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Abstract—Automated Audio Captioning is a multimodal task
that aims to convert audio content into natural language.
The performance of audio captioning systems is evaluated
on quantitative metrics applied to the text representations.
Previously, researchers have applied metrics from machine
translation and image captioning to evaluate a generated audio
caption. Inspired by cognitive neuroscience research on auditory
cognition, in this paper we present a novel metric approach that
evaluates captions taking into account how human listeners
derive semantic information from sounds: Audio Captioning
Evaluation on Semantics of Sound (ACES).

Index Terms—automated audio captioning, evaluation metric,
semantics

I. INTRODUCTION

Automated audio captioning (AAC) is an emergent field
of audio processing. As introduced in 2017 by Drossos et al.
[1], the goal of AAC is to describe the content of an audio
clip using natural language, i.e. using structured text that
contains a description of the sound. The performance of
these AAC models is measured by metrics that compare
model-predicted captions to corresponding human anno-
tations.

Standard AAC models are based on the encoder-decoder
architecture [2]. In this architecture, an audio encoder
converts the input audio into an embedding, which gets fed
into the decoder. A encoder-decoder learns the structure
of the caption by minimizing cross-entropy loss on the
probabilities of the decoder outputs. During inference, the
decoder calculates the most probable sentence given the
embedded audio.

These AAC models are benchmarked using specifically
designed metrics. As metrics are based on different criteria
(see below), it is also possible to benchmark metrics, for
example, by measuring how well they align with human
judgement. For this, Zhou et al. [3] introduced the FENSE
benchmark, which assesses how the AAC metrics score
compares with human evaluation based on four caption
categories.

In this paper, we propose a metric to evaluate audio
captioning algorithms on annotated datasets. This metric is
inspired by cognitive neuroscience research on how human
listeners derive and describe semantic information from
sounds. It combines measures of overall semantic similarity
with specific measures that evaluate the correspondence of
generated and reference captions with respect to semantic
categories particularly relevant for sound descriptions. We
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name this metric Audio Captioning Evaluation on Seman-
tics of Sounds (ACES) !.

II. RELATED WORK

A standard toolset of audio captioning evaluation al-
gorithms are the evaluation metrics from the Microsoft
COCO Caption Dataset [4]. This set of evaluation metrics
was originally intended to measure performance of models
on image captioning tasks, but has since been adopted
in other domains, including the field of audio captioning.
The toolset includes the metrics BLEU [5], ROUGE [6],
METEOR [7], CIDEr [8]. Later versions of COCO Caption
Evaluation also contain SPICE [9]. The current standard
in AAC metrics is SPIDEr, a combination of CIDER and
SPICE, which outperforms both metrics based on human
evaluation of a randomly sampled COCO test set (10.56%
increase compared to a baseline MLE model) [10].

A. Drawbacks of current metrics

There are several drawbacks involved in these metrics.
One being that BLEU, ROUGE, CIDEr and METEOR are
sensitive to n-gram overlap, which is neither necessary nor
sufficient for two sentences to convey the same meaning
[9]. For example, the captions “Rain coming from a big
cloud”, and “Music coming from a big band”, are seman-
tically dissimilar but have a high n-gram score due to the
similarity of the wording. SPICE was created to mitigate this
problem but assumes that both the candidate and reference
captions have exactly the same wordings in its entities,
attributes, and relations. This is not always the case. The
candidate sentence “Young woman talking with crunching
noise” and the reference sentence “Paper crackling with
female speaking lightly in the background.” result in a
SPICE score of 0, but one can clearly see its semantic affinity
[3]. The captions could also possibly contain no entities
(e.g. “Metallic scraping that stops and then starts again”)
or no relations (e.g. “Very loud static sound without any
other noise”). In this case, no scene graph can be composed
or calculated, and the SPICE score returns a low value
regardless of semantic relatedness.

Here, we propose a novel metric based on semantic
role structure. Semantic-role metrics have been previously
investigated by Lo et al. [11], who proposed the MEANT

1Code, data and models available at: https://github.com/GIJS/ACES



metric in the context of Machine Translation. A drawback
of this metric is the use of syntactic parsing of the sentence,
which results in a low score when synonyms are used.
Pretrained models such as BLEURT [12] and BERTScore
[13] have also been used as a metric for various machine
learning tasks. One of the benefits of these models is that
the cosine similarity of two words that are semantically
similar still results in a high score.

This idea of describing sentences based on semantics
was also used in other recent metrics in Audio Captioning.
The FENSE metric [3] uses a language model to calculate
similarity and a fluency penalty added to capture coherent
structures in audio captions. The SPICE+ metric [14] tries
to solve issues that arise with its counterpart SPICE, by
taking the evaluation into a language model framework.
These models are capable of measuring the quality of the
generated caption well, but do not take into account the
meaning of sentences based on semantic categories.

Our model combines both the strength from semantic
entity recognition similar to the MEANT metric, as well as
using the latest pretrained models to capture the semantic
similarity of captions. We propose using a combination of
cosine similarity between the candidate and the reference
caption, together with an F1 score from the syntactic
parsing of the candidate and reference.

B. Research in other fields

Analogies can be drawn to active research areas in the
field of natural language processing (NLP): (1) semantic role
labelling (SRL). In this task, predicate-argument structures
are modeled from sentences. (2) Part-of-speech tagging
(POS), words are tagged based on which part-of-speech they
provide, with tags such as subject and adverb. In our work,
the dataset is directly labeled by us, but there is a certain
correlation between our labels and the way an automated
SRL or POS model would label them. For example, the ARG-
0 and V labels in a SRL model would correlate to the WHO
and HOW property in our model respectively.

Research in the field of psychology and neuroscience has
shown that humans listen to sounds to derive information
on sources, events and changes in the environment and that
this information is reflected in listeners’ verbal descriptions
of everyday sounds [15]. When asked to describe sounds,
listeners refer to the presence of animate (who) or inan-
imate (what) sources, identify mechanisms or actions of
sound generation (how) and, eventually, to a spatial (where)
or temporal (when) context (see Table I).

III. METHOD

The backbone of the proposed metric is a NLP model
that is capable of classifying words from human (or model)
generated captions into a set of semantic categories. These
categories reflect different dimensions of the semantic in-
formation that listeners derive from sounds and have been
derived from a recent survey on the semantics of everyday
sounds [15] (see Table I). This word model is then applied to

TABLE 1
SOUND DESCRIPTOR CATEGORIES ON THE CAPTIONS OF SOUNDS.
ITEMS MARKED WITH * EXIST ONLY IN THE DATASET OF 13 LABELS.

Label Description

WHO sound-generating agent
WHO/WHAT PROPERTY* describes object or person

WHAT vibrating object and substance
HOW actions or mechanisms

HOW PROPERTY* specifies action

WHEN temporal context

WHERE spatial context

WHAT/WHERE* surfaces that contribute to acoustics
SOUND TYPE sounds at signal level

SOUND PROPERTY attributes of the auditory sensation
NON-AUDITORY SENSATION  non-auditory attributes of sound
OTHER labels that do not describe sound

(¢} omitted labels

both the candidate and the reference captions and a score
is calculated that reflects the similarity of their semantic
categories.

A. Model training

To obtain this word-classification model, we annotated
a random subset of captions from the Clotho dataset
and finetuned various pre-trained NLP models (see be-
low). Specifically, we generated two word-labeled caption
datasets using the Prodigy web annotation tool [16]. For
each caption, we labeled each word using one label from a
set of 10 (dataset 1) or of 13 labels (dataset 2), respectively
(see Table I).

Dataset 1 consists of 2300 captions labeled by 3 anno-
tators. The annotators labeled 694, 1387 and 219 labels
captions respectively. The average inter-rater agreements
(Cohen’s kappa coefficient) for the first dataset were 0.808,
0.836 and 0.839. In these 2300 captions, some captions were
duplicates to calculate inter-agreement statistics. However,
to train our models, duplicates were filtered out to ensure
that they did not lead to biased results from training items
multiple times per epoch or data leakage in the test set.
The final dataset consisted of 1158 unique captions. In
these 1158 captions, the annotators labeled 285, 727 and
146 respectively.

We applied a similar procedure to dataset 2, which was
labeled by 2 annotators, with an average Cohen’s kappa
coefficient of 0.794. The dataset initially contained 989
captions, where the annotators labeled 494 and 495 labels,
respectively. After removing duplicates, the final dataset
contained 500 unique captions.

Using the labeled datasets, we finetuned various pre-
trained Transformer encoder models with an classification
head (see Table II) as implemented in the HuggingFace
Transformers library [17]. During tokenization, each caption
was split into tokens, where each token corresponds to
a label. Tokens from words that did not correspond to
a label in our dataset, were assigned the label O. For
training, AdamW optimizer [18] was used, with a learning
rate of 2e-5 and weight decay. The labeled dataset was



TABLE II
COMPARISON OF BERT-BASED MODELS ON TOKEN CLASSIFICATION OF OUR
DATASET. THE HIGHEST SCORES ARE IN BOLD. THE GROUPS OF MODELS ARE
10 LABELS (TOP) AND 13 LABELS (BOTTOM).

Name F1 F1 How F1 What F1 Where F1 Who
BERT 0.816 0.883 0.806 0.785 0.853
RoBERTa 0.812  0.895 0.793 0.792 0.800
XLM RoBERTa  0.797  0.858 0.805 0.780 0.810
ALBERT 0.806  0.870 0.812 0.768 0.837
DeBERTa 0.797  0.856 0.801 0.756 0.839
BERT 0.803  0.908 0.806 0.860 0.912
RoBERTa 0.842 0918 0.847 0.923 0.909
XLM RoBERTa  0.842  0.937 0.856 0.839 0.929
ALBERT 0.830 0.914 0.875 0.845 0.955
DeBERTa 0.809  0.887 0.871 0.847 0.879

divided into 80% train and 20% test sets. The model was
trained for 5 epochs, since initial tests showed that after
5 epochs overfitting might occur. For each trained NLP
model, we report averaged and category-specific (Who-
What-How-Where) Fl-scores for the two distinct variants
obtained using 10 (top) or 13 (bottom) labels (Table II).

B. Metric definition

This finetuned model is then applied to both the candi-
date and the reference captions. Both the (word) embed-
dings from the penultimate layer, as well as the predicted
labels after the final linear layer with dropout are taken
into account. On the basis of these output labels, (word)
embeddings are categorized and combined. For example,
for the sentence “a person is walking on a hard surface” the
token embeddings of person, walking on and hard surface
are categorized into WHO, HOW and WHAT respectively
and are compared with the corresponding embeddings of
the reference caption. Specifically, for each candidate and
reference caption C and R, for each candidate and reference
token ce C and r € R, given the label of ¢,r € C;nRy, the
cosine similarity is calculated as follows:

Tl

1 1 |C\ Ci*T;
CosSim(c,r) = —Z— L
r i=1

lel =3 leallllr;

This cosine similarity predicts the relation of each pair
of tokens so that similar tokens in sound descriptors also
get a high score, contrary to using the n-gram.

In addition to cosine similarity, a metric based on candi-
date and reference label overlap helps to penalize predicted
captions that do not have the correct reference labels.

o

Cink,; C;NR; 2-P-R
—— R(CL) = Fl1=
R, P+R

The ACES metric is defined as follows:

P(C,L) =

CosSim(c, r) + F1(C;,C;)
2

ACES returns a single value for each candidate and
reference caption C and R. Getting a single value as a result

ACES =

TABLE III
SEVERAL MODELS WERE MEASURED AGAINST METRICS, INCLUDING THE ACES
METRIC.
BERTScore =~ FENSE  SPIDEr ACES;9  ACES;3
Baseline 2021 2 0.823 0.251 0.064 0.512 0.516
Baseline 2022 3 0.905 0.434 0.231 0.730 0.724
PANNs + BART  0.907 0.454 0.252 0.736 0.725
PASST + BART 0.908 0.463 0.260 0.734 0.723

for all candidates and references can be calculated by taking
the average for each individual ACES score. This score can
be used to get an overall impression of how good the model
performs on a set of captions.

IV. EXPERIMENTS

Our models were evaluated by comparing them to similar
metrics when applied to audio captioning model results.
Next to that, our models are tested against the FENSE
benchmark to allow to measure its predictions to human
evaluation.

A. Model evaluation

We run and evaluated several AAC models using the
BERTScore, FENSE, SPIDEr and the proposed ACES metrics.
The DCASE baselines of this year and last year were used
as benchmarks for the metrics. The 2021 baseline model
was an encoder-decoder architecture based on GRU’s [19],
whereas the 2022 model had a VGGish encoder and a BART-
based decoder. In addition to the 2022 model baseline,
two other versions were added. In these two versions, the
VGGish encoder network was replaced by a PANNs encoder
[20] and PaSST [21] encoder, respectively.

In Table III the results of the evaluation of AAC models
are shown. It can be noted that BERTScore returns a
relatively high value with less discrepancy, whereas SPIDEr
metrics start with relatively low values. Interestingly, the
ACES scores are not perfectly aligned with the other scores:
PANNSs + BART scores the best of all models on the ACES
metric, whereas PASST + BART scores the best on all other
metrics. Also, ACES;3 is even less aligned than ACES;( with
an average Kendall's 7 of 1 in ACES;3 to % in ACES) .
The differences between scores for ACES;3 are smaller in
comparison with ACES;.

B. Human evaluation

We utilised the FENSE benchmark [3] to evaluate our
score against human evaluation. The FENSE benchmark
consists of four components, each to calculate the quality
of a candidate metric against its reference: (1) human-
correct (HC), where both captions are correct references.
(2) human-incorrect (HI), where one caption is a reference
from a different sentence. (3) human-machine (HM) and
(4) machine-machine (MM) where one and both captions

Zhttps://github.com/audio-captioning/dcase-2021-baseline
Shttps:// github.com/felixgontier/dcase-2022-baseline



TABLE IV
PERFORMANCE OF VARIOUS METRICS ON AUDIOCAPS AND CLOTHO, HIGHEST VALUES IN BOLD.

Metrics | AudioCaps | Clotho-Eval

‘ HC HI HM MM Total ‘ HC HI HM MM Total
SPIDEr 53.2 89.9 84.1 55.2 65.4 479 88.1 67.9 52.5 59.8
BERTScore 60.6 97.6 92.9 65 74.3 57.1 95.5 70.3 61.3 67.5
BLEURT 77.3 93.9 88.7 72.4 79.3 59 93.9 75.4 67.4 71.6
Sentence-BERT 64 99.2 92.5 73.6 79.6 60 95.5 75.9 66.9 71.8
FENSE 64.5 98.4 91.6 84.6 85.3 60.5 94.7 80.2 72.8 75.7
SPICE+ 59.1 85.4 83.7 49 62 46.7 88.1 70.3 48.7 57.8
SPICE+emb 63.5 96.4 91.6 70 77 61 94.7 76.3 61.6 68.9
ACESyg 52.2 74.5 65.7 55.7 59.9 55.7 84 53.4 57 60.5
ACESq3 55.7 77.7 69 53.9 60.6 56.2 83.6 58.6 58.2 62

are from a captioning model respectively. Our metrics are
compared to several other metrics in the FENSE benchmark
(see Table IV).

Overall, the metric does not perform on par with other
metrics in the FENSE benchmark, which could indicate that
the metric is not aligned with human evaluation. Future
work and more evaluation will indicate how to improve the
metric on this regard in performance on this benchmark.
was

V. CONCLUSION

In this paper, Audio Captioning Evaluation on Semantics
(ACES) is introduced, a metric based on audio semantic
research. This paper showed the possibility of an AAC
evaluation metric that combined both semantic similarities
and semantic entity labeling.

Although the model trained with 13 labels (ACES;3) was
better compared to ACES;y on the FENSE benchmark for
human evaluation, it did not align well with other metrics
when used for the evaluation of AAC models (Table III).
Further work will need to highlight why model evaluation
is not consistent with human evaluation.

Some improvements could be made regarding training
our language model. Currently, a 1120 and 500 captions
dataset was utilised that resulted in a 84.2 and 81.2% F1
score for both our models on correct classification. More
labelled data would result in better classification. There was
also a limitation of only using one dataset, Clotho. Adding
AudioCaps or other datasets could diversify the training
data.
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