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1 Introduction
During the plastic deformation of metallic materials, the fraction of plastic work
converted into heat is called the Taylor-Quinney Coefficient (TQC), which is often
assumed to be a constant parameter of about 0.9. The remaining portion of the
plastic work is called stored energy. The stored energy is the main driving force for
dynamic or static recovery and recrystallization. The prediction of the stored energy
and TQC is important to understand the plastic deformation and subsequent recovery
and recrystallization mechanisms [1].

Different techniques used in experimental measurements of stored energy are sum-
marized in [2]. Extensive experimental work has been performed in the past to measure
the stored energy in metallic materials, for instance in [2–6]. Ravichandran et al. [7]
investigated the TQC evolution in aluminum 2024-T3 alloy and α-titanium. They
found that the TQC is a function of strain but not of strain rate in the case of alu-
minum 2024-T3 alloy. On the other hand, TQC is strongly dependent on strain rate
in α-titanium. Rittel et al. [8] investigated the thermo-mechanical response of single
and polycrystalline copper at low and high strain rates. They observed that the TQC
linearly increases with strain rate and remains considerably lower than the classic
value of 0.9. Rittel et al. [9] recently measured the TQCs for 7 different metals and
alloys, namely, Ti6Al4V, commercially pure titanium, Al5086, Al2024, 304L, 1020
steel, and maraging C300 under tension, compression, and dominant shear loading.
A significant deviation of TQC from 0.9 was observed. Except for commercially pure
titanium, identical TQCs were measured under tension, compression, and shear load-
ing. In commercially pure titanium, the presence of twinning activity in compression
and shear loading results in different TQC for different deformation modes. Global
measurements of plasticity induced heating are usually performed although intergran-
ular temperature field measurements are becoming possible, at least under quasi-static
loading conditions [10].

Several attempts have been made to investigate the effect of grain size on stored
energy, see for instance [4, 6, 11] which show a decrease in stored energy for increasing
grain size. Williams [4] found that an increase in grain size by a factor of ten decreases
the stored energy by 8% at a strain of 0.3. Recently, Rittel et al. [8] measured the
stored energy of single crystal and polycrystalline copper in the strain rate range of
1000 − 8000 s−1 undergoing compressive loading. Higher stored energy was found in
polycrystals than single crystals.

An adequate prediction of stored energy and TQC in line with the experimental
measurements using numerical simulations remains a challenging issue. A hierarchy
of material models for crystalline solids is presented in [12] where discrete (molecular
and dislocation dynamics) methods are used to inform continuum crystal plasticity
models. Analytic expressions used to predict the stored energy may not consider all the
mechanisms responsible for stored energy. Nietofuentes et al. [13] introduced an ad-
hoc factor in the analytic expression of stored energy to represent the experimentally
measured stored energy adequately. This requires calibration of this factor for several
dynamically loaded materials. A well-known analytic expression for the stored energy
taken as a function of dislocation density, can be found in [2, 3]. Bailey [3] measured the
stored energy of polycrystalline silver and copper under tensile loading. The analytic
expression used by Bailey [3] for the prediction of stored energy volume density is
given by Es = (τc)2

µ , where the critical resolved shear stress τc = 0.5µb
√

ρavg depends
on the average dislocation density ρavg. Furthermore, he plotted the experimentally
measured stored energy, Es, as a function of (τc)2

µ . The results for both metals lie close
to the straight line of equation Es ≃ 7.7 (τc)2

µ ≃ 2µb2ρavg.
Crystal plasticity modeling is a convenient tool to determine the stored energy and

evolution of the material microstructure in thermo-mechanical processes. Hakansson
et al. [14] investigated the effect of initial texture on the stored energy in polycrys-
talline austenitic steel 316L using a rate-dependent crystal plasticity model for large
deformations formulated within a thermodynamic framework. A finite strain formula-
tion of crystal plasticity in a thermodynamically consistent manner is used by Jafari
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et al. [15] to predict the stored energy in single and polycrystalline aluminum under
tensile loading and bi-crystal aluminum under compressive loading. Note that the reli-
ability of the crystal plasticity model is crucial to predict the stored energy. Models of
plastic deformation fall into two categories. On the one hand, phenomenological mod-
els are frequently used in crystal plasticity modeling. However, these models do not
give a physical connection with the microscopic mechanisms of plastic deformation.
Physics-based crystal plasticity models can overcome this limitation by introducing
physically motivated internal variables such as dislocation density in the constitutive
framework. The constitutive equations must be derived in a thermodynamically con-
sistent manner [16]. In particular, it is necessary to check the positivity of the internal
entropy production rate. Failure to do so can violate the first and second laws of ther-
modynamics [17]. Thermodynamic consistency of physics-based models has received
less attention compared to phenomenological models [18].

Numerically, dislocation density-based models are often used to describe material
hardening. The obtained total dislocation density is further used to calculate stored
energy. The energy stored in copper single crystals under tensile loading using dis-
crete dislocation plasticity was prdicted by Benzerga et al. [19]. They showed that the
dislocation distribution influences the stored energy along with the total dislocation
density. Moreover, they found TQCs in the range of 0.75-0.95 up to the strain of 10%
and strain rate of 100 s−1. A reliable dislocation density-based model is necessary to
adequately represent the total dislocation density and consequently the stored energy
according to [13]. Kositski et al. [20] used molecular dynamics simulations to show
that the dislocation accumulation mechanism is not the only mechanism responsible
for stored energy. They include grain boundary evolution as an additional mechanism
responsible for energy storage. The difficulty in providing a thermodynamic frame-
work for plasticity stems from the fact that evolution of dislocation structures is often
viewed as analogous to turbulence [21]. This is reflected by the fact that the complex
Kocks-Mecking-Teodosiu dislocation density evolution equations are not easily incor-
porated in a complete thermodynamic setting involving free energy density potential
and a dissipation function [22, 23]. One reason is the presence of phenomenological
interaction and hardening matrices with complex evolution [24].

According to Ashby’s terminology, dislocation densities can be split into densities
of statistically stored dislocations (SSD) and densities of geometrically necessary dis-
locations (GND) [25]. The latter concept is closely related to the dislocation density
tensor or Nye’s tensor which has been included in a thermodynamically consistent con-
stitutive framework in [26, 27]. GND densities can be estimated from measurements of
crystal lattice curvature by means of EBSD methods [28]. Most of the numerical work
on the prediction of stored energy considers the contribution of SSDs only. Studies
on the prediction of stored energy considering the contribution of GNDs along with
SSDs are relatively rare. Proper evaluation of GND densities is possible by means of
strain gradient plasticity (SGP) models incorporating the dislocation density tensor
or the lattice curvature tensor [12]. Estimates for stored energy values from crystal
plasticity analyses is currently used for the prediction of annealing and recrystalliza-
tion phenomena [29] but also crack initiation and propagation under fatigue loading
conditions, see [30] for HCP alloys and [31] for Inconel 718. Confrontations of such
predictions to experimental measurements available in the literature for several FCC
metals and alloys have been the subject of little analysis to date.

The aim of the present work is to evaluate the ability of a class of thermodynamic
formulations of standard and strain gradient crystal plasticity models to predict the
stored energy and TQC for some single and poly-crystalline FCC metallic materials.
At first, the necessity to ensure the positivity of the entropy production rate is em-
phasized. In addition, it is shown that, for some physics-based models, this can be
ensured by imposing constraints on some model parameters. Then the stored energy
and TQC are predicted using the standard crystal plasticity model for copper and
aluminum single crystals. Next, the application is made to polycrystalline aggregates.
As a first application to polycrystalline simulations, the effect of mesh size and grain
morphology on the stress-strain response and energy evalution is studied briefly. The
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stored energy predicted for polycrystalline austenitic steel 316L is compared with the
experimentally measured stored energy from the literature. A constant ad-hoc factor,
ξ, in the expression of stored energy, akin to the one introduced in [13], is treated as
a fitting parameter so that the predicted stored energy adequately represents the ex-
perimental measurements. The next application deals with energy stored in annealed
Inconel 718 deformed at high strain rates (2000 s−1) and a larger temperature range
(293 K-1073 K). Very high temperatures are excluded in order to avoid recrystalliza-
tion phenomena, not addressed in this work. In addition, the predicted stored energy
considering contribution of both SSDs and GNDs is compared to that obtained by
considering the contribution of SSDs only. Finally, the contribution of GNDs along
with SSDs is discussed in the prediction of stored energy using two different grain
boundary conditions, i.e. intermediate and microhard.

The novel aspects addressed in the present work are the following: A consis-
tent thermodynamic framework accommodating Kocks-Mecking-Teodosiu evolution
equations and estimates of GND densities, the evaluation of the stored energy density
for this class of models for various single and polycrystalline FCC metals and alloys,
and comparison of the results with several measurements from the literature. It will be
shown that, in the absence of the corrective ad-hoc factor, the models systematically
underestimate the amount of stored energy compared to available measurements from
the literature, hence the name dark energy adopted in the title. The study is limited to
quasi-static processes, including rate-dependent constitutive laws, even though some
high strain rates will be imposed at some stage for comparison with literature results.
The materials retained in the analysis are chosen either because crystal plasticity
models or measurements of stored energy are available.

The paper is organized as follows. The constitutive setting is described in Section
2. Section 3 is devoted to analyzing the positivity of the dissipation rate to ensure
thermodynamic consistency. The summary of the constitutive equations used for the
numerical prediction of stored energy and TQC is given in section 4. In section 5,
single crystals aluminum and copper simulations are performed to predict the stored
energy and evolution of TQCs. In addition, this section provides the prediction of
stored energy and evolution of TQC in two polycrystalline FCC engineering metallic
materials, with appropriate discussion of the results. Conclusions follow in section 6.

The following notations are employed in this contribution: Underlined A and
under-waved bold A∼ characters are used to denote first-order and second-order tensors,
respectively. The transpose, inverse and time derivative are represented as A∼

T , A∼
−1

and Ȧ∼ . Simple and double contractions are understood in the sense a · b = aibj

and A∼ : B∼ = AijBij . Gradient and divergence operators are defined with respect to
Lagrange coordinates, Grad , Div , and with respect to Euler coordinates, grad , div .

2 Constitutive framework for
thermo-elasto-viscoplastic single crystals

2.1 Kinematics
The material points are defined by their position vector X in the reference config-
uration Ω0 and their current position vector x in the configuration Ωt. The large
deformation framework of thermo-elasto-viscoplasticity is based on the multiplicative
decomposition of the total deformation gradient F∼ into a recoverable thermo-elastic
part F∼

the and a plastic part F∼
p following [32–34]:

F∼ = F∼
the · F∼

p. (1)

The spatial velocity gradient and the plastic deformation rate are defined as

ℓ∼ = Ḟ∼ · F∼
−1, L∼

p = Ḟ∼
p · F∼

p−1. (2)
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The volume mass densities with respect to the reference configuration, the intermedi-
ate configuration, and the current configuration are called ρ0, ρ# and ρ, respectively,
and given by

J = det(F∼ ) = ρ0

ρ
, J the = det(F∼

the) = ρ#

ρ
, Jp = det(F∼

p) = ρ0

ρ#
. (3)

In dense metallic crystals considered in this work, plastic deformation is isochoric such
that

Jp = det F∼
p = 1, J the = detF∼

the = J = det F∼ , ρ# = ρ0. (4)
However, Jp can be different from one in the case of compressible plasticity. This
situation was studied for ductile fracture of porous single crystals in [35]. Moreover,
the thermo-elastic Green-Lagrange strain tensor E∼

the is introduced as follows:

E∼
the = 1

2[(F∼
the)T · (F∼

the) − 1∼], (5)

with 1∼ denoting the second order identity tensor.

2.2 Definition of stress tensors
The second Piola-Kirchhoff stress tensor Π∼

e with respect to the intermediate
configuration is defined as

Π∼
e = J the(F∼

the)−1 · σ∼ · (F∼
the)−T . (6)

where σ∼ is the Cauchy stress tensor. The tensor Π∼
e is related to the thermo-elastic

strain tensor E∼
the by

Π∼
e = Λ

≈
: (E∼

the − α(T − T0)1∼). (7)

where Λ
≈

is the fourth-order tensor of elastic moduli and α is the thermal expansion
coefficient for cubic materials. The first Piola-Kirchhoff stress tensor Π∼

p related to
the Cauchy stress tensor σ∼ is given by

Π∼
p = Jσ∼F∼

−T . (8)

Moreover, the Mandel stress tensor Π∼
M which is work-conjugate to L∼

p in the power
of internal forces, can be defined with respect to the intermediate configuration as
follows:

Π∼
M = J the(F∼

the)T · σ∼ · (F∼
the)−T . (9)

2.3 Flow rule
A rate-dependent overstress-type flow rule is adopted, based on a Schmid yield
function defined as

fr = |τ r| − τ r
c , (10)

involving the resolved shear stress τ r on the slip system r, which is the driving force
to trigger plastic slip, and the corresponding critical resolved shear stress τ r

c . The
resolved shear stress τ r on slip system r is defined as

τ r = Π∼
M : (m r ⊗ n r), (11)

where m r is the slip direction and n r is the slip plane normal vector in the lattice
frame.

The slip rate γ̇r on each slip system r is then given by the following rate-dependent
flow rule

γ̇r =
〈

fr

K

〉m

sign(τ r), (12)

5



with Macauley brackets < • > denoting the positive part of •, and K and m are
the viscosity parameters. The high values of power m and low values of K lead to an
almost rate-independent elasto-plastic behavior in a given strain rate range.

Plastic deformation rate is the result of slip processes on N distinct slip systems,
according to the flow rule:

L∼
p =

N∑
r=1

γ̇r(m r ⊗ n r). (13)

The cumulative plastic strain variable γcum is introduced as

γcum =
∫ t

0

N∑
r=1

|γ̇r|dt. (14)

2.4 Dislocation density-based hardening model
Phenomenological flow rules are frequently used in crystal plasticity modeling, fol-
lowing the original works [36]. They share the drawback that the material state is
only described in terms of critical resolved shear stress and not in terms of lat-
tice defect population such as dislocation densities. This limitation can be overcome
by resorting to physics-based crystal plasticity models. The latter provide a strong
physical relationship with the microscopic mechanisms of plastic deformation by in-
troducing internal variables such as dislocation density in the constitutive framework.
The dislocation density-based models have better predictability compared to the phe-
nomenological models over a wide range of strain, strain rates, and temperatures
[37].

In the present work strain hardening behavior relies on a dislocation density-based
hardening model, which takes dislocation interactions into account. Following [38], the
critical resolved shear stress τ r

c is directly related to the scalar dislocation densities
as follows:

τ r
c = τ0 + µ

√√√√ N∑
u=1

hruϱu, (15)

where τ0 is the lattice friction stress, hru is the interaction matrix describing inter-
action between dislocations, ϱu = ρub2 is the non-dimensional dislocation density for
slip system u, and ρu is the usual dislocation density, i.e. the length of dislocation
lines per unit volume with b being the norm of the dislocation Burgers vector. The
following equation gives the evolution of the dislocation density [39]:

ϱ̇r = |γ̇r|


√∑N

u=1bruϱu

κc
− dcϱr

 . (16)

called the Kocks-Mecking-Teodosiu evolution equation. The dislocation interaction
is described by the matrix bru, κc is a constant material parameter proportional to
the number of obstacles crossed by a dislocation before being immobilized, and yc =
bdc is the critical distance controlling the annihilation of dislocations with opposite
signs. The structure of the matrices hru and bru can be found in [40]. The total
non-dimensional dislocation density is defined as follows:

ϱ =
N∑

r=1
ϱr

0 +
∫ t

0

N∑
r=1

ϱ̇rdt, (17)

where ϱr
0 is the initial non-dimensional dislocation density for slip system r.
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2.5 Micromorphic crystal plasticity model
The previous standard crystal plasticity must now be enhanced to evaluate the effect
of GNDs on hardening and energy storage. For that purpose, the reduced order micro-
morphic crystal plasticity model proposed by [40] is used as an alternative to strain
gradient plasticity models based on the full dislocation density tensor, due to its com-
putational efficiency. The predictions of this model have been compared with strain
gradient plasticity formulations involving the dislocation density tensor in [41]. Re-
sults under monotonic tensile loading and torsion show that both models have similar
predictions regarding size-dependent hardening due to GNDs, at a lower computa-
tional price for the reduced micromorphic model. The micromorphic approach is an
efficient method for the numerical implementation of strain gradient crystal plasticity
as discussed in [42, 43]. The main equations of the latter model are summarized in
this section following [34].

According to the micromorphic approach, the material points possess two types of
degrees of freedom: The displacement vector u (X , t) = x −X and the micromorphic
scalar microslip variable γχ(X , t). The gradients of the degrees of freedom with respect
to the reference configuration are called

∂u

∂X
= Grad u , K = ∂γχ

∂X
= Grad γχ. (18)

The static balance equations and Neumann boundary conditions expressed with
respect to the reference configuration are as follows:

Div Π∼
p = 0 and Div M − S = 0, ∀ X ⊂ Ω0, (19)

T = Π∼
p · N and M = M · N , ∀ X ⊂ ∂Ω0, (20)

where S and M are generalized stresses conjugate to microslip and its gradient,
respectively, M is the generalized surface traction and N the outward unit normal
vector at the boundary of the reference body. Note that the Cauchy stress tensor is
still symmetric in the proposed micromorphic theory.

The microslip variable γχ is related to the cumulative plastic strain γcum, see Eq.
(14), via the relative plastic slip variable ep defined as

ep := γcum − γχ. (21)

2.6 General thermodynamic framework
The material under consideration is characterized by the coupled thermo-mechanical
Helmholtz free energy density function defined in terms of the thermo-elastic strain
tensor E∼

the, the relative plastic slip ep, the gradient of the microslip variable K ,
temperature T and the set of internal hardening variables ζ as follows:

Ψ = Ψ(E∼
the, T, ζ, ep, K ). (22)

The Helmholtz free energy density function is assumed to take the form:

ρ0Ψ(E∼
the, T, ζ, ep, K ) = 1

2E∼
the : Λ

≈
: E∼

the + 1
2Hχe2

p + 1
2K · A∼ · K

+ ρ0Cε

[
(T − T0) − T log

( T

T0

)]
+ (T − T0)P∼ : E∼

the + ρ0Ψζ(T, ζ) (23)

where Ψζ denotes the part of the free energy density associated with the internal
variables and will be detailed in Section 3. The expression involves the tensor Λ

≈
of

the elastic moduli and generalized micromorphic moduli Hχ and A∼ . The higher or-
der moduli A∼ have the physical dimension Pa.m2 ≡N which means that they contain
constitutive internal lengths that can be obtained for instance after dividing them
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by the shear modulus. The modulus Hχ is used as a numerical penalty parameter
ensuring that ep almost vanishes, i.e. that the micromorphic variable is equal to the
cumulative plastic slip [44]. The tensor P∼ is related to thermal expansion and T0 is a
chosen reference temperature. Quadratic potentials are therefore adopted for the elas-
tic/reversible contributions. The logarithmic temperature contribution is discussed
for instance in [45]. It is such that the heat capacity under constant strain conditions,
defined as Cε = −T∂2Ψ/∂2T is constant in the temperature range [33]. The lineariza-
tion of this expression with respect to T −T0 leads to the usual quadratic contribution
in the infinitesimal case.

The second thermodynamic principle, or entropy imbalance, is written in the form
of the local Clausius-Duhem inequality following [46]:

Jσ∼ : ℓ∼ − ρ0(Ψ̇ + ηṪ ) − Q · Grad T

T
≥ 0 (24)

where η is the mass density of entropy and Q is the heat conduction vector with
respect to the reference configuration, given by Q = J theF∼

−1 · q and Grad T the
Lagrangian gradient of temperature. Expanding the time derivative of the free energy
density function and the power of internal forces leads to the following form of the
Clausius-Duhem inequality(

Π∼
e − ρ0

∂Ψ
∂E∼

the

)
: Ė∼

the −
(

S + ρ0
∂Ψ
∂ep

)
ėp +

(
M − ρ0

∂Ψ
∂K

)
· K̇

+ Sγ̇cum + Π∼
M : L∼

p − ρ0

(
η + ∂Ψ

∂T

)
Ṫ − ρ0

∂Ψ
∂ζ

ζ̇ − Q · Grad T

T
≥ 0. (25)

The three first contributions related to standard and micromorphic elasticity are
assumed to be reversible which leads to the following state laws:

Π∼
e = ρ0

∂Ψ
∂E∼

the
, S = −ρ0

∂Ψ
∂ep

, M = ρ0
∂Ψ
∂K

(26)

The usual relation between temperature and entropy is implemented:

η = −∂Ψ
∂T

(27)

The thermodynamic forces associated with the internal variables are defined as

X = ρ0
∂Ψ
∂ζ

. (28)

As a result, the dissipation rate, which restricts the material flow and hardening rules
in connection with the yield condition, is given by

D := Π∼
M : L∼

p + Sγ̇cum − Xζ̇ − Q · Grad T

T
≥ 0. (29)

The thermodynamic forces associated with the arguments of the Helmholtz free energy
function are derived from the potential (23):

Π∼
e = Λ

≈
: (E∼

the − E∼
th), S = −Hχep = −Hχ(γcum − γχ), M = A∼ · K . (30)

In the micromorphic theory, the introduced yield function (10) is enhanced in the
following way

fr = |τ r| − (τ r
c − S) = |τ r| − (τ r

c − DivM ). (31)
after considering the second micromorphic balance law (19). For cubic materials, the
second-order tensor takes the simple form A∼ = A1∼, where A is the generalized modulus
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assumed to be uniform. The viscoplastic flow rule (12) is still valid for each slip system
in the micromorphic case except that the yield function (31) is used instead of (10).

3 Thermodynamic consistency of the crystal
plasticity constitutive equations

In this section, several existing hardening models are evaluated from the perspective of
thermodynamic consistency. Following the general thermodynamic framework settled
in subsection 2.6, the analysis concentrates on the contribution of the set ζ of internal
variables to stored energy Ψζ(T, ζ) and to the dissipation rate. The micromorphic
part of the model is dropped in this section for simplicity.

The non-negative dissipation rate D from Eq. (24) can be split into two parts:
Non-negative mechanical dissipation rate Dm ≥ 0 and non-negative heat condition
term Dth ≥ 0 such that D = Dm + Dth ≥ 0 with Dm = Jσ∼ : ℓ∼ − ρ0(Ψ̇ + ηṪ ) and
Dth = −Q · Grad T

T . Positivity of Dm and Dth are required independently. The thermal
inequality Dth ≥ 0 is called Fourier inequality which states that heat must flow from
hot to cold regions. Finally, the dissipation rate reads

Dm = Π∼
M : L∼

p − Xζ̇ ≥ 0, (32)

where the Mandel stress tensor Π∼
M is defined by Eq. (9). In crystal plasticity involving

N slip systems, at least N internal variables ζr must be introduced. Their meaning
will depend on the specific material model. The corresponding part of the free energy
potential in Eq. (23) is additively decomposed as

Ψζ(T, ζr) =
N∑

r=1
Ψr

ζ(T, ζr), and Xr = ρ0
∂Ψr(ζr)

∂ζr
, (33)

so that the dissipation rate in Eq. (32) can be further expressed as

Dm =
N∑

r=1
τ rγ̇r −

N∑
r=1

Xr ζ̇r, with Π∼
M : L∼

p =
N∑

r=1
τ rγ̇r, (34)

where Xr is the thermodynamic force associated with each internal hardening variable
ζr.

Any acceptable set of constitutive relations must fulfill the dissipation inequality.
The amount of dissipated energy is fundamentally dependent on the choice of internal
variables ζr, the expression of the free energy potential and the evolution equations
for internal variables. Various approaches ensuring fulfillment of the dissipation in-
equality can be found in [17, 47, 48]. In the first approach called direct approach,
some evolution laws are assumed for ζr. The positivity of the dissipation rate is then
checked at each time step of the computation. Positivity may then be ensured only for
special values of material parameters and specific loading paths. A second approach
is called Onsager’s approach in which linear relationships between the rate of internal
hardening variables ζ̇r and thermodynamic forces Xr are assumed [49, 50]. The lin-
ear relationship cannot be used for general plasticity and visco-plasticity as realistic
materials show nonlinearity. The third approach is called potential approach and gen-
eralizes the Onsager method to nonlinear theory. In that case, evolution equations for
internal variables and plastic flow are derived from a dissipation potential function
[23, 46]. If this function is convex with respect to its argument, positivity of dissipa-
tion rate is ensured for a given range of material parameters and for all loading paths.
The existence of the internal energy potential is a requirement of the first thermody-
namic principle. The situation is different for the dissipation potential whose existence
is not ensured by the laws of nature. For complex sets of evolution equations, such a
dissipation potential may not exist, as it will become apparent in the next examples.
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The existence of a dissipation potential is not necessary, but it can ease the develop-
ment of thermodynamically consistent models, i.e. models that automatically fulfill
the second law of thermodynamics. These potentials are not always provided in the
literature, but they are useful to finally evaluate the TQC.

3.1 Example of phenomenological crystal plasticity model
At first, a thermodynamically consistent phenomenological model is considered, in-
spired by [48, 51], in which the contribution of the internal hardening variable ζr to
the free energy is assumed to have the quadratic form:

ρ0Ψr(ζr) = 1
2Qζr

N∑
s=1

hrsζs, (35)

where Q is a material parameter and hrs an interaction matrix. The thermodynamic
force Xr associated with the internal hardening variable ζr therefore is

Xr = ρ0
∂Ψr(ζr)

∂ζr
= Q

N∑
s=1

hrsζs. (36)

In this model, the existence of a convex dissipation potential Ω(Π∼
M , Xr) is assumed

from which the flow rule and internal variable evolution equations are derived as:

Ḟ∼
p · F∼

p−1 = ∂Ω
∂Π∼

M
, ζ̇r = − ∂Ω

∂Xr
. (37)

In addition, the dissipation potential is assumed to be of the power law form:

Ω(Π∼
M , τ r

c ) = K

m + 1

N∑
r=1

〈
fr(Π∼

M , τ r
c )

K

〉m+1

, (38)

where τ r
c is the critical resolved shear stress and fr is the Schmid-type yield function

(10). Based on the dissipation potential in Eq. (38), the flow and hardening rules are
derived

Ḟ∼
p · F∼

p−1 = ∂Ω
∂Π∼

M
=

N∑
r=1

∂Ω
∂fr

∂fr

∂Π∼
M

=
N∑

r=1
γ̇r(m r ⊗ n r), ζ̇r = − ∂Ω

∂τ r
c

= v̇r, (39)

where vr is the cumulative slip variable for slip system r, and γ̇r is the slip rate on
slip system r computed as follows:

γ̇r = ∂Ω
∂fr

sign(τ r) = v̇r sign(τ r), v̇r = |γ̇r|. (40)

The dissipation rate in Eq. (34) can be written as:

Dm =
N∑

r=1
τ rγ̇r − Q

N∑
r=1

N∑
s=1

hrsvs|γ̇r|, with ζ̇r = |γ̇r|

=
N∑

r=1

(
|τ r| −

[
τ0 + Q

N∑
s=1

hrsvs

]
+ τ0

)
|γ̇r|. (41)

Taking ζr = vr, the second term in the brackets is exactly the value of the critical
resolved shear stress. With the yield function (10) and for τ0 ≥ 0, it appears that each
term is either zero for negative values of the yield function, or positive otherwise. This
proves that the dissipation inequality is always fulfilled for this model.
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The constitutive formulation presented above is rather simple as ζr = vr. It is
more realistic to use a saturating variable ζr instead of the cumulative slip vr, which
is not a fully satisfactory internal variable. In phenomenological models, ζr is then
reminiscent of a dislocation density-like variable. Materials generally display nonlinear
hardening behavior which motivates a nonlinear isotropic hardening rule for ζr such
as

ζr = 1 − exp(−Bvr), with v̇r = |γ̇r|, (42)
where B ≥ 0 is a material parameter. The contribution of ζr to the free energy
is assumed to be of the same form as in Eq. (35). Then the thermodynamic force
associated with the internal hardening variable becomes

Xr = ρ0
∂Ψr(ζr)

∂ζr
= Q

N∑
s=1

hrs(1 − exp(−Bvs)). (43)

In addition, the nonlinear evolution of the isotropic hardening variable τ r
c is taken of

the form

τ r
c = τ0 + Xr = τ0 + Q

N∑
s=1

hrs(1 − exp(−Bvs)). (44)

The dissipation rate in (34) then reads

Dm =
N∑

r=1

(
|τ r| − Q

N∑
s=1

hrs(1 − exp(−Bvs))(B exp(−Bvs))
)

|γ̇r|, (45)

which can be further expressed as follows:

Dm =
N∑

r=1

(
|τ r|−

[
τ0 +Q

N∑
s=1

hrs(1−exp(−Bvs))
]

+τ0 +Xr(1−B exp(−Bvr))
)

|γ̇r|.

(46)
Again, in a way similar to the analysis of (41), it appears that each term in the sum
(46) is either zero or positive. This is due to the fact the first two terms in the brackets
are nothing but the yield function fr itself and the two last contributions are positive
for suitable values of material parameters.

This class of phenomenological single crystal models has been applied to engineer-
ing applications, see for instance [52]. It has the advantage that no check of positive
dissipation at each material point and each time step is required.

3.2 Physics-based crystal plasticity models
Phenomenological models have the advantage that free energy functions are explicitly
postulated; sometimes, a dissipation potential is also proposed, as done in the previous
section. But the models may be too simple compared to experimental results. In con-
trast, physics-based internal variables related to deformation mechanisms may display
better prediction capabilities. The dislocation densities ρr on the slip systems r are
considered as physically relevant internal variables, for instance in [38, 53, 54]. But ex-
plicit expressions of the free energy function are not provided in the literature in most
cases. In contrast, Lieou et al. [55] derived the evolution of dislocation density from en-
ergetic and entropic considerations alone with constraints of the first and second laws
of thermodynamics. The formulation is based on the Langer-Bouchbinder-Lookman
thermodynamic dislocation theory proposed in [56, 57]. Based on the energetic con-
siderations alone, the evolution of dislocation density is proportional to plastic work
rate and not only to the plastic slip rate as in conventional theories. These model
formulations however differ from the continuum thermodynamics framework adopted
in the present work which is inherited from [23, 46, 47]. In this section, it is shown
how the latter thermodynamic framework can accommodate a class of physics-based
crystal plasticity models used in this paper.
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The hardening laws introduced in subsection 2.4 are analyzed in the present
section from the perspective of thermodynamic consistency. Following the work of
[58], the contribution of the internal hardening variable ζr to the free energy function
is assumed to have the quadratic form:

ρ0Ψr(ζr) = 1
2µξ(ζr)2, with ζr =

√√√√ N∑
s=1

hrsϱs, (47)

where ξ is an ad-hoc factor or material parameter which is expected to be of the order
of unity. Then, the thermodynamic force Xr associated with ζr is given by

Xr = ρ0
∂Ψr(ζr)

∂ζr
= µξζr. (48)

Moreover, the evolution of the critical resolved shear stress, regarded as the isotropic
hardening variable, τ r

c , is given by Eq. (15). This means that the thermodynamic
force Xr = ξ(τ r

c − τ0) in the present formulation. The evolution of non-dimensional
dislocation density ϱr(= ρrb2) is described by Eq. (16). After inserting the expression
Eq. (16) for ϱ̇r, the expression for dissipation related to the internal hardening variable
becomes

N∑
r=1

Xr ζ̇r = 1
2µξ

N∑
r=1

N∑
s=1

hrsϱ̇r = 1
2µξ

N∑
r=1

N∑
s=1

hrs

[(√∑N
u=1bruϱu

κc
− dcϱr

)
|γ̇r|
]

. (49)

Inserting previous equation in (34) gives the dissipation rate of the form:

Dm =
N∑

r=1

(
|τ r| − 1

2µξ

[
N∑

s=1
hrs

(√∑N
u=1bruϱu

κc
− dcϱr

)])
|γ̇r|. (50)

Enforcing the positivity of the dissipation rate in (50) is not possible in all situations.
It must therefore be checked at each material point and each time step in numerical
simulations for given values of the material parameters.

Let us consider two special cases for which positivity of the dissipation rate
can be ensured under any loading conditions by imposing constraints on the model
parameters.

Case 1: According to Taylor’s assumption of isotropic interaction between slip
systems, all components of the dislocation interaction matrix hrs and brs, which de-
termine the Taylor stress τ r

c and dislocation mean free path, respectively, are unity
such that

Dm =
N∑

r=1

(
|τ r| − 1

2µξ

[(√∑N
u=1ϱu

κc
− dcϱr

)])
|γ̇r|, (51)

The dissipation rate in the previous equation can also be expressed by using τ r
c as

follows:

Dm =
N∑

r=1

(
|τ r| − τ r

c + τ0 + µ

√√√√ N∑
u=1

ϱu − µξ

2κc

√√√√ N∑
u=1

ϱu + 1
2µξdcϱr

)
|γ̇r|, (52)

which further gives

Dm =
N∑

r=1

(
(|τ r| − τ r

c ) + τ0 + µ

√√√√ N∑
u=1

ϱu

[
1 − ξ

2κc

]
+ 1

2µξdcϱr

)
|γ̇r|. (53)
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Each individual term of the sum in the previous equation is zero or positive respec-
tively when |γ̇r| is 0 or the corresponding term in the brackets is positive. The first
term in the brackets is the Schmid yield function Eq. (10) which is positive when
|γ̇r| ̸= 0. The third term can be made positive by imposing constraints on the model
parameter κc such that κc ≥ ξ/2. Besides, τ0 ≥ 0 and the last term of the previous
equation is also positive. As a result, under these circumstances, the dissipation rate
is positive for all loading conditions of the material points and the thermodynamic
consistency is automatically fulfilled. The thermodynamic consistency of the Kocks-
Mecking-Teodosiu evolution equation is rarely discussed in the literature. In the case of
isotropic latent hardening, we have derived a constraint on the dimensionless parame-
ters κc and ξ from the second principle. The parameter ξ is an ”ignorance” parameter
for the evaluation of stored energy from the dislocation densities while κc is the ”ig-
norance” parameter for the multiplication rate of dislocations. Their default order of
magnitude is 1, which does not violate the found constraint κc ≥ ξ/2. The parameter
κc much be significantly greater than zero to avoid too high multiplication rate, which
again fulfills the constraint. These parameters however remain phenomenological.

Case 2: It is assumed that the dislocation interaction matrices hrs and brs are di-
agonal matrices with all diagonal components equal to 1. This simplified case, different
from Taylor isotropic interaction, turns out to be relevant in the case of nickel-based
single crystal superalloys [59]. It follows that the evolution of the isotropic hardening
variable τ r

c becomes
τ r

c = τ0 + µ
√

ϱr, (54)
and (50) can be expressed as follows:

Dm =
N∑

r=1

(
(|τ r| − τ r

c ) + τ0 + µ
√

ϱr

[
1 − ξ

2κc

]
+ 1

2µξdcϱr

)
|γ̇r|. (55)

The same reasoning as in the previous case shows that when κc ≥ ξ/2, positivity of
the dissipation rate is satisfied for all loading conditions of the material point.

In the present work, the general case of dissipation rate presented in Eq. (50)
is considered. The dissipation rate will be evaluated at each material point and at
each time increment in order first to check its positivity and, second, to evaluate the
dissipated energy by time integration.

4 Expressions for stored energy, temperature rise
and Taylor-Quinney coefficient for numerical
simulations

In this section, the formulas for estimating the stored energy, Taylor-Quinney coeffi-
cient, and temperature evolution in the context of standard and micromorphic crystal
plasticity models are summarized.

4.1 Expressions for standard crystal plasticity models
Stored energy density
The expression for the stored energy based on the proposed thermodynamically con-
sistent framework, cf. Eq. (47), for the standard crystal plasticity model is given
by

Ec = ρ0

N∑
r=1

Ψr(ζr) = 1
2µξ

N∑
r=1

(ζr)2, with ζr =

√√√√ N∑
s=1

hrsϱs. (56)

The volume averaged stored energy over the volume V of any considered material
body is

Ec
avg = 1

V

∫
V

Ec dV. (57)
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Total non-dimensional dislocation density
The total non-dimensional dislocation density is defined by Eq. (17). The volume
averaged non-dimensional dislocation density over a material volume V is computed
as

ϱavg = 1
V

∫
V

ϱ dV. (58)

Temperature evolution under adiabatic conditions
Expressions for the temperature evolution under adiabatic conditions for standard
and micromorphic crystal plasticity are derived in [34]. The temperature evolution for
the standard crystal plasticity model is given by

Ṫ = Π∼
M : Ḟ∼

pF∼
p−1 − Xζ̇

ρCε
. (59)

Inserting (34) and (49) into the previous equation gives

Ṫ =

N∑
r=1

τ rγ̇r − 1
2 µξ

N∑
r=1

N∑
s=1

hrsϱ̇r

ρCε
. (60)

Note that this expression does not contain the thermo-elastic contribution since it is
negligible compared to temperature rise induced by plasticity [34, 60].

Taylor-Quinney coefficient (TQC)
The integral form of TQC is taken as

βint =

∫ t

0

N∑
r=1

τ rγ̇r dt − 1
2 µξ

∫ t

0

N∑
r=1

N∑
s=1

hrsϱ̇r dt

∫ t

0

N∑
r=1

τ rγ̇r dt

. (61)

The volume averaged Taylor-Quinney coefficient over a material volume V is computed
as

βavg = 1
V

∫
V

βint dV. (62)

4.2 Expressions in the context of micromorphic crystal
plasticity model

Stored energy density
Combining the general expression (23) of the micromorphic energy density with
the dislocation density based contribution (33) and (47), the stored energy for the
micromorphic crystal plasticity model is taken as

Es = 1
2µξ

N∑
r=1

(ζr)2 + 1
2Hχe2

p + 1
2AK · K . (63)

The two last terms represent estimates of the stored energy due to GNDs. The norm
of the microslip gradient vector is regarded as a fair approximation of the norm of the
dislocation density tensor although these quantities are not identical, as discussed in
[41] and also in [61] regarding the limit of this energy contribution when Hχ → ∞, i.e.
when the micromorphic model converges toward the strain gradient plasticity model,
strictly speaking.
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The volume averaged stored energy over any material volume V is given by

Es
avg = 1

V

∫
V

Es dV. (64)

Temperature evolution under adiabatic conditions
The temperature evolution for the micromorphic crystal plasticity model is given by

Ṫ =

N∑
r=1

τ rγ̇r + Sγ̇cum − 1
2 µξ

N∑
r=1

N∑
s=1

hrsϱ̇r

ρCε
. (65)

It contains an additional contribution Sγ̇cum in the dissipation rate compared to the
standard expression (60).
Again, the thermoelastic contribution is dropped so that the adiabatic temperature
can only increase during deformation. This is used as a check of the positivity of the
dissipation rate which coincides with the numerator in (65).

Taylor-Quinney coefficient (TQC)
The integral form of TQC is given by

βint =

∫ t

0

N∑
r=1

(τ rγ̇r + Sγ̇cum) dt − 1
2 µξ

∫ t

0

N∑
r=1

N∑
s=1

hrsϱ̇r dt

∫ t

0

N∑
r=1

(τ rγ̇r + Sγ̇cum) dt

. (66)

The volume averaged Taylor-Quinney coefficient over any material volume is also
given by Eq. (62).

5 Crystal plasticity Finite element simulation results
5.1 Single crystals simulations
In a preliminary study, simulations are performed for aluminum and copper single
crystals subjected to tensile loading to predict the evolution of stored energy and
TQC. Finite element (FE) simulations are performed based on the constitutive frame-
work of standard crystal plasticity model presented in section 2. A simplified geometry
of 0.06 mm × 0.06 mm × 0.06 mm cube is used, as in [62], having 8 C3D8 type ele-
ments which are 8 node linear brick elements. The applied boundary conditions are
presented in Fig. 1. They lead to homogeneous straining of single crystals with high
symmetry with respect to the cube. Deviation from high symmetry orientations leads
to heterogeneous deformation.

<001> and <111> crystal orientations
Two high symmetry orientations of the single crystal considered are <001> and
<111> such that the [001] or [111] crystal direction align with the loading direc-
tion, respectively. In FCC crystals, the crystallographic slip can occur on the 12
{111}<110> slip systems. The experimental stress-strain responses from the work [63]
for aluminum single crystals and [64] for copper single crystals are used to calibrate
material parameters. A misorientation of < 1◦ is applied from the tensile axis as in
the experimental tests of [63] and [64], as considered also in [65]. All their experiments
were performed at room temperature and applied strain rates of 7.5 × 10−5 s−1 and
10−3 s−1 for aluminum and copper single crystals, respectively.

The material parameters given in Table 1 are essentially taken from the literature
but the viscosity and Kocks-Mecking parameters were further calibrated for better
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U2 = 0 (Bottom surface)

U2 (Top surface)

U1 = 0 (Back surface) U3 = 0
(Side surface)

e3

e2

e1
Fig. 1: Applied boundary conditions on cube volume element for single and poly-
crystalline simulations.

Table 1: Material constants and fitted material parameters for the simulation of single
crystalline aluminum under tensile loading. The interaction matrix coefficients (h0−h5)
are taken from [38].

C11 C12 C44
ρ

Eq. (60)
Cε

Eq. (60)
τ0 (fitted)
Eq. (15) b

108 GPa 61.3 GPa 28.5 GPa 2700 kg m−3 900 Jkg−1K−1 0.6 MPa 0.286 nm

µ
ϱr

0 (fitted)
Eq. (17)

K (fitted)
Eq. (12)

m (fitted)
Eq. (12)

κc (fitted)
Eq. (16)

dc (fitted)
Eq. (16)

27 GPa 8 × 10−10 0.5 MPa.s1/m 5 27
h0

Eq. (15)
h1

Eq. (15)
h2

Eq. (15)
h3

Eq. (15)
h4

Eq. (15)
h5

Eq. (15)
ξ

Eq. (56)
0.122 0.122 0.07 0.625 0.137 0.122 1

Table 2: Material constants and fitted material parameters for the simulation of single
crystalline copper under tensile loading. The interaction matrix coefficients (h0 − h5)
are taken from [38].

C11 C12 C44
ρ

Eq. (60)
Cε

Eq. (60)
τ0 (fitted)
Eq. (15) b

170 GPa 124 GPa 75 GPa 8960 kgm−3 385 Jkg−1K−1 0.5 MPa 0.257 nm

µ
ϱr

0 (fitted)
Eq. (17)

K (fitted)
Eq. (12)

m (fitted)
Eq. (12)

κc (fitted)
Eq. (16)

dc (fitted)
Eq. (16)

41 GPa 8 × 10−10 0.5 MPa.s1/m 4 20 25
h0

Eq. (15)
h1

Eq. (15)
h2

Eq. (15)
h3

Eq. (15)
h4

Eq. (15)
h5

Eq. (15)
ξ

Eq. (56)
0.122 0.122 0.07 0.625 0.137 0.122 1

description of the curves at various strain rates. In particular the coefficients of the
hardening matrix hrs are taken from [38], with parameter notations from [66].

The dislocation density-based hardening model captures the stress-strain responses
in reasonable agreement with the experimentally measured responses for <001> and
<111> crystal orientations as shown in Fig. 2. The material hardening parameter
κc mainly governs the initial slope of the stress-strain curve, while parameter dc

controls the saturation. Numerical values of the material constants and fitted material
parameters for the single crystals aluminum and copper are summarized in Table 1 and
2, respectively. The material parameters are fitted using <001> crystal orientation
(Fig. 2). The tensile axes <001> and <111> are oriented for multi-slip with 8 and
6 equally favored slip systems, respectively. The initial hardening rate of the <111>
crystal orientation is higher than the <001> crystal orientation. The initial dislocation
density ρr

0(= ϱr
0/b2) is assumed to be 1010 m−2 for both single crystals and chosen the
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Fig. 2: Comparison of stress-strain responses for <001> and <111> crystal orienta-
tions at a temperature of 298 K: (a) Aluminum single crystals validated against the
experimental results of [63], and (b) copper single crystals validated against the ex-
perimental results of [64].
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Fig. 3: Predicted total dislocation density ρ(= ϱ/b2) during tensile loading at a
temperature of 298 K for (a) aluminum and (b) copper single crystals (<001> and
<111> orientations).

same for all slip systems. The total dislocation density evolution for single crystals
aluminum and copper is presented in Fig. 3a and 3b, respectively. These figures show
that the dislocation density increases rapidly and saturates with further increase in
plastic strain.

The stored energy is predicted using a thermodynamically consistent formulation
of the standard crystal plasticity model, cf. Eq. (47). Fig. 4 shows that the stored
energy is strongly orientation dependent. Similar to the dislocation density evolution,
the stored energy increases rapidly and saturates with further increase in plastic strain.
The variation of TQCs for aluminum and copper single crystals is shown in Fig. 5a
and 5b, respectively. The TQCs predicted for the aluminum and copper single crystals
remain around 0.95 which is above the commonly measured value of 0.9.

Note that only the increase in dislocation density and stored energy is plotted
on the curves of Fig. 3a, 3b and all other figures in the sequel. The initial value of
total dislocation density is at least 1000 times smaller than the values reached during
tensile straining according to the model after 0.05 strain. Accordingly, the curves are
essentially unaffected by adding initial values.

<123> crystal orientation
Rittel et al. [8] measured the TQC for single crystal copper of <123> orientation
under compressive loading subjected to quasi-static and high strain rates deformation.
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Fig. 4: Predicted stored energy Es using the thermodynamically consistent formu-
lation (Eq. (56)) at a temperature of 298 K for (a) aluminum and (b) copper single
crystals (<001> and <111> orientations).
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Fig. 5: Predicted Taylor-Quinney coefficient (βint) using the thermodynamic formu-
lation (Eq. (61)) for the single crystals (<001> and <111>) at a temperature of 298 K
for (a) aluminum and (b) copper.

The average TQC values were in the range of rather low values 0.2 − 0.3 in quasi-
static deformation in contrast to 0.65 − 0.85 for high-strain rate deformation tests.
To compare the experimentally measured TQC values, simulations are performed
with <123> crystal orientation subjected to compressive loading with direction [123]
parallel to the loading direction.

The material parameters used in the simulations are given in Table 2, the same
as previously. The experimentally measured stress-strain responses and correspond-
ing predicted responses are shown in Fig. 6a. The viscosity parameters used capture
the strain rate sensitivity observed in the experimental work. Note that temperature
evolves under adiabatic conditions but the impact on the material parameters is not
taken into account here, in constrast to our recent work on adiabatic shear banding
[34]. A discrepancy can be observed in the overall stress-strain responses after 0.08
strain, which may be due to thermal softening not accounted for here. The <123>
crystal orientation triggers a single slip at the initial deformation stage, but multiple
slip systems are activated in a later stage.

The predicted dislocation density evolution is presented in Fig. 6b. The corre-
sponding stored energy and TQCs at two strain rates (0.1 s−1and 3000 s−1) are shown
in Fig. 7a and 7b, respectively. The high strain rate deformation test leads to more
stored energy than low strain rate tests (Fig. 7a). It is found that the predicted TQCs
are higher than the values measured by Rittel et al. [8] (Fig. 7b). One possible rea-
son for this discrepancy is that the total dislocation density predicted by the model is
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Fig. 6: (a) Comparison of stress-strain responses against the experimental data ob-
tained by [8] for single crystal copper (<123> orientation) under compression loading
using boundary conditions of Fig. 1; (b) Predicted dislocation density ρr(= ϱr/b2)
evolution at two different strain rates.
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Fig. 7: Evolution of the predicted (a) stored energy according to Eq. (56) and (b)
Taylor-Quinney coefficient (Eq. (61)) for single crystal copper (<123>) with ξ = 1
under compressive loading using boundary conditions of Fig. 1.

significantly lower than the actual experimental values but these were not measured.
The total dislocation density necessary to predict the stored energy and consequently
the TQC needs to be at least of the order of 1015 m−2. In contrast, the dislocation
density obtained by numerical simulations is of the order of 1014 m−2 according to
Fig. 6b. However, higher dislocation densities will lead to higher and unrealistic stress
values, according to formula (15). Another possible explanation is that energy formula
(47)) is not precise enough and more sophisticated functions of dislocation densities
are required. This expression of the stored energy itself may not take into account all
existing mechanisms responsible for the stored energy, as suggested in [4].

5.2 Simulation of polycrystalline aggregates
In this section, polycrystalline simulations are performed to predict the stored energy
and TQC in a few metals and alloys. First of all, a study of the effect of mesh size
and grain morphology on the volume averaged stress-strain responses over the whole
FE model and local fields is performed. Next, the prediction of stored energy and
TQC is carried out using the standard crystal plasticity model. Finally, the impact of
GND densities by means of the micromorphic crystal plasticity model on the predicted
stored energy is evaluated.
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5.2.1 Effect of mesh size and grain morphology
In general, representative volume elements (RVE) with cubic meshes are used to
predict the texture evolution and the global stress-strain responses, for instance in
[62, 67]. These authors found that the global stress-strain curves using RVEs having
cubic meshes are well represented. However, the local fields inside grains were not
considered. More realistic polycrystalline microstructures can be represented using
tetrakaidecahedra [68, 69], or Voronöı tessellation as in [70, 71]. In some studies,
experimentally determined 3D microstructures are incorporated in crystal plasticity
modeling so that the local fields and global stress-strain responses can be compared
to experimental results, see for example [72, 73].

RVEs with cubic meshes
A brief study of the effect of mesh size and grain morphology on the stress-strain
behavior is performed using the standard crystal plasticity model according to section
2. At first, three RVEs of 0.3 mm×0.3 mm×0.3 mm, discretized with structured mesh
using C3D20R elements, which are 20 node quadratic brick elements with reduced
integration, are considered in Fig. 8. Each RVE consists of 64 grains assigned with
random orientations for isotropic crystallographic texture. To study the mesh size
effect, each grain of the RVE is discretized with 1 element (Fig. 8a), 8 elements (Fig.
8b), and 27 elements (Fig. 8c). The material parameters used in this polycrystalline
study are given for copper in Table 2. The applied boundary conditions to the RVE
are presented in Fig. 1, corresponding to mixed homogeneous boundary conditions.

The predicted volume averaged stress-strain responses using three RVEs are dis-
played in Fig. 9a. The stress-strain curve obtained using the RVE with 27 elements
per grain displays a significantly softer response compared to RVEs with 1 and 8 el-
ements per grain (keeping 64 grains per RVE). This confirms the need for sufficient
discretization of intragranular fields even for the prediction of overall curves.

In addition, tests are performed to study the effect of the number of grains on the
stress-strain behavior using RVEs having 64, 512, and 1000 grains (keeping 1 elements
per grain). Fig. 9b shows that there is no significant effect of number of grains on the
stress-strain behavior for these loading conditions and isotropic texture.

RVEs generated by Voronöı tessellations
In addition to cuboidal grains, RVEs of 0.3 mm × 0.3 mm × 0.3 mm are generated by
Voronöı tessellations, see Fig. 10. To study the effect of mesh size, an RVE containing
64 grains is meshed with two different mesh sizes, namely the coarse (1774 nodes, 8274
elements) and fine (16402 nodes, 85251 elements) using C3D4R elements, which are
4-node linear tetrahedral elements with reduced integration. The cumulative plastic
strain fields are shown in Fig. 12. The fine meshed RVE captures the heterogeneity of
the local fields in contrast to almost homogeneous field predicted by coarse meshed
RVE. This suggests that fine enough mesh size within each grain is required to predict
the heterogeneity of the local fields. Moreover, the predicted stress-curves are shown
in Fig. 13a. The coarsely meshed RVE displays stiffer response compared to the finely
meshed RVE, keeping the same total number of grains.

In addition to the effect of mesh size, the effect of grain number on the averaged
stress-strain response is studied. The three RVEs considered for the study contain 64,
125, and 200 grains displayed in Fig. 11. The predicted averaged stress-strain curves
of Fig. 13b show that hundred grains are sufficient for a stabilized overall response for
the considered tensile test.

5.2.2 Prediction of stored energy in engineering polycrystals
Two engineering alloys are considered for the prediction of stored energy in polycrys-
tals. Firstly, stored energy and TQC are computed for polycrystalline austenitic steel
316L under tensile loading at room temperature at low strain rate using the stan-
dard crystal plasticity model of section 2. This material has been chosen because the
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Fig. 8: Computing polycrystals with structured FE meshes containing 64 cuboidal
copper grains with random orientations: (a) 1 element per grain, (b) 8 elements per
grain and (c) 27 elements per grain. Colors represent the individual grains.
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Fig. 9: Volume averaged stress-strain tensile responses using cuboidal copper grains
to study the effect of (a) the number of elements per grain (RVE of 64 grains) and
(b) the total number of grains in the RVE (1 element per grain).

(a) (b)

Fig. 10: Computing polycrystals with FE meshes of 64 randomly oriented grains
generated by Voronöı tessellation: (a) Coarse (1774 nodes, 8274 elements) and (b)
fine (16402 nodes, 85251 elements) meshed. Colors represent the individual grains.

predicted stored energy can be compared with the experimental data taken from [5].
Secondly, the method is applied to Inconel 718 under compression loading at high
strain rates and high temperatures because material parameters are available with
their temperature dependence from [34].

Stored energy and TQC in polycrystalline austenitic steel 316L
The material parameters τ0, ϱr

0, κc, dc, K, and m are calibrated against the experi-
mental stress-strain data of [5] for an average grain size of 80 µm. The coefficients of
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Fig. 11: RVE generated by Voronöı tessellation: (a) 64 grains, (b) 125 grains, and (c)
200 grains. Color represents the individual grains.
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Fig. 12: Cumulative plastic strain fields γcum in unstructured FE meshes after 10%
tensile loading of polycrystalline copper using 64 Voronöı grains assigned with random
orientations: (a) Coarse and (b) fine meshes. The fields are shown on the deformed
configuration.

the interaction matrix (h0 − h5) are adopted from [74]. The initial dislocation density
ρr

0(= ϱr
0/b2) is assumed to be 1010 m−2 and is the same for all slip systems. The ini-

tial dislocation density is an essential information. In combination with the friction
stress it sets the initial yield stress and also the initial hardening rate via the Kocks-
Mecking-Teodosiu equation. It follows that it is not a free parameter that we could
calibrate with impunity to better estimate the amount of stored energy. The RVE of
0.27 mm × 0.27 mm × 0.27 mm is used to describe the polycrystalline austenitic steel.
It is generated using Voronöı tessellation having 64 grains assigned with random ori-
entations. The applied boundary conditions to the RVE are those of Fig. 1. The fitted
averaged stress-strain response against the experimental response is shown in Fig. 14a.
The material constants and fitted material parameters are summarized in Table 3.

Estimation of stored energy and TQC is performed using the expressions (56) and
(61), respectively. The predicted volume average stored energy (Eq. (57)) predicted
by the standard crystal plasticity model using ξ = 1 is plotted against the experi-
mental data of [5] in Fig. 14b. The figure clearly shows that the predicted amount of
stored energy is significantly underestimated by a factor of about 10. Similar observa-
tion has been made for single crystal copper (<123> crystal orientation) simulations
where numerically predicted stored energy and, consequently, the TQC were underes-
timated compared to experimental results, see section 5.1. Again, this raises questions
about the actual value of dislocation density in the samples (not measured) and on the
reliability of the simple energy evaluation (56). In addition, the temperature rise mea-
sured in the experiments can be compared with the numerical predictions. Oliferuk
et al. [5] report a temperature evolution from 25.5°C to 28.5°C during tensile tests on
austenitic steel at a strain rate of 0.002 per second, up to 7% prescribed strain. The
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Fig. 13: Volume averaged stress-strain responses obtained using copper grains created
by Voronöı tessellation to study the effect of (a) mesh size (RVE of 64 grains) and (b)
total number of grains in the RVE.

Table 3: Material parameters used for the numerical simulation of polycrys-
talline austenitic steel 316L under tensile loading at room temperature. The
elastic constants and dislocation interaction coefficients are taken from [74].

C11 C12 C44
ρ

Eq. (60)
Cε

Eq. (60)
τ0 (fitted)
Eq. (15)

199 GPa 136 GPa 105 GPa 7965 kgm−3 532 Jkg−1K−1 80 MPa

b µ
ϱr

0 (fitted)
Eq. (17)

K (fitted)
Eq. (12)

m (fitted)
Eq. (12)

κc (fitted)
Eq. (16)

0.254 nm 65.6 GPa 6.4 × 10−10 10 MPa.s1/m 15 19.4
dc (fitted)
Eq. (16)

h0
Eq. (15)

h1
Eq. (15)

h2
Eq. (15)

h3
Eq. (15)

h4
Eq. (15)

22.8 0.124 0.124 0.07 0.625 0.137
h5

Eq. (15)
A

Eq. (63)
Hχ

Eq. (63)
ξ

Eq. (56)
0.122 0.02 N 5 × 104 MPa 1 and 10

simulation predicts a temperature rise of 15◦C in the same conditions which is 5 times
higher. Two reasons can be advocated to explain the discrepancy. First, adiabatic
conditions set an upper bound for the temperature rise. These conditions are ques-
tionable for the considered quasi-static tests. Second, the underestimation of stored
energy by the model leads to higher local temperatures. This pleads for more system-
atic and accurate measurements combined with constitutive model development and
thermomechanical structural simulations following early attempts such as [75].

The ad-hoc parameter ξ can be increased so as to improve the agreement between
computational and experimental results. The predicted volume average stored energy
with ξ = 10 is shown in Fig. 14b. With such a high value of parameter ξ, the predicted
stored energy is in line with the experimental measurements. Moreover, the evolution
of TQC with strain is shown for ξ = 1, 10 in Fig. 15. The predicted TQC with ξ = 1
varies between 0.95 to 0.98. The values of TQC measured by Oliferuk et al. [5] were in
the range 0.58-0.75. With ξ = 10, the predicted TQC is in the range of 0.55 to 0.70.
The expression of stored energy given by Bailey [3] for both polycrystalline silver and
copper gives an ad-hoc factor of the order of 2 as explained in section 1. In contrast,
in this work, for polycrystalline austenitic steel based on the numerical simulations of
polycrystals, we find an ad-hoc factor of the order of 10.

Stored energy and TQC in Inconel 718
After emphasizing the importance of an ad-hoc factor in the prediction of stored energy
and TQC, the application is made to polycrystalline Inconel 718 undergoing higher
strain rates and higher temperature compression loading. The predicted stress-strain
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Fig. 14: Polycrystalline austenitic steel 316L under tensile loading at room tempera-
ture: (a) Averaged stress-strain curve validated against the experimental work of [5],
and (b) predicted volume averaged stored energy over whole FE model (ξ = 1 and
10) (Eq. (56), (57)) and comparison against the experimental measurements from the
work of [5].
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Fig. 15: Predicted evolution of the volume averaged Taylor-Quinney coefficient (Eq.
(61), (62)) using numerical simulations with two different values of an ad-hoc factor
(1 and 10) for austenitic steel 316L.

responses and corresponding experimental responses from the work of [76] for the an-
nealed specimens using the standard crystal plasticity model are shown in Fig. 16a for
three temperatures. The material constants and fitted material parameters are sum-
marized in Table 4, after [34]. In addition, the material parameters τ0, K, m from (12)
are considered as temperature-dependent. These calibrated temperature-dependent
material parameters are given in Table 5. Moreover, the constant parameter dc in
the dislocation density-based model, which controls the saturation of the stress-strain
behavior, is also taken as temperature-dependent (Table 4). The initial dislocation
density ρr

0(= ϱr
0/b2) is assumed to be 1011 m−2 and chosen the same for all slip systems.

As a general trend, with increasing temperature, the flow strength of Inconel 718
and consequently the plastic work and dislocation density decrease. In Fig. 16b the
dislocation density rapidly increases at an initial deformation stage and saturates
during further straining. Moreover, samples deformed at lower temperatures show
higher dislocation densities than those deformed at higher temperatures. The material
parameters of Inconel 718 are calibrated for the aged samples against the experimental
work of [77]. The stored energy evolution displayed in Fig. 17a shows a similar trend
as the dislocation density. It increases rapidly at the initial stage of deformation and
saturates with a further increase in deformation. The evolution of TQCs is provided in
Fig. 17b. The predicted lowest value of TQC using ξ = 10 is 0.825. In comparison, in
the previous section, polycrystalline austenitic steel shows a lowest TQC value of 0.58
with ξ = 10 (Fig. 15), as calibrated from experimental measurements. Unfortunately
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Table 4: Numerical values of material parameters used for the numerical simulation
of polycrystalline Inconel 718 under compressive loading, after [34].

C11 C12 C44
ρ

Eq. (60)
Cε

Eq. (60) b µ

194 GPa 142 GPa 90 GPa 7800 kgm−3 435 Jkg−1K−1 0.249 nm 77.2 GPa

ϱr
0 (fitted)
Eq. (17)

κc (fitted)
Eq. (16)

dc (fitted)
(293K)

Eq. (16)

dc (fitted)
(673K)

Eq. (16)

dc (fitted)
(1073K)
Eq. (16)

h0
Eq. (15)

h1
Eq. (15)

6.2 × 10−9 18.8 18.4 31.4 42.4 0.124 0.124
h2

Eq. (15)
h3

Eq. (15)
h4

Eq. (15)
h5

Eq. (15)
ξ

Eq. (56)
0.07 0.625 0.137 0.122 10

Table 5: Temperature dependent material parame-
ters used in the numerical simulations for annealed
Inconel 718.

Temperature (K) τ0 (MPa)
Eq. (15)

K(MPa.s1/m)
Eq. (12)

m
Eq. (12)

298 210 5 10
923 150 5 10
1073 80 8 6
1173 60 17 4.5
1323 10 40 4
1523 1 50 2
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Fig. 16: Annealed Inconel 718 under compressive loading: (a) Predicted averaged
stress-strain curves at high strain rates and three initial temperatures (293 K-1073 K)
and comparison against the experimental data from [76] and (b) predicted evolution
of the averaged dislocation density (Eq. (58)) as a function of strain.

no such calorimetric measurements are available for Inconel 718 so that no definitive
conclusion can be drawn from the predicted values of TQC.

5.2.3 Contribution of GNDs to stored energy
In this section, the stored energy and TQC are predicted using the micromorphic
crystal plasticity model described in section 2.5. The model includes additional stored
energy due to the norm of microslip gradient, see (23). The contribution
K · A∼ · K /2 = A∥K ∥2/2 involving the higher order modulus A, is an estimation
of GND density through the norm of the slip gradient vector grad γχ ≃ grad γcum,
according to [40]. The micromorphic model not only includes an evaluation of the GND
density but also a size-dependent additional hardening term in (31). This additional
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Fig. 17: Predicted evolution of volume averaged (a) stored energy (Eq. (56), (57))
and (b) Taylor-Quinney coefficient (Eq. (61), (62)) as functions of strain for Inconel
718 under compressive loading using ξ = 10.

hardening term −Div M = −A∆γχ is proportional to the Laplacian of microslip
distribution, in a similar way as in the Aifantis strain gradient plasticity model [78].

The analytical expressions used for the prediction of stored energy density and
TQC are given in Eq. (63) and (66), respectively. They are averaged over the entire
polycrystalline volume. The stored energy evolution predicted by the micromorphic
model is compared with the results obtained previously with the standard crystal
plasticity model.

The material constants and calibrated material parameters of the standard crystal
plasticity part of the model are taken from Table 3 for austenitic steel 316L. The
micromorphic part of the model involves two additional parameters: A and Hχ. A
high value Hχ = 50000 MPa of the penalty parameter is taken constraining the
microslip variable γχ to almost coincide with the cumulative slip variable γcum. Under
these conditions, the micromorphic model can be regarded as a strict strain gradient
plasticity model as discussed in [40]. A precise identification of the micromorphic
model requires first the calibration of the standard crystal plasticity model from single
crystal material behavior. Then, the gradient parameter A is derived from grain size
dependent tensile curves [79]. This strategy has not been undertaken for the considered
material due to limited available data for single crystal austenitic steel 316L. Instead,
the gradient parameter A is chosen as 0.02 N such that predicted stress-strain response
remains close to experimental response obtained from the work of [5] keeping the
standard crystal plasticity model parameters previously identified for a polycrystal
with a given grain size of 80 µm.

The fitted average stress-strain response against the experimental data is shown in
Fig. 18a. A characteristic length scale of the model can be defined from the material
parameters as ℓ =

√
A(H+Hχ)

|H|Hχ
where H is the plastic hardening modulus. This is a

varying length scale as the hardening modulus H is not constant [40]. The calculated
characteristic length scale is about 2 µm for A = 2 × 10−2 N, Hχ = 5 × 104 MPa and
H = 3000 MPa.

Grain boundary conditions play an essential role in the micromorphic polycrys-
tal response. These interface conditions are chosen as intermediate between so-called
microfree and microhard conditions, as done in [80, 81]. The microslip variable γχ is
assumed to be continuous at the interface while surface traction T and generalized
surface traction M in Eq. (20) are also continuous. In contrast, microfree or micro-
hard conditions respectively assume vanishing generalized traction vector or microslip
along the grain boundaries. They are known to predict lower and upper bounds of the
size-dependent material response, respectively [82]. Intermediate material responses
are obtained using the present continuity conditions.

Stored energy density is predicted using an ad-hoc factor ξ of 1. The comparison
of the predicted stored energy using the standard and micromorphic crystal plasticity
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Fig. 18: Polycrystalline austenitic steel under tensile loading at room temperature:
(a) Averaged stress-strain responses predicted considering the contribution of SSDs
and GNDs (micromorphic model), and SSDs only (standard crystal plasticity model);
(b) Predicted evolution of volume averaged stored energy (using ξ = 1) considering
the contribution of SSDs and GNDs (Eq. (63), (64)), and SSDs only (Eq. (56), (57)).
The stress-strain responses are validated against the experimental results from [5] for
austenitic steel 316L.

models is shown in Fig. 18b. It shows that the predicted volume averaged stored energy
using the micromorphic crystal plasticity model is higher than that of the standard
crystal plasticity model. The standard crystal plasticity model lacks a characteristic
length scale that is associated with the GNDs. On the other hand, the presence of
characteristic length scale in the micromorphic crystal plasticity model takes into
account the contribution of GNDs along with SSDs and therefore gives an increased
total dislocation density and, consequently, stored energy. With the chosen material
parameters, the GND contribution is no more than one third of the SSD one.

The stored energy expression (63) is composed of three contributions in the form:

Es = 1
2µξ

N∑
r=1

(ζr)2

︸ ︷︷ ︸
Ec

+ 1
2Hχe2

p︸ ︷︷ ︸
Ep

+ 1
2AK · K︸ ︷︷ ︸

Eg

. (67)

These contributions are illustrated in Fig. 19a. It is observed that Ec
avg based on

scalar dislocation densities, is larger than Eg
avg. The contribution Ep

avg is specific to
the micromorphic model and is found to be negligible (in this respect, see also [61] in
the isotropic plasticity case). Finally, Ec

avg > Eg
avg > Ep

avg.
Additional simulations are performed with microhard grain boundary conditions.

The microhard grain boundary condition corresponds to vanishing microslip γχ at
the grain boundaries, i.e. γχ = 0. These grain boundary conditions are prescribed by
setting the nodal values of γχ on the grain boundary surfaces to zero. The compar-
ison of the obtained responses using microhard conditions with higher order moduli
A = 2 × 10−2 N and 2 × 10−5 N to that of the results from the experimental test is
presented in Fig. 19b. The response obtained using A = 0.02 N is too strong com-
pared to experimental results. On the other hand, A = 2×10−5 N gives a significantly
lower response than A = 2 × 10−2 N. This exaggerated effect of grain boundary con-
ditions is probably due to the fact that the material parameters of the standard part
of the micromorphic crystal plasticity model were not identified from single crystal
data for austenitic steel but from polycrystal data at a given grain size. This means
that the parameters of the standard crystal plasticity model already contain some
component of grain size hardening. A comparison of the predicted total stored energy
with intermediate and microhard grain boundary conditions is drawn in Fig. 20. The
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Fig. 19: (a) Contribution of each term to the total stored energy in micromorphic
crystal plasticity model (Eq. (67)); (b) Predicted stress-strain responses using micro-
hard grain boundary condition using A = 2×10−2 N and 2×10−5 N. The experimental
stress-strain responses are from taken from [5] for austenitic steel 316L.
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Fig. 20: Comparison of the predicted volume averaged stored energy (Eq. (63), (64))
using microhard and intermediate grain boundary conditions with ξ = 1.

predicted total stored energy with the microhard grain boundary conditions is signif-
icantly higher than that of the intermediate grain boundary conditions. These values
lead however to unrealistic stress levels, as seen in Fig. 19b.

As a conclusion, the crystal plasticity model identified from the polycrystal exper-
imental response, predicts low storage of energy, even after adding the GND content
predicted by the strain gradient plasticity approach. There remain possibilities of in-
creasing the amount of stored energy by proper identification of the crystal plasticity
model from single crystal data.

6 Conclusions
The numerical simulation work presented is intended to provide a first insight into the
prediction of the stored energy and evolution of TQC in single and poly-crystalline
FCC metallic materials based on thermodynamically consistent formulations of stan-
dard and micromorphic crystal plasticity models. The following conclusions are drawn
from the study:
• Thermodynamic consistency requires checking the positivity of the entropy produc-

tion rate predicted by the model. For that purpose, it is necessary to select internal
variables and define the Helmholtz free energy potential, which is rarely done in
the literature. A phenomenological model was described having the advantage that
positive dissipation rate for all loading conditions can be enforced by introducing a
suitable dissipation potential. In contrast, the introduction of physically based in-
ternal variables with more complex evolution equations is not compatible with the
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existence of a dissipation potential in general. We analytically demonstrated using
simplified cases that the positivity of the dissipation rate in dislocation density-
based models can be ensured by imposing constraints on the model parameters.
In other cases, positivity of the dissipation rate must be checked at each material
point and at each time increment, as done in the presented simulations.

• The stored energy and TQC for aluminum and copper single crystals (<001> and
<111> crystal orientations) has been predicted using a standard crystal plasticity
model. The found values are higher than usual values close to 0.8 − 0.9 and than
the experimentally measured average TQC values from the work of [8] for copper
single crystals.

• Polycrystal simulations with a value ξ = 1 underestimates the predicted stored
energy compared to the experimentally measured values for austenitic steel. On
the other hand, predicted stored energy with ξ = 10 shows good agreement with
the experimentally measured values, which is consistent with the single crystal
identification.

• The contribution of GNDs was put forward as a part of the studied dark energy,
within a thermodynamically consistent formulation of micromorphic/SGP crystal
plasticity. Based on the presented identification strategy of the SGP material pa-
rameters, it is found that the predicted stored energy is only moderately higher
than the standard estimation.

• Grain boundary conditions play an important role in SGP simulations. The mi-
crohard grain boundary conditions induce too strong stress response compared to
experimental results. The higher order modulus A was calibrated based on interme-
diate interface conditions enforcing continuity of slip. There is hope that a higher
content of stored energy could be gained by a more accurate identification of the
micromorphic model from single crystal data combined with grain size dependent
experimental results. However enriching the GND content will be at the expense of
the SSD part and the increase in stored energy is expected to remain limited, still
leaving dark energy contributions to be explored.

As such, this work leaves more questions than it answers. A primary objective is to
show that frequently used dislocation based crystal plasticity models can be made
thermodynamically consistent so that stored energy can indeed be predicted. The
results indicate that the storage of energy predicted by this class of models is underes-
timated. The high values of the ad-hoc parameter ξ show the weakness of the proposed
thermodynamic crystal plasticity framework and ask for explanations for the origin of
the dark energy. This may indicate that the dislocation density, an average quantity
for SSD and GND, is not sufficient to evaluate stored energy. Additional sources of
concentrated energy in the form of specific dislocation structures exist and should be
incorporated in the model.

This calls for more accurate estimates of energy stored by dislocations. Some im-
provements already exist in the literature. For instance, the authors in [83] insist on
the importance of a detailed description of coplanar annihilation of dislocations. Re-
garding GND contributions, a more precise form of the energy in stacked pile-ups
is studied in [84, 85]. Alternative more elaborate thermodynamic settings have been
proposed such as the two temperature model in [86]. These should be explored and
compared to the present standard formulations. Where is the dark energy hidden in
dislocation microstructures? Local interactions between dislocations as computed by
discrete dislocation dynamics (DDD) approaches [87] may well play a significant role
and cannot be captured by functions of the sole total dislocation densities. Luo et.
al. [88] recently proposed that vacancy formation as a result of interaction between
moving dislocations (induced by deformation) and precipitates can be a source of en-
ergy storage high enough for stacking fault formation. Stacking fault energy can be
regarded as an additional source of stored energy storage. It is also worth noting that,
according to the results from Rittel et al. [9], the TQCs of pure titanium (except for
tension test) and 1020 steel are about 0.8 - 0.9, similar to the theoretical value of
0.9, unlike the other precipitation hardening alloys, Al2024 and Al5086, with TQCs
around 0.2.
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It should be noted also that the micromorphic model used involves only the gradi-
ent of the cumulative slip variable. Consideration of the full dislocation density tensor
may help improving the predictions [41]. Grain boundaries may also be places where
dark energy is hidden. More elaborate treatment of grain boundary conditions than
the presented intermediate or microhard contitions could help capture these contribu-
tions. Finite resistance against dislocation gliding is introduced in [89–91] and gives
more realistic dislocation-grain boundary interactions. More general grain boundary
conditions have been proposed in [92] allowing for the transition from microhard con-
ditions to microfree (or constant generalized tractions) once a threshold is reached at
the grain boundary. The contribution of grain boundary energy itself, as introduced
in [93], is significant for nano-grains and becomes negligible for conventional engi-
neering grains sizes. The strain gradient plasticity model used in this work accounts
for size effects and can therefore be applied to study the effect of grain size on en-
ergy storage in austenitic steel, as done experimentally in [6]. However, the current
identification of the strain gradient plasticity model is too crude to make reliable pre-
dictions. We leave for future work a more systematic analysis of grain size effects.
The question of the distribution of stored energy inside the grains is even more chal-
lenging although first intragranular thermal measurements are available such as [10].
Finally, anisotropic crystallographic textures, strain localization phenomena and re-
crystallization were not considered in the analysis and are known to play a significant
role in energy storage.
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