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A precise bare simulation approach to the
minimization of some distances. II. Further
Foundations

Michel Broniatowski and Wolfgang Stummer

Abstract

The constrained minimization (respectively maximization) of directed distances and of related generalized entropies is a
fundamental task in information theory as well as in the adjacent fields of statistics, machine learning, artificial intelligence, signal
processing and pattern recognition. In our previous paper [1l], we obtained such kind of constrained optima by a new dimension-
free precise bare (pure) simulation method, provided basically that (i) the underlying directed distance is of f—divergence type,
and that (ii) this can be connected to a light-tailed probability distribution in a certain manner. In the present paper, we extend this
approach such that constrained optimization problems of a very huge amount of directed distances and generalized entropies —
and beyond — can be tackled by a newly developed dimension-free extended bare simulation method, for obtaining both optima
as well as optimizers. Almost no assumptions (like convexity) on the set of constraints are needed, within our discrete setup of
arbitrary dimension, and our method is precise (i.e., converges in the limit). For instance, we cover constrained optimizations of
arbitrary f—divergences, Bregman distances, scaled Bregman distances and weighted ¢, —distances. The potential for wide-spread
applicability is indicated, too; in particular, we deliver many recent references for uses of the involved distances/divergences in
various different research fields (which may also serve as an interdisciplinary interface).

Index Terms

f-divergences (of Csiszar-Ali-Silvey-Morimoto type), Bregman distances, scaled Bregman distances, Kullback-Leibler in-
formation distance, relative entropy, (density) power divergences, Tsallis (cross) entropies, Cressie-Read measures, Burbea-
Rao divergences, weighted ¢, —distances, p—entropies, minimum-distance estimators, generalized maximum entropy method,
importance sampling.

1st February 2024

I. INTRODUCTION

N our previous paper [1], we developed a new random-simulation-based approach — called the (narrow-sense) bare

simulation method — to obtain the deterministic constrained minimum inf {®p(Q), Q € Q} of (generalized versions of)
p—divergences ®p(Q) = D,(Q, P) (cf. Csiszar [2], Ali & Silvey [3]], Morimoto [4]), where P € R¥, @ C R and p : R —~ R
is a pregiven convex function with certain additional properties (namely, ¢ is appropriately linked to an instrumental probability
distribution, under which the crucial auxiliary simulations are performed). In particular, amongst others, in [1] we covered
(generalized versions of) the Kullback-Leibler information distance (relative entropy), the (squared) Hellinger distance, the
Pearson chi-square divergence and the more general power divergences (also called Cressie-Read measures [5] [6]], Tsallis cross-
entropies [7], Amari’s alpha-divergences [8]), and the Jensen-Shannon divergence/distance; some other important quantities
which are closely connected to those p—divergences — such as e.g. the Bhattacharyya coefficient (cf. [9],[10],[11]), the
Bhattacharyya distance [9] and the more general Renyi divergences [12] (see also the comprehensive exposition in van Erven
& Harremoés [13]), as well as the maximization/minimization of some p—entropies (cf. Burbea & Rao [[14]) such as e.g. the
Shannon entropy [[15], the Renyi entropies [12], the Havrda-Charvat entropies [16] (also called Tsallis entropies [17]) and of
some Euclidean norms — were treated in [1]], too.

Let us briefly recall the core steps of our bare-simulation minimization method in [1]. The first step is to normalize the vector
E]P into a probability vector P E] (e.g. the p—entropy triggering case P = (1,...,1) is converted into the uniform-probability
vector P = (1/K,...,1/K)). The second step follows from expressing the function ¢ in form of the Fenchel-Legendre
transform of the cumulant (i.e., log moment) generating function of some random variable W; a probabilistic construction
based on i.i.d. copies W; of W allows to interpret inf {D,(Q,P), Q € 2} as an asymptotic characteristic for some explicitly
constructable scheme involving both P and the W;’s. The third and final step consists in the construction of this probabilistic
scheme, and it differs for the specific problem context.

M. Broniatowski is with the LPSM, Sorbonne Université, 4 place Jussieu, 75252 Paris, France. ORCID 0000-0001-6301-5531.

W. Stummer is with the Department of Mathematics, Friedrich-Alexander-Universitit Erlangen—Niirnberg (FAU), Cauerstrasse 11, 91058 Erlangen, Germany;
e-mail: stummer@math.fau.de . ORCID 0000-0002-7831-4558. Corresponding author.

lin this paper, vectors are taken to be row vectors

2with a slight abuse of notation; see the main text for a more comprehensive notation
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More detailed, for a deterministic setup where the (transformed) probability vector P = (p1,...,px) is completely known
and € has non-void interior, we construct in [1] the integer part n; := |np; |, partition the index set {1,...,n} into K sets of
size n1,...,nk and build a K-component vector; each component of this vector is an ad hoc weighted empirical mean of the
W; ’s ; up to standard transformations the empirical count of the visits of this vector in €2 approximates the solution of the
optimization problem inf {D,(Q,P), Q € Q}. Therefore, the resulting approximation can be performed straightforwardly: the
(typically) very complicated minimization task is replaced by a much more comfortable — nevertheless convergent — random
count procedure which can be based on a fast and accurate — pseudo, true, natural, quantum — random number generator.
In case of a statistical/risk optimizing context, one has instead of a known probability vector P a data-describing sample
X1,...,X, of nii.d. (and even more general) copies of a discrete random variable X with unknown distribution (described
by an unknown probability vector) P, and €2 is now a subset of the probability simplex S% in RX. For such contexts, in
[1] we appropriately adapted the above-described method, by — amongst other things — basically using the corresponding
(vectorized) sample-based histogram as P.

Although [[1] covers a considerable amount of important ¢—divergences, as shown by numerous solved cases, the question
arises whether the above-described bare-simulation method can be extended to achieve the minimum inf {®p(Q), Q € Q}
of other important classes ®p(Q) = D(Q,P) of directed (i.e. non-symmetric) distances, divergences and (dis)similarity
measures. To give the corresponding positive answer, is the main goal of this paper. Moreover, as opposed to [1l], not only
the minimum itself but also the corresponding minimizer(s) will be treated as well. Furthermore, we also tackle the maximum
sup {Pp(Q), Q € 2} as well as the corresponding maximizer(s).

Indeed, in this paper we particularly investigate the following important classes of directed distances (divergences, dissimilarity
measures) and connected entropies:

o general p—divergences ®p(Q) := D, (Q, P) where ¢ does not satisfy the above-mentioned Fenchel-Legendre-transform
respresentability. For instance, this covers the omnipresent ¢; —distance (also known as fotal variation distance) between
Q and P. For some comprehensive overviews on ¢—divergences, the reader is referred to the insightful books of e.g.
Liese & Vajda [18], Read & Cressie [6], Vajda [19], Csiszar & Shields [20], Stummer [21], Pardo [22], Liese &
Miescke [23], Basu et al. [24], the survey articles of e.g. Liese & Vajda [25], Vajda & van der Meulen [26], Reid
& Williamson [27], Basseville [28], and the references therein. Moreover, we are interested in the very important special
case P = (1,...,1) =: 1 which leads to the corresponding general non-probability-vector extension of the w—entropies in
the sense of Burbea & Rao [14] (see also Csiszar [29]], Ben-Bassat [30], Ben-Tal & Teboulle [31]], Kesavan & Kapur [32],
Dacunha-Castelle & Gamboa [33]], Teboulle & Vajda [34]], Gamboa & Gassiat [35], Vajda & Zvarova [36]). Those general
(p—entropies can also be interpreted as an “index/degree of (in)equality of the set €27, respectively as an “index/degree
of diversity of the set £2”. We can also deal with the corresponding general non-probability-vector extension of the even
wider class of (h, ¢)—entropies in the sense of Salicru et al. [37] (see also e.g. Pardo [22], Vajda & Vasek [38])).

o separable (ordinary) Bregman distances (cf. [39]) ®p(Q) := DgBD (Q,P) with strictly convex function ¢ : R — R.
Aside from the vast applications in engineering, some general connections to probability and statistics are given e.g.
in Csiszér [40], [41], [42]], Pardo & Vajda [43], [44]], Stummer & Vajda [45], and Broniatowski & Stummer [46],[47].
Important special cases include (i) the omnipresent squared {o—distance, (ii) the more general density power divergences
of Basu et al. [48] (see also e.g. Stummer & Vajda [45] for a different parameter scaling which covers the prominent
Itakura-Saito distance (in the version of e.g. Banerjee et al. [49]])), as well as (iii) their rescaled versions called beta-
divergences (cf. Eguchi & Kano [50]], Mihoko & Eguchi [S1]). Another recently launched special case is the Bregman
exponential divergence of Mukherjee et al. [52] (see also Basak & Basu [53]]).

e scaled Bregman distances (with scaling vector M) ®p(Q) := Diﬁw’j (Q,P) of Stummer [54] and Stummer & Va-
jda [45], which cover both ¢p—divergences as well as separable (ordinary) Bregman distances. Further investigations
(e.g. on robustness issues) can be found in Killinger & Stummer [55], [56l], [57]], [58]]; Broniatowski & Stummer [46]]
flexibilized/widened the involved domains, and Broniatowski & Stummer [47] give a comprehensive survey on various
different kinds of applications to statistics, and to the adjacent fields of machine learning and artificial intelligence.
Moreover, Stummer & KiBlinger [59] give some structural flexibilizations/generalizations of scaled Bregman distance
which cover as special cases (the separable versions of) (i) the total Bregman divergences of Liu et al. [60],[61]], Vemuri
et al. [[62], (ii) its variant given in Nock et al. [63], as well as (iii) the conformal divergences and the scaled conformal
divergences of Nock et al. [64]]. Furthermore, we can also deal with the even wider class of the distances of Broniatowski
& Stummer [46] (see also Broniatowski & Stummer [47]]), which cover all the above-mentioned (generalizations of) scaled
Bregman distances as special cases.

3(even for non-convex ©)
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o the very prominent non-separable (ordinary) Bregman distances (cf. [39]) Pp(Q) := Df’,"OBD (Q, P) with strictly convex
multivariate function ¢ : RX — R (as usual, if ¢ is of the separable form (Q) := Y+, (qx), then DyOBP(Q,P)
collapses to the separable (ordinary) Bregman distance DgBD (Q,P)). A very important special case is the omnipresent
(squared) Mahalanobis distance [63]].

o the omnipresent weighted ¢, —distances ®p(Q) := ||Q — P||, w where r €]0,00[ and w is a vector of weights.

o Burbea-Rao divergences [14] (see also e.g. Pardo & Vajda [43]],[44], as well as Stummer & Kiflinger [59]] for an imbedding
into their scaled-Bregman-distance-flexibilizations).

In the light of the above explanations, the goals of this paper are:

(G1) to extend the results of [1] on — narrow sense — bare-simulation minimization inf {D,(Q, P), Q € £} of ¢—divergences
with instrumentally linked divergence generator ¢, fo the — narrow sense — bare-simulation minimization of the wider
class of scaled Bregman distances Dgfv’? (Q,P) (including separable Bregman distances DgBD (Q,P)) with the same
type of divergence generator ;

(G2) to solve — by means of a newly developed extension of our narrow-sense bare-simulation method — both constrained
minimization and maximization problems for the above-mentioned huge range of directed distances, divergences,
(dis-)similarity measures, entropies (and beyond); our new method is precise (i.e., converges in the limit) and needs
almost no assumptions (like convexity) on the set 2 of constraints of arbitrary finite dimension.

(G3) to deliver sharp estimates of the desired minima and maxima, and to derive the left-open estimates of the minimizers for
the context of [[1]], as well as the of the minimizers and maximizers for the contexts (G1) and (G2).

This agenda is achieved in the following way. In the next Section we briefly introduce the principal idea of our new
extended bare-simulation optimization paradigm, in addition to the — now called narrow-sense — one of [1l]. In order to
lay a solid explanatory basis for our new developments, we first recall in Section [[II| our main results of [1] on narrow-sense
bare-simulation minimization of p—divergences with instrumentally linked divergence generator ¢, for “general” constraints
sets €2 with non-void interior. For the same type of ¢ and €2, in Section [[V| we carry out the above-mentioned goal (G1) on
narrow-sense bare-simulation minimization of separable Bregman distances and even more general scaled Bregman distances.
Based on the results of the previous two chapters, we then achieve in Section [V]the goal (G2) and derive four fundamental (non-
narrow-sense) bare-simulation minimization and maximization results on all the above-mentioned general directed distances
D(Q,P) and friends, for the context of 2 with non-void interior. In the next three Sections @ we carry out the
same program as in the Sections [Vl but for the case that € contains the side constraint that for each member Q the
sum of the components equals the same fixed constant A > 0 (implying that 2 has void interior). Furthermore, in the Sections
[X] [XT we carry out the same program as in the Sections but for the risk-carrying case that P — respectively
some involved parameter — is unknown (and A = 1). In the Sections and we provide corresponding estimators
for the minima, minimizers, maxima and maximizers of the above-mentioned sections (cf. Goal (G3)). Finally, all the proofs
are given Appendix [Al

II. A NEW MINIMIZATION PARADIGM

We concern with minimization and maximization problems of the following type, where M is a topological space and 7 is
the Borel o—field over a given base on M; e.g. take M = RX to be the K —dimensional Euclidean space equipped with the
Borel o— field 7.

Definition 1: A measurable function ® : M — R U {—o00, 00} and measurable set Q C M E] are called “bare-simulation
minimizable” (BS-minimizable) respectively “bare-simulation maximizable” (BS-maximizable) if for

P(Q) = é%{) {®(Q)} €] — 00,00  respectively () = Sté% {®(Q)} €] — o0, 0] (1)

there exists a measurable function G : [0, 00— R, a sequence (f,)nen of measurable functions f,, : M — [0, 00[ as well as
a sequence ((X,,A,,[1,)),c, of probability spaces and on them a sequence (&, )nen E]of M —valued random variables such
that

G~ 1im % log En, | fa(6) -10(6n) |) = inf $(Q) = 2() o)
respectively G( — lim %log [Emn[fn(fn) IQ(§n)D = ngug@(@) = o(Q), 3)
n—oo c

Ye. QeT
5in order to emphasize the dependence on @, one should use the notations (&p’n)n@q, Mg, n, etc.; this is avoided for the sake of a better readability.
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where Ep, [-] denotes the expectation with respect to I, and 15(-) denotes the indicator function on the set B; in situations
where ® is fixed and different 2’s are considered, we say that “® is bare-simulation minimizable (BS-minimizable) on 2”
respectively “® is bare-simulation maximizable (BS-maximizable) on 2”. In case that one can even choose f,(-) =1 — and
hence [Emn[fn(ﬁn) ~IQ(§n)] = [I'In[gn € Q] — then we speak of “bare-simulation minimizable/maximizable in the narrow
sense’.

Remark 2: (a) The above-mentioned Definition [1| extends the Definition 1 of Browniatowski & Stummer [[1]] who deal with
the narrow-sense-case f,(:) = 1.
(b) We could even extend the above-mentioned Definition |1f to allow for more general f, : M +— R such that
En,| frn(n) -lg(fn)‘] > 0 for all large enough n € N.
(c) As usual, we call Q) the constraint set (alternatively used names are e.g. choice set or search space).
The basic idea/incentive of this new approach is: if a minimization problem has no explicit solution and is computationally
intractable (or unfeasible) but can be shown to be BS-minimizable with concretely constructable G, (f)nen, (€n)nen and
(M) new, then one can basically simulate the log-expectations — X log Eny, [ £ (&) -10(&n) | for large enough integer n € N to
obtain an approximation of the minimum/maximum (I)) without having to evaluate the corresponding (not necessarily unique)
minimizer/maximizer. As explained in [1], this is for instance important for fast and efficient model search. However, in
contrast to [}, we show in this paper also how one can “nearly synchronously” achieve an approximation of the corresponding
minimizer(s)/maximizer(s).

For reasons of transparency, we start to demonstrate this approach for the following important/prominent class of deterministic
constrained minimization problems with the following components:
(i) M is the K —dimensional Euclidean space R¥, i.e. Q is a set of vectors () with a number of K components (where K
may be huge, as it is e.g. the case in big data contexts);

(ii) ®(-) := ®p(-) depends on some known vector P in R¥ with K nonnegative components;

(iii) ®p(-) is a “directed distance” (divergence) from P into € in the sense of Q2 3 Q — ®p(Q) := D(Q, P), where D(,-)
has the the two properties “D(Q, P) > 0” and “D(Q, P) = 0 if and only if @ = P”. In particular, D(-, ) needs neither
satisfy the symmetry D(Q, P) = D(P, Q) nor the triangular inequality.

In other words, the left-hand part of (1) together with (i)-(iii) constitutes a deterministic constrained distance/divergence-
minimization problem; we design a “universal” method to solve such problems by constructing appropriate (cf.(2) G, (fn)nen
and sequences (&, )nen of RE —valued random variables. The latter will be first constructed — for a first insight — with the
help of narrow-sense methods developed in [[1]] for directed distances D(-, -) from a large subclass of the important omnipresent
Csiszar-Ali-Silvey-Morimoto p—divergences (also called f—divergences) given in Definition [3| below.

III. DETERMINISTIC NARROW-SENSE BARE-SIMULATION-OPTIMIZATION OF (o—DIVERGENCES

To begin with, concerning the above-mentioned point (i) we take the K — dimensional Euclidean space M = RX, denote from
now on — as usual — its elements (i.e. vectors) in boldface letters, and also employ the subsets

REy :={Q:=(q1,....qx) ER : g #0forall i =1,..., K},
RE, :={Q:=(q1,...,qx) €ERE : ¢;>0foralli=1,...,K},
[Rg0 ={Q:=(q1,...,qg) ERE : ¢ >0foralli=1,..., K},
[Rg0 = [Rgo\{O} ={Q:=(q1,---,9x) € [Rgo : ¢ #0forsomei=1,...,K},
SK={Q:=(q1,.--,9x) € [RI_><0 : Zfil q; = 1} (simplex of probability vectors, probability simplex),
SE = {Q:=(q1,...,qx) €RE,: 8 ¢ =1}.

Concerning the directed distances D(-,-) in (ii) and (iii), as a basis we first deal with the following

Definition 3: (a) Let the “divergence-generator” be a lower semicontinuous convex function ¢ : |— o0, co[— [0, o] satisfying
(1) = 0. Furthermore, for the effective domain dom(y) := {t € R : ¢(t) < co} we assume that its interior int(dom(y)) is
non-empty which implies that int(dom(yp)) =]a, b[ for some —oo < a < 1 < b < co. Moreover, we suppose that ¢ is strictly
convex at the point t = 1 E] (very often in practice, ¢ is strictly convex even in a non-empty neighborhood |¢°¢, t5[Cla, b[ of
one (t*° < 1 < t%9)). Also, we set ¢(a) := lim;, ¢(t) and p(b) := limyy () (these limits always exist). The class of all
such functions ¢ will be denoted by Y(]a,b[). A frequent choice is e.g. Ja, b[=10, 00| or Ja,b[=] — oo, col.

6in line with e.g. Liese & Miescke [23], here a convex function ¢ is called strictly convex at the point ¢ = 1 if the function ¢ is not linear in the open
interval |1 —e,1 + ¢[ for any € > 0



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 5

(b) For ¢ € Y(a,b]), P := (p1,...,px) € RE, and Q := (q1,...,qx) € © C R¥, we define the Csiszar-Ali-Silvey-
Morimoto (CASM) ¢—divergence

K
Pp (Q) := DW(Q,P) = Zpk 2 (qk) > 0. 4)
=1 Pk

As usual, in @) we employ the three conventions that p - go( ) =p-¢0) > 0foralp>0and0-¢() =gq-

0
P
limg 00 %ﬁrz(q))) > 0 for ¢ # 0 (employing the sign of ¢), and 0 - ¢ (%) := 0. Throughout the paper, we only consider

constellations (¢, P, ) for which the very mild condition ®p(Q2) := infqeq D,(Q,P) # oo holds.

For probability vectors IP and @ in S¥, the ¢—divergences D, (@Q, IP) were introduced by Csiszar [2], Ali & Silvey [3] and
Morimoto [4] (where the first two references even deal with more general probability distributions); for some comprehensive
overviews — including statistical applications to goodness-of-fit testing and minimum distance estimation — the reader is
referred to the insightful books the reader is referred to the insightful books of e.g. Liese & Vajda [18], Read & Cressie [0],
Vajda [19]], Csiszar & Shields [20], Stummer [21], Pardo [22], Liese & Miescke [23]], Basu et al. [24], the survey articles of e.g.
Liese & Vajda [25], Vajda & van der Meulen [26], Reid & Williamson [27], Basseville [28]], and the references therein; For the
setup of D, (Q,P) for vectors P, Q with non-negative components the reader is referred to e.g. Stummer & Vajda [66] (who
deal with even more general nonnegative measures and give some statistical as well as information-theoretic applications) and
Gietl & Reffel [67]. The case of p—divergences for vectors with arbitrary components can be extracted from e.g. Broniatowski
& Keziou [68]] who actually deal with finite signed measures. For a comprehensive technical treatment, see also Browniatowski
& Stummer [46]).

As an important special case, we get for the choice P :=(1,...,1) := 1 the quantity
K
21(Q) = Dyp(Q,1) = > ¢(gr) )
k=1

with ¢ € T(]a,b[). As is well known, there are numerous applications of Zszl ©(qr) where @ is e.g. interpreted as cost
function respectively energy function respectively purpose function. Furthermore, Zszl ©(gx) can be interpreted as (non-
probability extension of a) ¢p—entropy in the sense of Burbea & Rao [[14] (see also Csiszar [29], Ben-Bassat [30]], Ben-Tal
& Teboulle [31]], Kesavan & Kapur [32]], Dacunha-Castelle & Gamboa [33], Teboulle & Vajda [34], Gamboa & Gassiat [335],
Vajda & Zvarova [36]). Moreover, since 1 can be seen as a reference vector with (normalized) equal components, Dw(Q, 1)
in (B) can be interpreted as an “index/degree of (in)equality of the set 2, respectively as an “index/degree of diversity of the
set 7. A comprehensive BS-concerning discussion with references on the theory and applications of the quantities in (), is
given e.g. in Broniatowski & Stummer [1].

Returning to the general case, from (@) it is obvious that in general D,(Q,P) # D, (P, Q) (non-symmetry). Moreover, it is
straightforward to deduce that D, (Q,P) = 0 if and only if Q = P (reflexivity). By appropriate choice of ¢, one can get as
special cases many very prominent divergences which are frequently used in information theory and its applications to e.g.
statistics, artificial intelligence, and machine learning.

For reasons of a more compact representation, we shall henceforth assume that P := (p1,...,px) € [RI><0, unless stated
otherwise.

As a fundamental tool for later purposes, let us now briefly explain how the BS method in the narrow sense of Broniatowski
& Stummer [[1] can be used to tackle the following deterministic optimization problems:

Problem 4: For pregiven ¢ € Y (]a, b]), positive-components vector P := (p1,..,px) € RE, (or from some subset thereof),
and subset 2 C R¥ (also denoted in boldface letters, with a slight abuse of notation) with regularity properties

cl(2) = cl (int (), int () # 0, (6)
find
@p(Q) = inf D,(Q.P), )
provided that
Ci)relg] D,(Q,P) < o (®)

and that divergence generator ¢ additionally satisfies the following Condition [3}
Condition 5: Let ¢ € Y(]a,b[) and Mp = Zfil p; > 0. Then the multiple @ := Mp -  should satisfy the representation

p(t) = sup (z ot — log/ezydz(y))7 teR, 9)

z€R
R
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for some probability distribution C on the real line such that the function z ~— M GFZ(Z) = [z ezde(y) is finite on some
open interval containing zero.

Remark 6: The change from ¢ to ¢ := Mp - ¢ in Condition 5| stems from the fact that one can equivalently rewrite such
that the vector P “turns into” a probability vector IP; the latter will be essentially needed for our BS method (cf. Broniatowski
& Stummer [1]]). Indeed, one can construct the probability vector IP := P/Mp and analogously Q := Q/Mp (notice that Q
may be a non-probability vector). With this, one can equivalently rewrite

K K ~
Dy(Q.P) =) p- @(%’Z) = Mp -y, -w(]\]\g :g{) = D5(Q, P). (10)
k=1 k=1

and thus the solution of coincides with the one of the problem of finding
@p() = inf D5(Q, P),  with © = Q/Mp. an

Remark 7: A comprehensive study on Condition [3] is given in Section XI of Broniatowski & Stummer [1]] as well as in
Broniatowski & Stummer [69]]; numerous explicitly solved cases can be found in Section XII of [1]. In particular, Condition
[5] implies in particular that
(i) ¢ is strictly convex in a non-empty neighborhood |t°¢,¢5°[Cla, b] of one (t°¢ < 1 < t%°) and affine linear on the rest
] — 00, 00[\ ]t2¢,¢5°[ in case that this rest is non-empty,

(ii) ¢(t) > 0 for all ¢ €]a,b[\{1},
(iii) ¢ is continuously differentiable on ]a, b[; accordingly, we denote the corresponding derivative by ',
(iv) ¢'(1) = 0.

Remark 8: (a) The purpose of assumption (6) is to get rid of the limsup type and liminf type results in our below-
mentioned “bare-simulation” approach and to obtain /imit-statements which motivate our construction. In practice, it is enough
to verify € C ¢l (int (£2)), which is equivalent to the left-hand part of (6)). Clearly, any open set 2 C R¥ satisfies the left-hand
part of (6). In the subsetup where €2 is a closed convex set and int(2) # (), (6) is satisfied and the minimizer Q,,;, € ©
in is attained and even unique. When € is open and satisfies (6), then the infimum in (7) exists but is reached at some
generalized projection of P on € (see Csiszar [[70] for the Kullback-Leibler-information-distance case of probability measures,
which extends to any ¢—divergence in our framework).

(b) Without further mentioning, the regularity assumption (@) is supposed to hold in the full topology. Of course, int (SK ) ={
and thus, for the important probability-vector setup €2 C SX the assumption () is violated which requires extra refinements
(cf. Section [V below). The same is needed for @ C A - SX for some A # 1, since obviously int (A-S*) = 0; such a
context appears naturally e.g. in connection with mass transportation problems and with distributed energy management (see
e.g. Chapter IX of Broniatowski & Stummer [1] and the references therein).

(c) Our approach is predestined for non- or semiparametric models, see Broniatowski & Stummer [1] for a detailed discussion.
(d) The Condition implies in particular that ¢ satisfies f[R yd((y) = 1 and that ¢ has light tails; moreover, { may depend
on Mp in a highly non-trivial way. For details — including also methods for finding Z as well as numerous examples — the
reader is referred to Broniatowski & Stummer [[1]].

Returning to the distance-minimizing Problem @ we proceed by constructing an appropriate sequence (£, )nen of R —valued
random variables (cf. (2) in Definition |I| and the special case of Remark [2(a)) as follows: we first transform P.=P /Mp
having components (p1, ...,k ). Moreover, for any n € N and any k € {1,..., K — 1}, let nj, := |n-pi] (where |z] denotes
the integer part of x) and ng := nfszz_ll ny; for this, we assume that n € N is large enough, namely n > MaXpe(1,..,K} 5

such that all the integers ni (kK = 1,..., K) are non-zero. Since we assume P € [R[>{0 and thus none of the p.’s is zero, one
has n
lim = =5, k=1,...,K. (12)
n—oo N
With this at hand, we decompose the set {1,...,n} of all integers from 1 to n into the following disjoint blocks: Il(") =

{1,...,m1}, 12(") :={n1+1,...,n1 +no}, and so on until the last block I}?') = {ZkK;ll ng + 1,...,n} which therefore
contains all integers from n; + ... 4+ ng_1 + 1 to n. Due to our construction, I ,i") has ny, > 1 elements (i.e. card(] ,in)) =
ny where card(B) denotes the number of elements in a set B) for all k € {1,...,K} m Furthermore, consider a vector

W = (Wl, R Wn) where the Wi’s are i.i.d. copies of the random variable W whose distribution is associated with the

divergence-generator ¢ := Mp - ¢ through (), in the sense that H'I[W €] = Z[] on some probability space (X,.4,0). We

7if all pp, (k = 1,..., K) are rational numbers in ]0, 1[ with ZkK::[ pr = 1 and N is the (always existing) smallest integer such that all N - py
(k=1,...,K) are integers (i.e. € N), then for any multiple n = m - N (m € N) one gets that all n - py, are integers and hence nx = [n-pr| =n - pg
k=1,....K)
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group the Wi’s according to the above-mentioned blocks and sum them up blockwise, in order to build the following K —

COmpOnent random vector 1 1
. _ _
— (= Wiyooo — W,»); 13
e = (2 ) (13)

ier™ ier

notice that the signs of its components may be negative, depending on the nature of the ,V[v/i’s; moreover, the expectation of
its k—th component converges to py as n tends to infinity (since the expectation of Wi is 1), whereas the n—fold of the
corresponding variance converges to py times the variance of W7.

For such a context, Broniatowski & Stummer [1] obtain the following assertio :

Theorem 9: Let P e [RI>{0, Mp = Zf;Lpz > 0, and suppose that the divergence generator ¢ satisfies Condition [5| above,
with ¢ (cf. (). Additionally, let W := (W;);cn be a sequence of random variables where the W;’s are i.i.d. copies of the

random variable W whose distribution is TN[W € -] = ¢[-] } Then, in terms of the random vectors £XV (cf. (13)) there holds
. 1 W
dnf D(QP) = — lim —log m[gn € Q/Mp} (14)

for any © C RX with regularity properties (6) and finiteness property (8). In particular, for each P € [RI>(0 the function
®p (-) := Dy(-, P) (cf. @) is bare-simulation minimizable (BS-minimizable) in the narrow sense (cf. (Z) in Definition [1| and
the special case of Remark a)) on any such Q C R¥,

Remark 10: (i) For some contexts, we can explicitly give the distribution of each of the independent (non-deterministic
parts of the) components <21 e Wl) of the vector EXV; this will ease the corresponding concrete simulations. For
iel! ke

yeeny

corresponding examples, see [[1].

(ii) Let us emphasize that we have assumed P € R in Theorem@ which excludes P from having zero components. However,

e(z-sgn(a) | _
z-sgnlq) |

P € R%, imposes no restriction in Theorem EI, since the projection of P in € then belongs to the subspace of R¥ generated

by the non-null components of P; such a situation appears e.g. for power divergence generators ., with v > 2. So there is

no loss of generality assuming P € [RI;O in this case.

(iii) Notice that even holds when P € € for which the left-hand side becomes zero.

in cases where lim,_, ., ‘ +oo for g # 0, then if py, = 0 for some kq it follows that g, = 0, which proves that

Returning to the general context, the limit statement provides the principle for the approximation of the solution of Problem
(7. Indeed, by replacing the right-hand side in (I4) by its finite counterpart, we deduce for given large n

1 & . .
—Elog[ﬂ{gn e Q/MP} ~ inf Do(Q, P); (15)

it remains to estimate the left-hand side of (I3). The latter can be performed either by a naive estimator of the frequency of
those replications of fxv which hit Q/Mp, or more efficiently by some improved estimator; for details, the reader is referred
to Section X of Broniatowski & Stummer [1]], see also the corresponding extensions given in Section below, where the
latter also provides e.g. estimates of the minimizers).

Remark 11: According to (I4) of Theorem [9] as well as (I3), we can principally tackle the (approximative) compu-
tation of the minimum value infoco D, (Q,P) = infgea ) Pk - ¢ (Z,’jg and in particular of infqeq > ., v(qr) =
infqea Dy,(Q, 1) (cf. () by basically only employing a fast and accurate — pseudo, true, natural, quantum — random number
generaton "} provided that the constraint set €2 satisfies the mild assumptions (6) and (8). Notice that () also covers constraint
sets €2 (of arbitrary dimension K) which are non-convex and even highly disconnected, and for which other minimization

methods (e.g. pure enumeration, gradient or steepest descent methods, etc.) may be problematic or intractable.

Returning to the general context, notice that Theorem [9] does not cover cases where €2 consists of Q satisfying the additional
constraint Efil g; = A for some fixed A > 0 (and thus int (2) = () which violates (6)). However, such situations can be
still handled with an adaption of the above-described narrow-sense BS method, see Broniatowski & Stummer [1]] and also the
beginning of Section below.

8with (Xn, An,Myn) = (X,A4,0) for all n € N
%and thus, Ep[W;] = 1 and W; has light tails
10for exemplary recent references on this very active research field on fast and accurate random number generation see e.g. [Z1]-[163]
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To end up this section, let us present some examples of ¢—divergence generators which satisfy Condition [5] and for which
thus the Theorem |§I can be applied; the corresponding essential distributions ¢ can be obtained from ¢ in the last column
of Table 1 below, by employing Mp - ¢ instead of ¢. For details, construction methods and further examples, the reader is
referred to Broniatowski & Stummer [[1] (see also Broniatowski & Stummer [164] for applications to fuzzy sets and basic
belief assignments).

Example 12: Let us take the important case of power-divergence generators ¢~ : R — [0, 00] defined by

m%;’)_l, if v €] — 00,0[ and ¢ €]0, 00|,
—logt+1t—1, if y=0and t €]0, 00|,
%7 if v €]0,1[ and ¢ € [0, 00|,
t-logt+1—t, ify=1andt € [0, 00],
Pall) 1= 7”*7 Lo (8) 4+ (2 — =55) -1 (t) if y€]1,2[and t €] — [ (16)
- (l 10,00 ~ ~—1 ]—00,0] ) Y ) 00, 00|,

b ify=2and t €] —

v =2and t €] - o0, 0],
’Y— —_ .
% “Ho,00[(t) + (% - ﬁ) “H_o0,0(t), if vy €]2,00[ and t €] — 00, 0],
00, else,

which — by (@) — for arbitrary multiplier ¢ €]0, co[ generate (the vector-valued form of) the generalized power divergences
given by

S @ K K .
c.{ oy P kglqur;'kz::lpk}, if vy €] —00,0], PG[R; andQG[R>0,
K K K
E.{Zpk-log<§f)+ZQk—Zpk}, if’y:O,Pe[R; and Q € RE,
= =1 k=1
B kgl(qk)“(pk)l_” K LK .
¢ {W e Tatt k;pk}, if 7 €]0, 1], P € RE, and Q € RE,,
K K K
Deg (QP) = 37 { X oai-tog (%) = Lot Lo, ify=1 PeRE,md QeRE,  (7)
= [ E @ren L & 1 . K K
G {};W Mo cel(a) = 770 X a3 kglpk}, if v €]1,2[, P € RK, and Q € R¥,
7.3 lwon? ity =2, PeRE, and Q € R¥,
= [ & (a1)"(pr)' " - 1 : K K
c-{kzl% 1o, [(Qk>_71'k21Qk+;'kzlpk}, if v €]2,00], P € RX, and Q € R¥,
00, else;

notice that one has the straightforward relationship Dz, (-,-) =¢- Dy (:,-).

For ¢ = 1 and probability vectors @, IP in S respectively in S, the divergences simplify considerably, namely to the
well-known power divergences D,_(®,IP) in the scaling of e.g. Liese & Vajda [18] (in other scalings they are also called Rathie
& Kannapan’s non-additive directed divergences of order v [[163]], Cressie-Read divergences |3 [6], relative Tsallis entropies
or Tsallis cross-entropies [l (see also Shiino [166l), Amari’s alpha-divergences [8]]); for some comprehensive overviews on
power divergences D, (Q,IP) — including statistical applications to goodness-of-fit testing and minimum distance estimation
— the reader is referred to the above-mentioned insightful books [[18]]-[23]], the survey articles [25]],[26]], and the references
therein. Prominent and widely used special cases of D, (@, IP) are the omnipresent Kullback-Leibler information divergence
(relative entropy) where v = 1, the equally important reverse Kullback-Leibler information divergence (reverse relative entropy)
where v = 0, the Pearson chi-square divergence (v = 2), the Neyman chi-square divergence (v = —1), the Hellinger divergence
(v = %, also called squared Hellinger distance, squared Matusita distance [167] or squared Hellinger-Kakutani metric, see e.g.
Deza & Deza [168])). Some exemplary (relatively) recent studies and applications of power divergences D, (®,IP) — aside
from the vast statistical literature (including in particular maximum likelihood estimation and Pearson’s chi-square test) —
are cited e.g. in Broniatowski & Stummer [[I]]. For ¢ = 1 and nonnegative -component vectors Q, P in [R>0 respectively R%,
respectively IR>O, the generalized power divergences D, (Q,P) of (I7) were treated by Stummer & Vajda [66] (for even
more general probablhty measures, deriving e.g. also generahzed Pmsker s inequalities); for a more general comprehensive
technical treatment see also e.g. Broniatowski & Stummer [46].

For any fixed Mp €]0, 00|, Condition is satisfied for ¢ := ¢-, — and thus the narrow-sense BS-minimizability concerning
Theorem [9] can be applied — for all ¢ €]0,00[ and all v € R\]1,2[ (cf. [1]). (As far as we know at the moment) For the



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 9

case v €]1,2[ one can not verify Condition [5] but BS-minimizability (in the sense of (2) with f,(-) #Z 1) will be shown in
Example 28] below.

For the latter, we shall employ the next example, which is of interest on its own due to its finite-derivative-behaviour at t = o0
(and which will be also helpful for e.g. the study of the total variation distance in Example 26| below).

Example 13: For any parameter-triple «, 3,¢ €10, 00[ we choose ]a,b[:=] — 00, 00 [ and

2
) e 2- (1482 (15) - 1)
papelt)i=-a- {1487 (=)~ 1+10g . b elool te]-oecel ()
« 8. (ﬁ)
Notice that ¢, 5.7(1) = 0, ¢, 5 (1) = 0, a,5,z(—00) = 0o and ¢, g z(00) = co. Moreover, ¢, 5 :(—00) = ¢}, 5+(a) = —¢:3

and ¢, 5 (00) = ¢, 5(b) = ¢ B. Furthermore, ¢, g z(-) is strictly convex and smooth (i.e. of C*°—type). From (I8), we
construct the corresponding divergence (cf. (@)

Dy, . -(Q.P) = Zpk pasi(5F)

TN
K T 2-(\/1+62-(1;k) —1)
craype {1482 () —1+1log S . PeRE,QeRN (19
k=1 B2 . <%)
For any fixed Mp €]0, oo, Conditionis satisfied for ¢ := ¢, 3.z — and thus the narrow-sense BS-minimizability concerning

Theorem @]can be applied — for all parameter-triples a, 3, ¢ €0, oo[ (cf. [1]]). For the important special case @ = 3 the formula
(18) collapses to

2-( T+(1—12 71)
J

@ﬁ,ﬁ,g(t):Eﬁ{ 1+(1_t)2_1+10g (1—t>2 E[0,00[, tE]—O0,00[, (20)
and collapses to
Dy, 5:(Q,P) = Zpk ‘Pﬁﬁc( )
\2 :
:E-B~Zpk-{ 1+(1—%:) — 141log o } P cRE, Qe RN,

2
o)
Pk

To end this section, let us present Table 1 which gives a compact summary of several important solved cases; for details, see
Section XII of Broniatowski & Stummer [1]. Notice that — as already explained above — in the current setup one has to
take in Table 1 the divergence generator Mp - ¢ instead of ¢ (cf. () instead of (69)). Here and henceforth, we employ the
following notations:

o GAM/a, 3) denotes the Gamma distribution with rate parameter (inverse scale parameter) « € |0, o[ and shape parameter

£10, oo[ having (Lebesgue-)density f(y) := W Ho,eo[(¥), ¥ ER;
o POI(k) denotes the Poisson distribution with parameter s € |0, co];
o Compound POI(k)-GAM (o, B) denotes the corresponding “compound Poisson-Gamma distribution”;
e NOR(u,0?) denotes the Normal (i.e. Gaussian) distribution with mean p € R and variance o2 €10, ocl;

o NB(r,p) denotes the Negative-Binomial distribution with parameters 7 €0, co[ and p €10, 1[.
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IV. DETERMINISTIC NARROW-SENSE BARE-SIMULATION-OPTIMIZATION OF BREGMAN DIVERGENCES

In the previous section, we have recalled/summarized recently achieved (cf. Broniatowski & Stummer [1]) narrow-sense
bare-simulation minimization results for a special subclass of — discrete smooth — CASM p—divergences. Let us now present
a first generalization thereof, namely narrow-sense bare-simulation minimization results for a special subclass of — discrete
smooth — Scaled Bregman Distances of Stummer [54] and Stummer & Vajda [45]]; this will particularly cover narrow-sense
bare-simulation minimization results for (a special subclass of) ordinary/classical Bregman Distances.

To start with, we fix a (scaling) vector P with strictly positive components p;, > 0 as well as a divergence generator ¢ € 'T(]a, b))
having representability (9) (i.e. ¢ satisfies Condition ; recall from Remarkthat Jt5¢,t5°[ (covering t = 1) denotes the interior
of its (maximum) domain of strict convexity, that ¢ is finite and differentiable on |a, b[, that ¢(t) = 0 if and only if t = 1,
and that ¢’(t) = 0 if and only if ¢+ = 1. Moreover, we fix a second vector Q** € R¥ such that

=T g el forallk=1,... K. Q1)

Notice that this implies ¢(t;*) < oo, and ¢'(¢;*) €] — o0, 00[ (k = 1,..., K). From this, for each k = 1,..., K we construct
the function

er(t) = o(t) —(ty") —¢'(t;") - (t —t17), teR, (22)

whose effective domain is dom(cpk) = dom(p) and thus int(dom(py)) =]a,bl. Notice that v (t) > 0 for all ¢ € R, that
@r(t) = 0 if and only if ¢ = ¢;*, and that ¢} (t) = 0 if and only if ¢ = ¢*. Moreover, [t°¢,t5°[ is also the interior of the
(maximum) domain of strict convexity of g, and consequently, ¢y, is affine-linear on |a, t°¢[ (provided that this interval is
non-empty) and on ]¢5°, b[ (provided that this interval is non-empty). Clearly, we interpret ¢y (a) := lim; . (¢(t) — @(t5*) —
G - (E—177) = pla) — p(t) — ) - (a — %) and pr(B) = limupal(t) — p(t") — @) - (¢ — 7)) =
o(b) — o(t5*) — @' (t5*) - (b — t5*) (where the limits always exist but may be infinite). By means of these ¢y’s, under the
assumption (21I)) we construct the — discrete smooth special cases of — scaled Bregman distances (between Q and Q**

of Stummer [54] and Stummer & Vajda [45] as
_ @(qk> _ (qk _ qk)] , (23)
Pk Pt Pk

DIRP(Q,Q™) Zpk @k( > Zpk { () —@(qk)
Pk Pk

Notice that DE%D(Q, Q™) < oo if and only if 1% € dom(p) for all k € {1,..., K} (mostly, we deal with cases where It €
Jt¢,t5¢[ with eventual involvement of the boundary points). Moreover, there hold the above-mentioned divergence properties
(iii), i.e. “DSBD(Q Q**) > 0” and “DSBD(Q Q) =0if and only if Q = Q**”. Furthermore, the corresponding CASM
p— dlvergence can be recovered as spec1al case DS 2P(Q,P) = D,(Q, P). Moreover, the particular choice P := (1,...,1) :=
1 leads to — discrete smooth special cases of — the omnipresent important class of separable ordinary/classical (i.e. unscaled)
Bregman distances DOBD(Q Q*) = DSBD(Q Q*) l Detailed references on the theory and applications of ordinary
Bregman distances respectlvely on scaled Bregman distances will be given below, after (30) as well as in (D2) respectively
(D3) of the next Section [V] Notice also that scaled Bregman distances of the form (23)) also appear in a natural way in a new
context of speed-up simulation, see Subsection below.

Let us also mention that in (22) we could also equivalently replace the generator € Y (Ja, b[) (with (9)) by ¢ defined through
A(t) :=p(t) + c1 + ca - t (t € dom(p)) with arbitrary ¢1,ce € R; in particular, one has @(1) = ¢1 + ¢ instead of (1) =0,
and @'(1) = co instead of (1)’ = 0. This replacement can be done since for both ¢ and ¢ the respective two intervals ]a, b]
and ]t*¢, %[ coincide, and since DE%D (Q,Q*) = Dgf)D (Q, Q**) by straightforward calculations. For the sake of brevity,
for the rest of this section we stick to ¢ rather than .

Remark 14: In the analogous spirit of Remark EI — in terms of ¢ := Mp - ¢, the probability vector P:=P /Mp, as well
as the vectors Q Q/Mp and Q** := Q**/Mp — one can equivalently rewrite ( as

D% (Q.Q™) = DI3P(Q,Q™) (24)

o,IP
and thus the two following minimization problems coincide:

énf DSBD(Q Q™) respectively inf DSBD(Q Q") with Q := Q/Mp.
€eQ Qe

Notice that the roles of P respectively IP are now that of a scaling vector, whereas in (7) respectively (L) of the previous
Section n they act as points which are projected on the constraint set {2 respectively (2.

note that for the finiteness of the divergence we allow Q to be in a domain which is larger or equal to the domain of Q**
12where ¢ may even have an affine-linear part, but all the components of Q** are in its strictly-convex part
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Below we shall show that the above-mentioned scaled Bregman distances can be BS-minimized in the narrow sense in their
first component. For this, recall that we have fixed P € RE and Q** € R¥ such that holds. By means of them, and by

employing the above-mentioned notations ny := [n-pg] (k€ {1,..., K —1}), ng :=n — 25;11 ng, (recall (T2)) as well as
K—1
Ifn) ={1,...,n1}, Ié”) ={n1+1,....,n1 +n2}, ..., II(?) = {Z ng+1,...,n}, card([,g”)) = ng,
k=1
we construct the n—dimensional vector of random variables (with a slight abuse of notation)

{/' = {}n = (‘,717 R f}n) = (‘717 ey Vn17Vn1+17 L} ‘ZL1+7L27 R ‘725:*11 nE+12°° ‘ZL) 9 (25)
as follows: independently for each k € {1,..., K'} we employ ny, i.i.d. random variables 171', iel ,gn), with common distribution
NV; € -] = Uy[-] G € I™) given by (the (—distortion type)

. exp (y - v) -
dUy, = ———=d 26
{0 = SrGRTm) W) 26)

% ) = Mp -p'(%-). From this, we construct
k Pk

V.

n

:(%ZV%Z?) 27)

ier(™ ierl

where 7, ;= Mp - Lp'(

k=2

£

lnbr) g LBl e n=X0 nep q}) (cf.

. v]
for which (as a consequence of (9)) one can prove IE|]‘\|:£n:| = ( e AR e a1 AR T =L

Broniatowski & Stummer [1]]) and thus — due to — lim, oo [E[ﬂ{ﬁﬂ = Q** or equivalently lim,, _, o0 [Em[MP{ﬂ = Q**.

Remark 15: Notice all the differences to the construction in the previous Section There, instead of the V we have
employed W := (Wl, R Wn) where the W;’s are i.i.d. copies of the random variable W whose (block-neutral) distribution

is [I'I[W €-]= Z[ -]. We have partitioned these W into the same blocks as the V, and transformed the former into the random

vectors €Y' (cf. (T3)) which are formally the same as gf (cf. (7)) where W is just replaced by V. It is straightforward to
see that for the special case P = Q** the two constructions coincide (since then 7, = Mp - ¢’(1) = 0); this is consistent with
the above-mentioned collapse-property D35”(Q, P) = Dy,(Q, P).

We are now in the position to formulate the following new assertion on the BS-minimizability of scaled Bregman distances:

Theorem 16: Let P € [RI>(0, Mp = Zfil p; > 0, and suppose that the divergence generator ¢ satisfies the above Condition
with ¢ (cf. (). Additionally, let Q** € RX such that holds. Moreover, we assume that € satisfies the regularity
properties (6] as well as the finiteness property

dnf DIE7(Q,Q™) < oc.

Furthermore, let V= ({}n)nEN be a sequence of random vectors constructed via and (26). Then, in terms of the random
vectors £y (cf. 7)) there holds

1 ~
: SBD K\ 13 - Vv
(irelng“"’P (Q, Q™) = nhm nlog []'I[én € Q/Mp] . (28)

In particular, for each P € RE and each Q** € RX with the function ®p q-- (-) := DB (-, Q™) (cf. 23)) is bare-
simulation minimizable (BS-minimizable) in the narrow sense (cf. in Definition [I] and the special case of Remark [2(a)) on
any such Q C R,

The proof of Theorem [16] will be given in Appendix [A]

Remark 17: Analogously to Remark [T0fiii), the limit relation (28 even holds when Q** € € for which the left-hand side
becomes zero.

Remark 18: For some contexts, we can explicitly give the distribution of each of the independent (non-deterministic parts of
the) components (Zl ) Vi) of the vector EX (cf. [1]] for other purposes than here); this will ease the corresponding
k k=1 K

.....

concrete simulations.
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Analogously to (T3)), the limit statement (28)) provides the principle for the approximation of the solution of the minimization
problem ®p(Q) := infqen D3P (Q, Q**). Namely, by replacing the right-hand side in by its finite counterpart, we
derive for given large n

1 ~
~—logN|eY € /Mp| ~ inf DEE7(Q.Q" 29
logN[e) € /M| ~ inf DEFP(Q.Q"); @9)
it remains to estimate the left-hand side of (29) (see Section below, where the latter also provides estimates of the

minimizers).

Example 19: Let us take the important case of the generators <pﬂ, R — [0, oo] defined by (16) in Example |12} which — by
([23) — for arbitrary multiplier ¢ € ]0, oo|, and arbitrary P € R generate (the vector-valued forrn of) the genemllzed scaled
Bregman power distances given by

K K K
S @) e @) e 3 ae @) )
~ JE=1 + k=1 k=1
{ 7-(v=1) ¥ 1 )
if v €] —00,0[, Q** € RE, and Q € RE,,
K K K
cd oS 1og( + Y e Zpk}, it v =0, Q™ € RX, and Q € RX,,
k=1 k=1 k=1

K K
> (ai") - (pr) Y > an- (g™ ) T - (pe) Y
k=1 + k=1 _ k=1

v (v—1) Y v—1 }’

if v€]0,1[, Q™ € RE; and Q € [R>07
K K
) - PONTEDS G}, ify=1, Q" R ad QERE,
=1 =1

K K K
> (k)" (pr) "7 0,00 (ar) > (@) (pe)t 7 > qr(gp) (pr)t T
k=1 = =
~-(v—1) v 7—1 }7

if y€]1,2[, Q** € [RI><O and Q € RX,

SEDL(Q, Q™) = (30)

-
{

b0 o { St
{

K )2
R P if y =2, Q** € RX and Q € RX,

k:]i( 1 X 1 X 1 1

3= (ar)7(Pr)™ ™7 j0, 00 (ar) >0 (qx™)7(pe) 7 > ae(qr”)7 "+ (pe) 7

. 1= + k=1 k=1

{ (1) ¥ -1 }’

if v €]2,00[, Q** € R, and Q € RE,

0, else;

notice that one has the straightforward relationship D=2 ]3 fP(" ) =¢D? f D(-,-). The special case of (30) for probability vectors
Q €S, Q** € S has been introduced in Stummer & Vajda [45] and e.g. applied in KiBlinger & Stummer [55],[56],[1571,[58] as
well as in Roensch & Stummer [[169],[170],[171]]. The case of (B0) for “general” vectors (and even “general” measures) has
been first indicated in KiBlinger & Stummer [57] and fully worked out in Broniatowski & Stummer [46]; for corresponding
applications see e.g. Kromer & Stummer [172] (to mortality data analytics) and Broniatowski & Stummer [47] (to statistics
and the adjacent fields of machine learning and artificial intelligence).

In line with the above-mentioned general imbedding, the particular choice P := (1,...,1) := 1 leads to — discrete smooth
special cases of — the omnipresent important class of separable ordinary/classical (i.e. unscaled) Bregman power distances
Dgff’(Q,Q**) = foDl(Q,Q**) which can be explicitly deduced from (30) by setting py, := 1 for all k = 1,..., K.
For instance, for the case v = 2 the omnipresent squared weighted {s>—distance DCS EDP(Q, Q**) reduces to the omnipresent
(multiple of) squared {>—distance

K
> (e —ai")? QeRX, Q™ eRX. (1)

k=1

0<DZJP(Q.Q™) =

c-p2

NN

In the special case of probability vectors Q** € S> and Q € S o together with the special choice v > 0, the divergences
Dgff’(@, Q**) reduce to the prominent (finite-discrete-special-cases of) “order—~” density power divergences of Basu et
al. [48] (also known as Basu-Harris-Hjort-Jones distances) and their rescaled versions called beta-divergences (cf. Eguchi &
Kano [50], Mihoko & Eguchi [51]]). For general v € R and general probability measures see e.g. Stummer & Vajda [45]. The
general case of non-probability vectors and measures is treated in Broniatowski & Stummer [46],[47] (see also Hennequin et
al. [[173] for finite discrete beta-divergences).

As far as further important particular parameter-cases (other than v = 2) is concerned, Dcole (Q, Q**) (with v = 1) amounts
to the discrete generalized relative entropy, whereas Dg fOD (Q, Q**) (with v = 0) leads to the discrete (e.g. sampled) Itakura-
Saito distance [174).
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Some exemplary (relatively) recent studies and applications of (generalized) density power divergences Dng(Q7Q**)
(including beta-divergences, Itakura-Saito-divergences, continuous versions) — aside from the vast literature on the (;mnipresent
cases v = 1 and v = 2 — appear e.g. in Basu et al. [175], Basu et al. [176], Ghosh & Basu [177],[178], Basu et al. [179],
Martin et al. [180], Basu et al. [181], Balakrishnan et al. [182], Balakrishnan et al. [[183]], Ghosh & Majumdar [[184]], Leplat
et al. [[185]], Vandecappelle et al. [186], Balakrishnan et al. [[187], Basak et al. [188], Basu et al. [[189], Calvino et al. [[190],
Castilla et al. [191], Castilla et al. [192], Legros et al. [[193]], Pu et al. [194]], Ramirez et al. [195]], Castilla & Chocano [196]],
Marmin et al. [[197]], Saraceno et al. [[198], Sharma & Pradhan [199].

Returning to the general setup of generalized scaled Bregman power distances (30), let us point out that for any fixed Mp €
10, 00| the Condition [3| is satisfied for ¢ := ¢ - ¢, — and thus the narrow-sense BS-minimizability concerning Theorem
can be applied — for all ¢ €]0, 0] and all v € R\]1, 2[. (As far as we know at the moment) For the case vy €]1, 2] one can
not verify Condition [5| but BS-minimizability (in the sense of (2)) with f,(-) # 1) will be shown in Example [28] below.

As indicated in the rows 1 to 6 in the above Table 1 (with Mp - ¢ instead of (), the representability (O) of the power
divergence generators ¢ := ¢ - ¢~ has been completely worked out in Section XII of Broniatowski & Stummer [1]; there
(for other purposes than here) We have also explicitly derived the corresponding crucial block-wise sampling distributions (cf
@) Up[-1=N[V,e-] (e Ik )) and even more comfortably the block-sum distributions Uime[-] = Iﬂ[zzef,ﬁ") Vie-] a
follows:

e YE]—00,0[: [7,:"" has the (Lebesgue-)density

exp((ry — 5M2) - )

exp (nk LEMe (1 4 2L /G-

[ (@) = ) S5(@) hosi(z),  TER,

*\ y—1

2

*
k
— P /7

I

where 7, =¢- Mp - for g;* > 0, and Z is a random variable with density f§ of a stable law with parameter-

z JA=) (1 =1/ A=) .
quadruple (=~ ,1,0 —ny, L (@Mp) /0T 7(1 ) I ) (in terms of the “form-B notation” on p.12 in Zolotarev [200]);

. —0 U*"k = GAM(C MP — Tk, Nk * c- Mp) with Tk :EMP (]. — m) fOf ~** > O
e v €]0,1[: U*"’“ is Compound POI(ny, - 6) — GAM(TE‘Y’ - Tk,m)) with 0 := % . ((7 LT | 1)7/(7 Y and

H

~

¢ Mp

()™
r=cC-Mp - #forq**>0

o« y=1: U:"k is the probability distribution = 1%413 -POI (nk ¢+ Mp - exp(535

)) with support on the lattice {%7 je NO},
where 7, = ¢ - log (%*) for g;* > 0;

.« y=2 (7;"’1: NOR(ny, - (1 + =3), =34=) with 7, =&+ Mp - (%= — 1) for Gi* € R;

o 7y €]2,00[: U™ has the (Lebesgue-)density

exp((1x + & MP) - x)
foprs @) = Jylw),  zeR
exp (nk SR (L4 -Tk)’V/(’Y—l))

where 75, = —:I‘:ff’ (1- (‘%:)7_1) for gi* > 0, and Z is a random variable with density [ of a stable law with
S M)/ A=) 1)1/ (= 1)
parameter-quadruple (%, 1,0,ny - EMe) 77(7 v ).

The explicit block-sum distributions (7,:”’“ for the other p—generator examples in Table 1 (rows 7 to 11) can also be found in
Section XII of Broniatowski & Stummer [[1]. Let us present a new interesting completely worked out case:

Example 20: For 5 € R\{0} and ¢ €]0, co[ and we employ the strictly increasing, smooth function

Fae(t) = %5-(6“—65), te] — oo, 0],

which satisfies Fg z(1) = 0 and which has strictly increasing, smooth inverse

1 B . ~
= = . Z . B . —9¢. P
Fio(r) 5 log (25 x+e ), if -2 >—-2c-€".
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By applying Theorem 22 and the corresponding Remark 23(b) of Broniatowski & Stummer [1], we obtain the divergence
generator

Fg &(t)

ppe(t) = t-Fpe(t) - O/ Fyz(u)du = t'%'(eﬂ't—eﬁ>—zc {[5 t-eft—ef—[B-e —6]}
= Z—S-{eﬁ't—t-ﬁ-eﬂ—i—(ﬁ—l)-eﬁ}, te]—o00,00[; (32)

as well as the cumulant-generating-function-candidate

z

Asa(2) ::/Fgg(u)du = ;;f.{[(%we) log(f 24 ef) - (2%
0

which satisfy the representability (69) (which is () with Mp = 1) below.

~z+eﬁ)} - [ﬂwgﬂfeﬁ]}, if8-2> —2¢-¢(33)

The function gz of (32) (and thus, equivalently, its linear-part-cleaned sibling ¢ +(t) := g—g - e#)y — having ]t5¢, 15[ =
] — 00, 00[ — generates the new scaled Bregman divergence (cf. (23))
K *k
pDSBD (Q.Q*) = D DSBD -(Q, Q**)_QC Z{ . ex qu _( + B (qr — **)).ex ﬂ.qk }
0P (Q; = Dz .p 2 pe-exp( B Pk a — Gk p oo ) )
k=1
for P € RE ), Q € RF, Q" e R¥. (34)

Taking in (34) the special case P := 1 = (1,...,1) and probability vectors Q := Q € S¥, Q** := Q" € S¥, one ends
up at the discrete version of the Bregman exponential divergence of Mukherjee et al. [52]; the latter has been generalized
by Basak & Basu [33]] (in a continuous setting) to the extended Bregman exponential divergence by employing Q := (Q)*

and Q** := (Q**)*2 (i.e. componentwise a;—th powers), which also arises as a special case of (34) with P := 1. Another
interesting special case of (34) is to choose Q =Q e SX and Q" = Q** € SI>(0 together with P := IP := Q**; the
outcoming ¢—divergence D377, (Q,Q™) = D, .(Q, Q") = D, .(Q,P) is a multiple of the S—order generalized negative

exponential dlsparlty/dzvergence GNED of Jeong & Sarkar [201] and Bhandari et al. [202] (see also Basu et al. [24]), which
— already in the special case 3 := —1 called negative exponential disparity/divergence NED (cf. Lindsay [203] and Basu &
Sarkar [204]]) — performs good estimation-robustness against both outliers and inliers. For a more general, comprehensive,
systematic treatment of the robustness-design of scaled Bregman divergences (including ordinary separable Bregman distances
and ¢p—divergences), the reader is e.g. referred to Kifllinger & Stummer [57].

As far as (33) is concerned, one can show that the involved Ag; is the cumulant generating function of a “distorted stable
distribution” ¢[-] = M[W € -] of a random variable W, which can be constructed as follows: let Z be an auxiliary random
variable (having density fz and support supp(Z) =] — 0o, 0o[) of a stable law with parameter-quadruple (1,1, 1, E—C) in terms
of the above-mentioned “form-B notation”; by applying a general Laplace-transform result on p. 112 of [200] we can derive

My(2) := Eplexp(z - Z)] = / explz-y) - f2ly)dy = {exp (;g (=2) - log(—2) — (*z)]), if 2 €] —o00,0],
S o0, if z G]0,00[.

Since 0 ¢ int(dom(Mz)) (and thus, Z does not have light-tails) we have to distort the involved density in order to extend
the effective domain. Accordingly, let W be a random variable having density

.
2c  exp{*5- -y} ( 2% )
y),

E exp{w}'fz "B

Then one can straightforwardly deduce from (35) that f_oo fw(y)dy =1 and that

fw(y) = y €] — o0, 00[. (35)

Mir(2) = Enfesp(z W) = [ expl )« () dy
_ Je (E— {(ﬁ~ z+ef)- log(%-z-i-eﬂ)—(%-z-ﬁ-eﬂ)—(ﬂ—l)fﬂ}), if z-ﬁ2—2E-eﬂ7(36)
00, if z-8< —2¢-é°,

where the first line in coincides with the exponentiated right-hand side (33). Notice that € is an infinitely divisible (cf.
Proposition 27 in [1]) continuous distribution with density fy, and that ¢[]0,00[] = N[W > 0] fo fw(uw)du €]0,1],
¢[{0}] = N[W = 0] = 0. Having derived the distribution ([-] = [1[W € -] of W, by replacing ¢ w1th ¢-Mp in all the above
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construction, we end up with the divergence generator ¢gz := Mp - pgz = ¥p.zmp and the distribution (-]=N[W €] of
a random variable W, such that the representability (9) is satisfied. With those ingredients, we can apply Theorem |§I for the
narrow-sense BS-minimization infqeq DJ”Pp(Q,P) = infqeq Dy, .(Q,P) of the non-probability version of the above-
described multiple 3—order GNED, for any €2 C R¥ with regularity properties (6) and finiteness property (8). For the latter-
type constraint sets, in order to perform the BS-minimization infqeq Dif E’:y’p(Q7 Q**) for the more general scaled Bregman
divergences of (34), according to Theorem [16{ we have to further derive the corresponding distributions Uy[-] =: T[V; € -]
(cf. 26)) of the ‘71 (el ,(C")), or — for a better simulation comfort (cf. Remark — even the block-sum distributions
(7,:”’“ [[]=0[>,c T Vi € -]. We achieve this by employing to compute the moment generating function of ) Vi
as the (due to the assumed independence) nj;—th power of the moment generating function of ‘71 From this, and with the
help of 7, := Mp - @é}g(%:) = 25% . {exp(ﬁ~ %) - exp(ﬁ)} for arbitrary g;* € R, we identify that [7,:”’“ has the

(Lebesgue-)density
9. M eXp{QE'MP .exp(ﬁ. *) y} 9% . M
fﬁ;"k(y) = C|ﬁ\ = exp{%'zgg""k -Bexp(ﬁ~ a;*) k(ﬁ i 1)} fé(_ - B = )’

Dk Dk

=)

it

yE]—oo,oo[,

where Z is a random variable with density f} of a stable law with parameter-quadruple (1,1, 1, 251‘;71;”'»)

V. BARE-SIMULATION-METHOD FOR GENERAL DETERMINISTIC DIVERGENCE-OPTIMIZATION-PROBLEMS
A. Further Divergences and Friends

Although the BS-minimization results of
« the above Section on p—divergences D, (Q,P) with divergence generator ¢ satisfying Condition [5| — and thus
particularly ¢ is continuously differentiable (cf. Remark [/) — as well as
« the above Section |[[V|on scaled (including ordinary) Bregman divergences Diﬁ,’? (Q, P) (with slight re-notation) with the
same divergence generator ¢ (with possibly affine-linear addition term)

cover a substantial amount of concrete divergences and related generalized entropies, (in addition to the desir of maximization

of the latter two) we would like to go one step beyond and e.g. also minimize and maximize the following directed distances

Q — Pp (Q) := D(Q, P) and connected functions of great importance in information theory as well as in the adjacent fields

of statistics, machine learning, artificial intelligence, signal processing and pattern recognition:

(D1) CASM p—divergences ®p(Q) := D,(Q, P) which can not be covered by the narrow-sense BS minimizability results
of Section [IIl} i.e. ¢ € Y(]a, b[) does not satisfy Condition |5} for instance, ¢ may be non-differentiable which is e.g. the
case with the choice @y (t) := [t — 1| (with ¢ €]a, b[=] — 00, 00[) leading to the very important (discrete special case
of the) total variation distance

K K
®p(Q) := Dyry (Q,P) := Zpkwv(;’z) =Y lae—pel 20, QeRX, PeRE, (37)
k=1 k=1

which is equal to the ¢; —distance g (Q) := ||Q — P|| between Q and P (notice that g (Q) can be trivially extended
to P € RE which (in case of some strictly negative components py < 0) is not a CASM divergence anymore). As far
as literature on @—divergences is concerned, e.g. recall the references given in the paragraph after (@); some further
exemplary (relatively) recent studies and applications of D, (Q,P) (partially with as well as more general setups)
— in addition to the vast statistical literature (including in particular maximum likelihood estimation and Pearson’s
chi-square test) — appear e.g. in Berend et al. [205], Jiao et al. [206], Como & Fagnani [207], Han et al. [208], Sason
[209], Batsidis et al. [210], Bocherer & Geiger [211], Das & Kashyap [212]], Alonso-Revenga et al. [213]], Keziou &
Regnault [214], Liu et al. [215], Tzortzis et al. [216], Castilla et al. [217]], Csiszar & Breuer [218]], EI Gheche et al.
[219], Felipe et al. [220]], Markatou & Chen [221]], Sun et al. [222], Asadi et al. [223], Broniatowski et al. [224], Collet
[225], Sason [226], Yagli & Cuff [227], Zhao et al. [228], De Ponti [229], Kammerer & Stummer [230], Nishiyama
& Sason [231]], Nomura [232], Rassouli & Giindiiz [233]], Esposito et al. [234], Markatou et al. [235]], Salehkalaibar
et al. [236]], Stummer [237]], Tzortzis et al. [238|], Birrell et al. [239], Castilla & Chocano [240], Dixit et al. [241],
Hyun et al. [242], Melbourne et al. [243]], Peng et al. [244], Tan & Zhang [245]], Zhang et al. [246], Alba-Fernindez
& Jiménez-Gamero [247]], Baudry et al. [248]], Boukeloua & Keziou [249], Cressie et al. [250], Kateri [251], Manole
& Ramdas [252], Markatou & Liu [253], Masiha et al. [254]], Miranda et al. [255], Nielsen & Okamura [256], Perrone
[257], Velasco-Forero [258]] and Nielsen & Okamura [259].
(D2) (discrete special case of) separable “ordinary/classical” Bregman distances (cf. [39])
K
op(Q):=DJPP(QP) == Y {sﬂ(qk) —o(r) = ' (ox) - (@ —p1) | >0, (38)
k=1
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(D3)

(D4)

where (opposed to Section the divergence generator o is not necessarily in Y(|a,b]) satisfying additionally the
Condition [5] but is a lower semicontinuous convex function ¢ :] — oo,00[—] — 00, 00] which is (continuously)
differentiable on int(dom(y)) =]a,b[ and strictly convex on (say, only) some interval ]¢*¢,t5°[ C]a, b] E] such that
dom(y) covers all the involved components ¢;, of all Q € £ as well as [t%¢,t5°[ covers all p, (k = 1,...,K);
accordingly, DSBD (Q,P) in (38) is always finite and the overall sum can be split into finite “partial” sums. For
instance, ]a, b[=]0, oo or Ja,b[=] — o0, 0.

For the special case of probability vectors IP and @ € S¥, DgBD (@, IP) are studied e.g. in Csiszar [40], [41]], [42]], Pardo
& Vajda [43], [44]], and Stummer & Vajda [45]). The general case of non-probability vectors (and even measures) is
treated e.g. in Broniatowski & Stummer [46]],[47]. Some exemplary (relatively) recent applications on separable ordinary
Bregman distances (including continuous versions) — aside from the literature on the special case of separable ordinary
Bregman power distances already cited after (3I) — appear e.g. in Jiao et al. [206], Csiszar & Breuer [260], Jana &
Basu [261]], Painsky & Wornell [262], Vial et al. [263], Tan & Zhang [245]].

(discrete special case of) scaled Bregman distances of Stummer [54] and Stummer & Vajda [45]]

K
_ NSBD o e\ _ (PN _ (P (9 Pk |,
Pp(Q) =D 1r (Q,P) = kz_l[<p<mk> @(mk) <p+<mk> (mk mk” mp > 0, (39)

where M € [R‘;(0 is a scaling vector with strictly positive components mj, > 0 and (opposed to Section the divergence
generator ¢ is not necessarily in Y (Ja,b]) satisfying additionally the Condition |5| but is a lower semicontinuous convex

function ¢ : | — 00, 00[ — ] — 00, 0o] which is strictly convex (with right-hand derivative ¢’, ) on (say, only) some interval
2, t5°[ C int(dom(p)) =]a,b] such that dom(yp) covers all the involved components % for all Q € Q as well as
Jt2¢, 3 covers all B (k =1,..., K); accordingly, Diﬁ,’?(Q7 P) in (39) is always finite and the overall sum can be split
into finite “partial” sums. For instance, |a, b[=]0, co[ or Ja, b[ =] — 0o, oo[. Notice that scaled Bregman divergences have

been first defined in Stummer [54], Stummer & Vajda [45] for the context of probability measures and probability vectors,
see also KiBlinger & Stummer [S5], [S6l, [S7] for the “purely adaptive” case (i.e. my = w(qk, pk) for some so-called
scale-connector function w(-) respectively its continuous version) and for indications on non-probability measures and
non-probability vectors. Later on, Broniatowski & Stummer [46] flexibilized/widened this to scaled Bregman distances
of arbitrary functions and vectors, see also Broniatowski & Stummer [47]] for various different kinds of applications to
statistics, and to the adjacent fields of machine learning and artificial intelligence.

(discrete special case of) the distances of Broniatowski & Stummer [46]] (see also Broniatowski & Stummer [47])

K
BSD,c L gk Pk Pk gk Dk
p(Q)= Don o (@ P) = Z [(p(ﬂh k) - cp<m2 k> - gD/Jr’c(mz k) . (mm Cma k) ] Mk 2 0, (40)

k=1

where M, M, € [RI><0 are scaling vectors and M3 € [RI><0 is an aggregation (weighting) vector with strictly positive
components m;, > 0 (k =1,...,K, 1 = 1,2,3). Moreover, the divergence generator ¢ is a lower semicontinuous
convex function ¢ :] — 0o, 00[ =] — 00, 00] which is strictly convex (with right-hand derivative ¢/, , left-hand derivative
¢’ and intermediate values o', .(t) := c- ¢/, (t) + (1 —¢) - ¢’ (t) (c € [0,1])) on (say, only) some interval |¢>¢,¢5°[ C
int(dom(p)) =]a, b[ such that dom(e) covers all the involved components % for all Q € € and as well as J¢2°, 3]
covers all % (k=1,...,K). Accordingly, Dfi/[Dl’,cM%MJQa P) in @0) is always finite and the overall sum can be
split into finite “partial” sums. Under some mild assumptions, [46] verify the axioms of divergence (i.e. non-negativity
and reflexivity). Within this general framework, all the above distances/divergences (D1), (D2), (D3) appear as special
cases. If ¢ is also differentiable (and thus, ¢, .(-) becomes the derivative ¢'(-) and we omit the obsolete index c), other

important special cases are (the separable versions of)
(i) the total Bregman distances of Liu et al. [60],[61], Vemuri et al. [62] (see also e.g. the recent application in

Lohit & Kumar [264]) which are representable as ®p(Q) := DIPP(Q, P) := Dfﬁg)Mm(P)(Q, P) with constant
mik = Moy = 1 and mgp = mg = —1 _____ _forall k=1,...,K and M (P) is the vector where

) 43005 (¢! (pi))?
each of the K components is equal to msg,

(i) the variants of (i) with constant my, = mq = H(Q), mer = me = H(P) (for some differentiable positive
real-valued function H(-)) and mgj = 1 (cf. Nock et al. [63]),

(iii) the conformal divergences of Nock et al. [64] which can be represented as ®p(Q) := Dfﬁngnf(P)(Q,P)
where M/ (P) is the vector where each of the K components is equal to H (P) for some technically adequate
positive real-valued function H (),

(iv) the scaled conformal divergences of Nock et al. [64] which can be represented as

dp(Q) := DBSD Meons (py (Q, P) for some strictly positive constant m > 0.

e,m-1,m-1,m-

Brecall that the divergence generator ¢ may contain some line parts, see e.g. ¢ := ¢~ of with v €]1, 2[, where ]¢°¢, t5°[ =]0, oo[ and ]a, b[=] — o0, oo
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(D5)

(Do)

D7)

A more detailed discussion on (i)—(iv) (and their continuous versions and further generalizations) can be found in Stummer
& KiBlinger [59].

(discrete special case of the non-probability extension of) the p—entropies in the sense of Burbea & Rao [[14]] (see also
Csiszar [29], Ben-Bassat [30], Ben-Tal & Teboulle [31], Kesavan & Kapur [32], Dacunha-Castelle & Gamboa [33],
Teboulle & Vajda [34], Gamboa & Gassiat [35], Vajda & Zvarova [36])

K
®1(Q) == £,(Q) == > wlar) 1)

k=1

for (say) ¢ € T(]a, b]) not necessarily satisfying additionally the Condition |5| Clearly, the constrained maximization
(minimization) of £,(-) corresponds to a generalized entropy maximization (minimization) task.

As explained right after (3), there are also numerous other applications of 25:1 ©(qx) where ¢ is e.g. a cost function
respectively energy function respectively purpose function, and Zle ©(gx) can also be interpreted as an “index/degree
of (in)equality of the set £2”, respectively as an “index/degree of diversity of the set £2”. A corresponding comprehensive
BS-concerning discussion is given e.g. in Broniatowski & Stummer [[1]].

A flexibilization of (41) is given by

K
21(Q) 1= En(Q) = h( Y wlar)) “2)
k=1

where h : H +— R is a continuous strictly increasing (respectively strictly decreasing) function with % C [0, co[. The
quantity hg Z,f:l cp(qk)) in (@2)) can be seen as (non-probability extension of an) (h, ¢)—entropy in the sense of Salicru
et al. [37] (see also e.g. Pardo [22], Vajda & Vasek [38]], as well as e.g. Chen et al. [265]], Girardin & Lhote [266], Ren
et al. [267], Girardin et al. [268] for exemplary applications).

Burbea-Rao divergences [14] (see also e.g. Pardo & Vajda [43]],[44])

Bp(Q) = DEAQP) = 3 [P T py)

2 2
k=1
with some lower semicontinuous convex function ¢ : ] — 00, 0o[ — | — 00, 00| which is strictly convex on int(dom(y)) =
Ja, b[ such that dom(p) covers all the involved components g, of all Q € Q as well as all p;, (k =1,...,K). We can

also handle their straightforward generalizations (called (separable form of) skew Burbea-Rao divergences in e.g. Nielsen
& Boltz [269] respectively skew Jensen divergences in e.g. Nielsen & Nock [270])

K
op(Q) = DFFQP) = Y [B-vla) + 1= 8)-elm) — (B o+ (1-8) - pi)]
k=1
with some 5 €]0,1[ (and we can even deal with corresponding non-separable generalizations of the latter); see also
Stummer & Killinger [59]] for obtaining separable skew Burbea-Rao divergences as a special case of their scaled-
Bregman-distance-flexibilizations.
(discrete special case of) generally non-separable “ordinary/classical” Bregman distances (cf. [39])

2p(Q) = DI"OPP(QP) = w(Q) - ¥(P) - Vy(P) - (Q - P) 20, (43)
where 9 : B +— R is strictly convex and continuously differentiable (with gradient V) on an open domain B C R¥
such that its closure cl(B) covers all the involved Q € € as well as all P. For the separable choice ¢(Q) := 1¥,(Q) =
Zszl ©(qx), the distance (@3) turns into the OBD (38). Moreover, for the choice 1(X) := ¥ am,a(x) := X" AX with

some positive definite K x K—matrix A := (a; ;)i =1,...,k, the distance [@3) leads to the prominently used squared
Mahalanobis distance [65]]

.....

K K
®p(Q) =Dy 0" (QP) = > > aig- (o —pr) (45— p5); (44)

k=1 j=1

clearly, in the special case where A := % -1 is half of the unit matrix I, the squared Mahalanobis distance (44) simplifies
to the squared ¢5—distance (BI).

Some exemplary (relatively) recent applications of (squared) Mahalanobis distance can be found e.g. in Xu et al. [271],
Kim et al. [272], Mei et al. [273], Zhang et al. [274], Li et al. [275], Xu et al. [276], Mahony & Cannon [277]], Xu et
al. [278]], Etherington [279]], Fitzpatrick & Dunn [280], Kakavand et al. [281], Sun et al. [282]], Bai et al. [283]], Li et al.
[284], Naveed & ur Rehman [285], Wang et al. [286], Winter et al. [287], Bartlett et al. [288]], Butterfield et al. [289],
Chamberland et al. [290], Kang et al. [291], Sato et al. [292], Zheng et al. [293], A et al. [294], Chakraborty et al. [293],
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Chen et al. [296], dos Santos et al. [297]], Guerra et al. [298]], Huang et al. [299]], Nomoto et al. [300], Reichen et al.
[301], Sun et al. [302], Timmermann et al. [303]], Wauchope et al. [304], Weinberger [305], Wen et al. [306], Yang et
al. [307], Zhang et al. [308]], Burssens et al. [309], Choi et al. [310]], Choi et al. [311], Dahlin et al. [312], Ebrahimi et
al. [313], Jeong et al. [314], Kim et al. [315]], Nowakowski et al. [316], Qu et al. [317], Rabby et al. [318], Sarno et al.
[319]], Tang et al. [320]], Tsvieli & Weinberger [321]], Zhang et al. [322], Zhou et al. [323].

Some exemplary (relatively) recent applications of generally non-separable (ordinary/classical) Bregman distances appear
e.g. in Jiao et al. [206], Varshney & Varshney [324], Hu et al. [325], Nock et al. [326], Raskutti & Mukherjee [327],
Wang et al. [328], He et al. [329], Li et al. [330], Harremoés [331]], Xu et al. [332], Halder [333]], Zhang et al. [334],
Shao et al. [335]], Tembine [336], Brécheteau et al. [337]], Lin et al. [338], Yuan et al. [339]], Azizan et al. [340]], Dytso
et al. [341]], Gruzdeva & Ushakov [342], Song et al. [343], Tan & Zhang [245]], Yu et al. [344], Capé et al. [345], Chen
et al. [346], Fernandez-Rodriguez [347]], Hayashi [348]], Li & Ralescu [349], Xiong et al. [350], Liu et al. [351].

(D8) weighted {,.—distances (r €0, oo)

K 1 1/r
®p(Q) :== D, m(Q,P) = (Z P | qr — Pk |r> >0 (45)

k=1
where M is a weighting (scaling) vector with strictly positive components my > 0.

Remark 21: (a) The above-mentioned contexts of Section Section as well as (D1) to (D8) also cover cogresponding
divergences D(X,Y’) (including entropies) between (possible complex-valued) M x N matrices X and Y, by taking D(X,Y") :=
D(f(X), f(Y)) where f is an appropriate mapping from (a subset of) the space of all (possible complex-valued) M x N
matrices to (a subset of) RX. For instance, for real-valued M x N matrices one can employ their vectorization by taking (say)
J(X) :=Q:=(q1,.-.,qm.n) such that q;_1y.nyj =255 (0 = 1,...,M, j =1,...,N) and hence K := M - N; more
flexible versions where i € {1,..., M}, j € J; for some J; C {1,..., N} as well as multidimensional-array/tensor versions
can be transformed in a similar book-keeping manner, too.

(b) Another important special case of (a) is to take for K x K Hermitian (e.g. real symmetric) matrices (say) X the function
f(X)=(A1,..., k) to be the K—dimensional real-valued vector of its eigenvalues Ay, in e.g. decreasing order. Accordingly,
D(X,Y) := D(f(X), f(Y)) measures the dissimilarity between the vectors of ordered eigenvalues of the two Hermitian
matrices X and Y. Depending on the nature of the underlying vector-divergence D(-,-) one may need further restrictions on
the involved matrices X,Y in order to achieve the finiteness D(X,Y) < co. For instance, if D(,-) := Dy(-,-) is of CASM
p—divergence type (D1), then “basically” all the ratios of the involved eigenvalues should lie in dom(y); for dom(y) = [0, o]
(respectively dom(y) =10, 00]) this is the case for positive semi-definite (respectively positive definite) Hermitian matrices
X, Y. As another example, one can take a vector-divergence D(-, -) from the class (D2) of separable ordinary/classical Bregman
distances (D2) or from the class (D7) of generally non-separable ordinary/classical Bregman distances (see e.g. Bauschke &
Borwein [352], Dhillon & Tropp [353] and Kulis et al. [354]) which covers in particular the von Neumann divergence, the
log-determinant divergence, the squared Frobenius distance and the more general spectral Bregman matrix divergences.

(c) According to (a) and (b), all the above-mentioned and below-mentioned BS-optimization results on vector-divergences
D(-,) carry over to corresponding BS-optimization results on matrix-divergences D(~, ).

B. Minimization via Base-Divergence-Method 1

All the above-mentioned contexts (D1) to (D8) share basically the same property that the involved function (to be constrained-
optimized) Q — ®p(Q) is continuous. For such a context we obtain the following new fundamental

Theorem 22: Let us arbitrarily fix some P € [Rgo, Mp > 0, ¢, E, W = (Wi)ietN and 52‘7 (cf. (@])) as in Theorem EL we

call the corresponding D, (-, P) the base-divergence (function).
(a) Furthermore, suppose that 2 C R¥ is compact and satisfies the regularity properties (6)), and that ® : Q2 ~— R is a continuous
function on 2. Then, there holds

. _ o1 w w w

1,900 =~ Jin 2o S (0,0t €5,) - 001 €) it £9)]) i
and the infimum is attained at some (not necessarily unique) point in . In particular, the function ® (-) is bare-simulation
minimizable (BS-minimizable) on € (cf. (Z) in Definition [T).
(b) If £ C R¥ is not necessarily compact but satisfies the regularity properties (6) and the finiteness property (8)), and
® : 2 — R is a continuous function which satisfies the lower-bound condition

there exists a constant ¢; € R such that for all Q € € there holds ®(Q) > D,(Q,P) —c1, (47)

then the representation/convergence (@6) — and hence the corresponding BS-minimizability — still holds, but the infimum
may not necessarily be attained/reached at some point in €.
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The proof of Theorem [22] will be given in Appendix [A] below.

Remark 23: (i) In Theorem b), one gets (@6) with exponent D, (Mp ~€nw, P) — <I>(Mp SXV) < ¢1, which turns into an
exponential dampening in case of ¢c; < 0. Examples for the applicability of and Theorem 22|b) will be given right below.
(i) In Theorem we have allowed for the special case that P can be in © (and thus, infqeq D,(Q,P) = 0 of Remark
iii) applies); however, in such a situation one gets infqeq ®(Q) # 0 in general.

(iii) As indicated above, in Theorem [22| the function ®(-) can be e.g. of the form ®(-) := ®p(-) = D¢(-,15) where the
pregiven P and ¢ do not necessarily coincide with the P and ¢ of the base-divergence D, (-, P) employed in (46).

Analogously to (T3)), the limit statement (@6)) provides the principle for the approximation of the solution of the minimization
problem ®(Q2) := infqeq ®(Q). This can be achieved by replacing the right-hand side in by its finite counterpart, from
which we obtain for given large n

——tog( Enfexp(n- (Do (Mp €. P) ~ (M -€7))) 0 (Mp- €7 |) = jnf #(Q); (48)

it remains to estimate the left-hand side of (48) (see Section below, where the latter also provides estimates of the
minimizers).

Clearly, Theorem 22(a) can be applied to obtain infqeq ®(Q) for all the directed distances/divergences ®(-) := ®p(-) and
friends given in (D1) to (D8), which are therefore all BS-minimizable on compact €2 with regularity (6). As far as the application
of Theorem [22[b) to the case (D1) of CASM ¢—divergences is concerned, we derive the following

Corollary 24: Let us arbitrarily fix some P € [RI;O, Mp >0, o, Z, W= (Wi)ieN and €n{7v (cf. (13)) as in Theorem@
If ¢ € Y(Ja,b]) satisfies the lower-bound condition

there exists a constant ¢ € ]0, oo[ such that for all ¢ € ]a, b there holds ¢- @(t) > (t) with equality if and only if t =1,
(49)
then there holds
. o1 W W W
dnf Dep(QP) = — lim log( Er| exp(n - (Dy(Mp €Y, P) = Deis(Mp - €7, P))) ta(Mp - £7) |)  50)

n—oo M

for all @ C R¥ satisfying the regularity properties (6) and the finiteness property (8). In particular, the CASM divergence
®p(-) = Dezg(-,P) is BS-minimizable (on any such £2). The exponent in (50) satisfies D, (Mp - £nW,P) — Dg.p(Mp -
£XV7 P) < 0 || with equality if and only if Mp - !;'XV = P (where typically the latter happens at most very occasionally).

The assertion of Corollary [24] follows immediately from Theorem [22[b) and the fact that (49) implies
De.s(Q,P) > D,(Q,P) forall Q € Q
(with equality if and only if Q = P).

Remark 25: In Corollary the assumed narrow-sense BS-minimizability of D (-, P) is transformed into the (non-narrow-
sense) BS-minimizability of D5 (-, P).

Example 26: Let us show how Corollary [24| can be used to tackle the BS-minimizability of the very important total variation
distance (¢; —distance)

K K
®p(Q) = Dp(Q,P) = Dy (Q,P) := Y pi- 01w (;]’z) = la—pel 20 (cf. GD)
k=1 k=1

where ¢(t) := ppy(t) := [t —1| for all ¢ €]a, b[=]— 00, 0o|. For this, as generator of the base-divergence we take ¢ := ¢, gz
of Example (13| with (for simplicity) parameters ¢ := 1 and o = 8 €0, 1[. From ¢g5,1(1) = 0 = prv (1), ¢} 5,(1) =0,
s p1(—00) = =B > pry (1) = =1, pj 5,(00) = B < ¢y (1) = 1 and the strict convexity of ¢ 51(-) (and thus
the strict increasingness of ¢ 5,), one can easily see that pgg1(t) < [t — 1| for all t € R, with equality if and only
if t = 1. Hence, holds with ¢ := 1. To proceed, let us arbitrarily fix some P & [Ré(o. The transformed generator
vsp1 = Mp - vsp1 = ppp.mp satisfies Condition [3| (i.e. (@) with ( such that the W;’s are i.id. copies of the random
variable ﬁ// of the form W =1+ Z; — Zy, where Z; and Z, are auxiliary random variables which are independent and

14in other words, the exponential-dampening concerning Remark [23(is applicable with ¢; = 0.
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GAM (Mp - B8, Mp - B)—distributed (cf. Broniatowski & Stummer [1]], see also Table 1). With these choices, (50) specializes
to
. 1 w w w
(;I)Ielf;z DLPTV(Q? P) = - nl—{go E 1Og( [Eﬂ'||:eXp(n : (Dv’ﬂ,ﬂ,l (MP : £n ’P) - ‘DSDTV (MP ’ sn ’P))) lo (MP ’ En ) ])
(51)

for all Q@ C R¥ satisfying the regularity properties (6) and the finiteness property (§). In particular, the total variation distance
(¢1—distance) ®p(-) := Dy, (-,P) is BS-minimizable (on any such €2). As an exemplary application, let us take P := 1

and
d K K 9
QC Q= {QGIRK:Z(yi'f'zxi,k_zxi,k'(ﬁc) Ss} (52)
k=1 k=1

i=1

with pregiven y; € Rand z;, e R(¢ =1,...,d, k=1,..., K) — where the integer d is (say) much smaller than X — and
pregiven ¢ € |0, oo[. Non-degeneration assumptions on the entries (2; x)i=1,....d;k=1,...,k have to be considered so that Q (e.g.
Q) satisfies the regularity properties (6) and the corresponding finiteness property (8).

Accordingly, with our BS method (51)) we can approximate/tackle the corresponding minimimum infqeq Dy, (Q, 1) which
with gy := g — 1 transforms equivalently into the constrained ¢; —morm minimum

inf [|Q|x (53)
Q
such that

d K )
S (wi— Y wik-@) <e (54)
i=1 k=1
eventually (cf. G in (52)) with further (i.e. side) constraints on Q. (55)

In a multiple-linear-regression context where ¢ is a pregiven small error and each data observation y; is of the form y; =
qi- %1+ -+ dr - Tk + 1 with deterministic explanatory variables x; j,, parameters g, and i.i.d. homoscedastic/standard
Gaussian noise 7;, the problem to (33) corresponds to the (minimum value of a formulation of the) well-known basis
pursuit denoising problem (cf. Donoho et al. [355]], see also e.g. Candes et al. [356], Lustig et al. [357], Candes [358]], Candes
et al. [359]], Goldstein & Osher [360], Zhang et al. [361]], Edgar et al. [362]) — with eventual further constraints. As a side
remark, let us mention the direct application of Theorem a) to the continuous weighted £,.—distance (r €]0, oo[)

K

1/r
1
®p(Q) := Dy, m(Q,P) = (Z P | qr — i |r> >0, M e [Rl>(o7 (cf. @3))

k=1
with the special constellation ¢ = g 31, P := 1 and compact £2y; by proceeding analogously as above, we can tackle by
our BS-method the constrained weighted ¢,.—norm minimum

K 1 1/r
inf — g (56)
such that the constraint (34) is satisfied. (57)

For the subcase my, = 1 forall k = 1,..., K, the problem (36),(57) has been tackled by other methods e.g. in Foucart & Lai
[363]] and Liu et al. [364]], whereas e.g. Bruckstein et al. [365] deal with general m; > 0 together with » = 1; notice that
for my = 1 the minimization problem (36),(57) is a relaxation of the “pure” sparseness optimization (dimension reduction)
problem

inf [|Qllo
Q
such that the constraint (34) is satisfied,

since

K 1/r
Jiny (Zlfik |T> — 1Qllo = card({k € {1,..., K} : G £0}).
k=1

Remark 27: As a side effect of the above considerations (in slightly more general form), for any parameter-triple «, 3,¢ €
10, 00[ with ¢- 8 < 1 we can show the new divergence inequality

for all Q € RX and P € [Rf0 there holds D, , .(Q,P) < D, (Q,P) with equality if and only if Q = P,

since o g.z(t) < |t — 1] for all t € R, with equality if and only if ¢ = 1.
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Example 28: Let us now show how Corollary can be used to tackle the BS-minimizability of the generalized power
divergences ®(-) := ®p(-) := Dz, (-, P) (cf. (I7)) for the missing case v €]1,2[ (and ¢ €]0, oc[) in Example |12} For this,
as generator of the base-divergence we take ¢ := ¢, 5 £ of Example with (for simplicity) parameters « = 8 €]0, 1[. In
Appendix [A] we shall prove the bound

for all v €]1,00[, 8 €]0,1[, €€]0,00[ and ¢ € R there holds ¢, 5 = (t) < ¢- ¢, (t) with equality if and only if ¢ = 1.
’ (58)
Thus, by confining ourselves to v €]1,2[ we can proceed analogously to Example with the difference that 92;\6/5 =
Mp -, BE = Py Mpe and hence the Wi’s are i.i.d. copies of the random variable W of the form W := 1 + Z1 — Zs,
Wy T

where Z; and Z, are auxiliary random variables which are independent and GAM (M%E -5, @ - ) —distributed (cf. Section
XII of Broniatowski & Stummer [1]], see also Table 1). With these choices, @]) specializes to
. .1 w w W
(ilelf,zDE-tpw(va) = — nlggonlog< [Elﬂ[exp<n' (D%,ﬁ,% (Mp - &, ,P) — Dzy (Mp - €, 7P)>) 1o (Mp - €, )}
for all 2 C R¥ satisfying the regularity properties (6) and the finiteness property (§). In particular, for v €]1,2[ and ¢ €]0, oo|
the generalized power divergence ®p(-) := Dz, (-, P) is BS-minimizable (on any such 2). This contrasts to Example

where Dz, (-, P) is BS-minimizable in the narrow sense for all the other cases v € R\|1,2[ and ¢ € ]0, oo] (cf. Broniatowski
& Stummer [[1]).

Remark 29: (a) As a side effect of the above considerations (in slightly more general form), for all parameters ¢ € |0, col,
B €]0,1[ and 7 €]1, 0o we have shown the new divergence inequality

for all Q € R® and P € RY|, there holds D%'B'% (Q,P) < Dz, (Q,P) with equality if and only if Q = P.

(b) For the restricted cases where 2 C [RI;O and v €]1,2[, one can e.g. alternatively use as the base-divergence-generator
P = % - 1 and employ the well-known bound (cf. e.g. Liese & Vajda [18])

for all v €]1,00[, ¢ €]0,00[ and ¢ € [0, oo] there holds <. p1(t) < ¢-,(t) with equality if and only if t =1, (59)
Y

and hence

for all Q € [ngO and P € R there holds D%W(Q7 P) < Dz, (Q,P) with equality if and only if Q = P.

Thus, we can proceed analogously to Example with the difference that % ~p1:=Mp - % -1 and hence the Wi’s are i.i.d.

copies of the random variable W of the form W = E_J'\ZP - Z for a Poisson POI (%)—distributed random variable Z (cf.
Section XII of Broniatowski & Stummer [1]], see also Table 1). With these choices, @]} specializes accordingly.
(c) As a side effect, we can even show the new divergence bounds
8, - 4 . . .
for all v €]1, 00, 5 €]0, 5]’ ¢ €]0,00[ and ¢ € [0, 00] there holds ¢z 5 = (t) < E~<,01(t) with equality if and only if ¢ = 1,
B2 ~
(60)

and hence

for all Q € RE, and P € R%, there holds Dy, , .(QP) <Dz, (QP) with equality if and only if Q = P

2ot
2o

see Appendix [A] for a proof.

C. Minimization via Base-Divergence-Method 2

Due to our investigations in Section as an alternative to the new Theorem we can also derive the following new
assertions, by using a different base-divergence (function):

Theorem 30: Let us arbitrarily fix some P € [Ri(o, Mp >0, Q*, o, E, Q. V and 53 (cf. 7)) as in Theorem we call
the corresponding D3P (-, Q**) (cf. (23)) the base-SBD-divergence (function).
(a) Furthermore, suppose that Q@ C R¥ is also compact and that ® : Q — R is a continuous function on €. Then, there holds

it ®(@) = — lim —log( Enfexp(n- (D35 (Mp-€7.Q") —2(0p-€)))) (Ve -€Y)]) 6D
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and the infimum is attained at some (not necessarily unique) point in €. In particular, the function ® (-) is bare-simulation
minimizable (BS-minimizable) on € (cf. in Definition [I), in terms of the SBD method.
(b) If @ C RX is not necessarily compact and ® :  — R is a continuous function which satisfies the lower-bound condition

there exists a constant ¢; € R such that for all Q € € there holds ®(Q) > Di%D(Q, Q™) —¢1,

then the representation/convergence (6I) — and hence the corresponding BS-minimizability — still holds, but the infimum
may not necessarily be attained/reached at some point in €2.

The proof of Theorem [30]is given in Appendix [A] below.

Remark 31: (a) In Theoremwe have allowed for the special case that Q** can be in 2 (and thus, infqecn Di,%D (Q,Q*) =
0 of Remark (17| applies); however, in such a situation one gets infqeq ®(Q) # 0 in general.
(b) For the special case ®(-) := D33P (-,Q**), the exponent in becomes zero and then Theorem b) collapses to
Theorem

Alternatively to (@8), the limit statement (61]) provides another principle for the approximation of the solution of the minimization
problem ®(£2) := infqeqn ®(Q). Indeed, by replacing the right-hand side in (6I) by its finite counterpart, we get for given
large n

—%log<[Em[exp(n-< B (Me-€].Q) — oM -£)))) (M -€Y) |) =~ inf @(Q): 62)

it remains to estimate the left-hand side of (62) (see Section below, where the latter also provides estimates of the
minimizers).

D. Maximization via Base-Divergence-Method 1

In the previous two subsections, for the above-mentioned contexts (D1) to (D8) — and beyond — we have only dealt with
BS-minimizability so far. For their BS-maximizability we obtain the following new fundamental

Theorem 32: Let us arbitrarily fix some P € [RI;O, Mp >0, ¢, E, W .= (,V[V/i)ieN and énw (cf. (T3)) as in Theorem@ recall
that we have named D, (-, P) as the corresponding base-divergence (function).
(a) Furthermore, suppose that €2 C R¥ is compact and satisfies the regularity properties (6)), and that ® : 2 — R is a continuous
function on 2. Then, there holds

Sup 2(Q) = nlgngoglog( [Em[eXp(w (Dw(Mp &V P) + & (Mp ~£?))) ‘1o (Mp -55?)}) (63)

and the supremum is attained at some (not necessarily unique) point in . In particular, the function ® (-) is bare-simulation
maximizable (BS-maximizable) on € (cf. in Definition [I)).

(b) If @ C RE is not necessarily compact but satisfies only the regularity properties (), and ® : £ ~ R is a continuous
function which satisfies the upper-bound condition

there exists a constant ¢; € R such that for all Q € € there holds ®(Q) < ¢; — D,(Q,P),

then the representation/convergence (63) — and hence the corresponding BS-maximizability — still holds, but the supremum
may not necessarily be attained/reached at some point in €.

The proof of Theorem [32] will be given in Appendix [A] below.

Remark 33: (i) In Theorem b), one gets with exponent D, (Mp M P) + ®(Mp SXV) < ¢y, which turns into an
exponential dampening in case of ¢; < 0.
(ii) In Theorem [32] we have allowed for the special case that P can be in Q.

Analogously to {@8), the limit statement (63) provides the principle for the approximation of the solution of the maximization
problem ®(£2) := supqen ®(Q). This can be achieved by replacing the right-hand side in (63) by its finite counterpart, from
which we obtain for given large n

" tog( Enfexp(n (Do (Mp 67 P) + 2 (Mp - £1))) ta(Mp - €7) ]) & sup B(Q); (64)

it remains to estimate the left-hand side of (64) (see Section [XII| below, where the latter also provides estimates of the
maximizers).
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E. Maximization via Base-Divergence-Method 2

Due to our investigations in Section as an alternative to the new Theorem we can also derive the following new
assertions, by employing a different base-divergence (function):

Theorem 34: Let us arbitrarily fix some P € [Rfo, Mp > 0, Q**, o, E, Q. V and £n\~’ (cf. (Z7)) as in Theorem recall
that we have named Di%’j (-, Q**) as the corresponding base-SBD-divergence (function).
(a) Furthermore, suppose that £ C R¥ is also compact and that ® : 2 — R is a continuous function on £2. Then, there holds
: 1 Y k% Y Y
sup ®(Q) = i~ og( Enfexp(n- (DI (Ve 6],Q7) +@(Mp-€1))) (Ve -€)) |) 69
€ n oo !
and the supremum is attained at some (not necessarily unique) point in . In particular, the function @ (-) is bare-simulation

maximizable (BS-maximizable) on Q (cf. (3) in Definition [I), in terms of the SBD method.
(b) If 2 C RX is not necessarily compact and ® : © — R is a continuous function which satisfies the upper-bound condition

there exists a constant ¢; € R such that for all Q € Q there holds ®(Q) < ¢; — Di,%D(Q, Q*),

then the representation/convergence (63) — and hence the corresponding BS-maximizability — still holds, but the supremum
may not necessarily be attained/reached at some point in 2.

The proof of Theorem [34]is given in Appendix [A] below.

Remark 35: In Theorem we have allowed for the special case that Q** can be in €2 (and thus, infqeq Di ,%D (Q,Q**)=0
of Remark [T7] applies).

Analogously to (64), the limit statement (65) provides the principle for the approximation of the solution of the maximization
problem ®(2) := supqcq P(Q). Indeed, by replacing the right-hand side in (63) by its finite counterpart, we derive for given
large n )
tog( Enfexp(n- (D3R (Me - €7,Q7) + @(Mp-£Y)) ) 10(Mp -€7) |) ~ sup 2(Q) (66)
Qe
it remains to estimate the left-hand side of (66) (see Section below, where the latter also provides estimates of the
maximizers).

VI. DETERMINISTIC NARROW-SENSE BARE-SIMULATION-OPTIMIZATION OF (o—DIVERGENCES WITH
CONSTANT-COMPONENT-SUM SIDE CONSTRAINT

Recall that we have denoted by S¥ := {Q := (q1,...,qx) € R%, : Zf{:l ¢; = 1} the simplex of probability vectors
(probability simplex) and its interior by Sfo ={Q:=(q1,---,qx) € [RI;O : Zfil g; = 1}. For better emphasis, for elements
of these two sets we use the symbols @,IP instead of Q,P, etc., but for their components we still use our notation g,py.
Moreover, subsets of S¥ or SI>{0 will be denoted by €2 instead of €2 etc. In this section, we work with constraint sets of the
form A - @ for some arbitrary A €]0, 00| (sometimes even A € R\{0}) which satisfy int (A - @) = @ (cf. Remark [8[b)) and
thus need extra refinements. In more detail, we deal with

Problem 36: For pregiven ¢ € T(]a,b[), positive-components probability vector IP := (pi,..,px) € SX, and subset
A- Q@ C A-SE with regularity properties — in the relative topology (!!) —

cl(A-®) =cl(int (A -®@)), int (A- ) # 0, (67)

find
(I)")(A : M) = Qg}ﬁfﬂ DlP(Qv IP)7

provided that
Qg}xf.n D,(Q,IP) < o0 (68)
and that divergence generator ¢ additionally satisfies the following Condition 37
Condition 37: Let ¢ € Y(]a, b[) and satisfy the representation

@(t) = sup (z t— log/ezyd¢(y)>7 teR, (69)

z€R
R

for some probability distribution ¢ on the real line such that the function z — MGF(z) := [, e*d{(y) is finite on some
open interval containing zero.
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Remark 38: Since here Mp = Zfil p; = 1 and hence (in the notation of the previous Sections and@) P.=IP [/Mp =
the Condition [5] collapses to Condition

For the directed-distance-minimization Problem [36] we proceed (mostly analogously to Section [lII] above) by constructing an
appropriate sequence (£, ),en of RE —valued random variables (cf. (@) in Definition [1] I and the special case of Remark [2 la))
as follows: for any » € N and any k € {1,. — 1}, let ng = Ln pr] (where |z]| denotes the integer part of x) and
Ng :=Nn— Ef:_ll ny; for this, we assume that n 6 IN is large enough, namely n > maxye(1,.. K} pik, such that all the integers
ng (k=1,..., K) are non-zero. Since we assume P € [RI><0 and thus none of the p;’s is zero, one has

im 22 —pe, k=1,... K

n—o0o N

With this at hand, we decompose the set {1,...,n} of all integers from 1 to n into the following disjoint blocks: If") =

{1,...,n1}, I(n) ={n1+1,...,n1 +na}, and so on until the last block '™ .= {Zk 1 ng +1,...,n} which therefore
contains all integers from nq +...+ng_1 + 1 to n. Due to our construction, IlIE ) has n; > 1 elements (1 e. card(] (n )) =ng)
forall k € {1,...,K} l Furthermore consider a vector W := (W1,..., W, ) where the W;’s are i.i.d. copies of the random
variable W Whose distribution is associated with the divergence-generator ¢ through (69), in the sense that MW € -] = ([-].
We group the W;’s according to the above-mentioned blocks and sum them up blockwise, in order to build the following K —
component random vector (instead of é'xv in (13))

Z e e W40
ev S SNEL AR .20 SR A A 0)
(c0,...,00) =: 00, if Z?lej:().

Remark 39: (i) (Concerning e.g. computer-program command availability) In case of Z 1 W; = 0, in (70) we may
equivalently assign to £“’W any vector outside of €2 instead of oo.

(i) By construction, in case of Z?:l W; # 0, the sum of the random K vector components of is now automatically
equal to 1, but — as (depending on () the W;’s may take both positive and negative values — these random components may
be negative with probability strictly greater than zero (respectively nonnegative with probability strictly less than 1). However,
[I'I[S;”W € SI;O} > 0 since all the (identically distributed) random variables W; have expectation 1 (as a consequence of the
assumed representability (69)); in case of M[IW; > 0] = 1 one has even M[¢*W SK,] = 1. Summing up things, the probability
neew c @) =N[A-£°W ¢ A- Q] is strictly positive and finite at least for large n, whenever ®p () = infoc D, (Q, IP)

is finite.

With the above-mentioned ingredients, we have proven in Theorem 12 of Broniatowski & Stummer [1]] (an even more general,
conditional-expectations-involving version of) the following assertion:

Theorem 40: Let IP € S>0, and suppose that the divergence generator ¢ satisfies Condition Additionally, let (W;);c be
a family of independent and identically distributed R—valued random variables with probability distribution ([-] := N[W; € -]
being connected with the divergence generator ¢ € Y(]a,b[) via the representability (69). Then there holds (in terms of (70))

1

inf inf Dy(m-Q,IP) = inf inf D (m-Q,IP)=— lim —log W{ESW € ﬂ} (71)
Qe Mm#A0 m#0 Qe n—oo M

for all sets € satisfying the regularity properties in the relative topology and the finiteness property (68) (the latter two

with A = 1).

From this and with the help of (T0), one gets immediately

Corollary 41: Let A € R\{0}, P € RE, with Mp := Zfil p; > 0, and suppose that the divergence generator ¢ satisfies
Condition |5} Additionally, let (W%E[N be a family of independent and identically distributed R—valued random variables with
probability distribution ([- ] := M[W; € -] being connected with the divergence generator € T(]a, b[) via the representability
(). Then there holds (in terms of with W instead of W)

— b L wW
ol 1, Delm-QP) = inf, (o, Dol Q.P) = — Jlim 7 log M€} < @ e

for all sets € satisfying the regularity properties in the relative topology and the (68).
151f all pr, (k = 1,..., K) are rational numbers in |0, 1[ with 25:1 pr = 1 and N is the (always existing) smallest integer such that all N - py

(k = .., K) are integers (i.e. € N), then for any multiple n = m - N (m € N) one gets that all n - p are integers and hence ny = |n - pr| =n - pk
(k= - K)
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Remark 42: (a) As shown in [1], the involved “inner” m—minimizations on the left-hand side of (and analogously, of
(72)) can be solved explicitly in the important special case of the power divergences (7).
(b) Even more, we have worked out in [1]] that the outcomes of (a) can be rewritten in terms of invertible functions F'(-) of
the divergences Dz, (@, IP) (and analogously of Dz, (Q,P)).

Let us illuminate the details of the previous Remark [42] The required representability (69) is satisfied for all (multiple of) the
generators ¢(-) := ¢ - ¢4 (+) of (I6) with ¢ €]0,00[ and v € R\ |1,2[ (cf. Broniatowski & Stummer [1I]); the corresponding
crucial probability laws ( can be found in Table 1. The corresponding generalized power divergences Dz, (Q,P) given by
will be used as tools to derive our base-divergences for our new fundamental Theorem [52] below. In order to obtain this,
for fixed A €]0,00[ and IP € SX; we employ the following auxiliary notations:

(S1) ﬂ = A - S for v €] — 00, 0], respectively, JT/lJ7 = A-SK for v €]0,1] U [2, 00].
(S2) the modlﬁed ~vy—order Hellinger integral of Q and IP given by

K
0< Hy(Q,P) := Z(qk)’Y.(pk)l—’Y = 14+v-(A=1)+v-(y=1)- Dy (Q,IP), ~€]—00,0[U]0,1[U[2,00[, Q € M;
k=1
(S3) for v €] —00,0{U]0,1[U[2,00[ and ¢ €]0, 00[ we define the function F, z 4 :] — 00, 00[+] — 00, 00] by
%.{1_Aw/(7—1) . [1_,_7.(‘4_1)4_@.%]’1/(7 b }’
if v €] —00,0[U]0,1] and 1+ (A —1) + 201 .5 >,
Foza(x) = orif y e [2,00[ and 14~-(A—1)+ 2. 450, (73)
00, if'ye[2,oo[and1+’y~(A—1)+%-x§O,
o0, if v €] —00,0[U]0,1[ and 1 +~- (A —1) + T .5 <0,

Notice that in the constellations of (S2) only the first line of is relevant, and we can even show F., z 4 (Dg.% (Q, IP)) €
[0, 00[ for all Q € /W (cf. Broniatowski & Stummer [1]]). Moreover, the function z — F, z 4(x) is on its effective

domain dom(Fyz ) := {x : Fy z a(x) €] — 00,00[} strictly increasing and has the strictly increasing inverse function
Fiza(2) = _< . {AW {1—2%}_(7_1) —1—7'(A—1)}, for all z € R such that v -z < ¢.
" v-(y=1) ¢
(S4) for v =1 we employ for ¢ €0, oo the strictly increasing function F} z 4 :| — 00, 0o[— | — 00, 00| defined by
Fiza(e) ::E~{1—A-exp (l—l—iN)}. (74)
' A A-c

Notice that F} z 4 (DE.WI(Q,IP)) € [0,00[ for all Q € le (cf. Broniatowski & Stummer [1]). The corresponding
inverse is given by

{17A7A~{10g(1fi)710g14}}, for all z €] — oo, ¢[.

¢

(S5) for v =0 we employ for ¢ €0, oo the strictly increasing function F z 4 :| — 00, 00[— | — 00, 00| defined by
Foza(x):=c¢c-(1—A+1logA)+uz.

Notice that Fyz 4 (Dg.w(Q,IP)) € [0,00][ for all Q € /\70 (cf. Broniatowski & Stummer [1]). The corresponding
inverse is given by
FS},A(Z) =z—¢-(1—A+logA), for all z € R.

Remark 43: For the special case A =1, D(-,-) := F, z1 (Dg.% (-, )) is a divergence on € (i.e. for all Q, IP € € there holds

F,z1 (Dg.% (Q, IP)) > 0 with equality if and only if @ = IP). Moreover, due to the above-mentioned strict increasingness of
F, z 1, the (not necessarily unique) minimizer respectively maximizer of D(-,IP) and Dz.,_(-,IP) on (say) compact € coincide.

For such a context, Broniatowski & Stummer [1]] (cf. Theorem 12|"°| Formula (39) and Lemma 14 therein) obtain the following
assertion on BS-minimizability in the narrow sense:

16which coincides with the above Theorem @]
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Theorem 44: Let IP € S, ¢ €]0,00[, v € R\]1,2[ and A €]0, 00| be arbitrary but fixed. Moreover, let (W;);en be a
family of independent and identically distributed R—valued random variables with probability distribution ¢[-] := N[} € -]
being connected with the divergence generator ¢ := ¢ ¢, (-) € T(Ja, b[) via the representability (69).

(a) Then there holds

. : 1 wW
Qif g P (DE_%(Q, IP)) —— lim —log [gn e sm} (75)
e . . . 1 wW
= Quela %r;fo Dz, (m-Q,IP) = Qg}xf{z %r;fo Dz, (m-Q,P) = — nh_)rréo - log M {A g eA M}

for all sets A - € C M7 satisfying the regularity properties in the relative topology. In particular, for each IP € SX,
the function ®p(-) := F, z 4 (Dg‘%(', IP)) is bare-simulation minimizable (BS-minimizable) in the narrow sense (cf. () in

Definition |1| and the special case of Remark a)) on all sets A- € C /T/LY satisfying in the relative topology.
(b) Moreover, there holds

1
: - _ — o - wW
Qg Do, (QP) = P A( lim —log I [gn e m} ) (76)
for all sets A- €@ C /K/lvv satisfying the regularity properties in the relative topology. In particular, for each IP € 5% the
function ®p(-) := Dz (-, IP) is bare-simulation minimizable (BS-minimizable) in the narrow sense on all sets A - € C M,
satisfying in the relative topology.

Remark 45: (a) By straightforward rescaling (cf. Corollary above), for P € [Rf0 with Mp = Zfil pi, ¢ €]0,00],
v € R\]1,2[ and A €]0, 0o one can generalize to

1 —

: . N L S H - wW
aPenl@P) - (- iy bren[er® ca)
for all sets A- @ C /K/lv7 satisfying the regularity properties in the relative topology; here, ¢ := Mp - ¢, A = MAP,
and (W;);ew is a family of independent and identically distributed R—valued random variables with probability distribution

¢[-] :== M[W; € -] being connected with the divergence generator ¢ := ¢ - ¢ (-) via the representability (9).
(b) For the case v = 2 in Theorem [44] as well as in (a) of this remark, one can even take A € R\{0} instead of A €]0, co[.
(c) For applications of Theorem 4] to fuzzy sets and basic belief assignments, see Broniatowski & Stummer [164].

Analogously to (T4)), the limit statement provides the principle for the approximation of the solution of the minimization
problem ®p(R2) := infqca.@ Dz, (Q,P). Indeed, by replacing the right-hand side in by its finite counterpart, we
deduce for given large n

FjA( _ %log if WW e m} ) ~ infy Dy (QP); (78)

it remains to estimate the left-hand side of (78) (see Section below, where the latter also provides estimates of the
minimizers).

VII. DETERMINISTIC NARROW-SENSE BARE-SIMULATION-OPTIMIZATION OF BREGMAN DISTANCES WITH
CONSTANT-COMPONENT-SUM SIDE CONSTRAINT

In the previous Section we have recalled/summarized recently achieved (cf. Broniatowski & Stummer [1l]) narrow-
sense bare-simulation minimization results on CASM ¢—divergences Q — D, (Q,P) under the additional constraints that
all the components ¢, are nonnegative/strictly positive and that Zszl qr = A for some (say) A > 0, where we have mostly
concentrated on the explicitly solvable subcase ¢ = ¢ - ¢, (¢ €]0,00[, v € R\|1,2[). On the other hand, independently of
any constraints, we have seen in Section that the p—divergences generalize to the scaled Bregman distances (cf. (23))
Q — DJE°(Q, Q) (recall that D3RP (Q,P) = D,(Q,P)). In the following, we work out how the results of Section
generalize to the bare-simulation minimization of these scaled Bregman distances under the above-mentioned additional
constraints. We first achieve

Theorem 46: Let IP € S, and suppose that the divergence generator ¢ satisfies Condition Additionally, let Q** € R
such that (ZT) holds. Moreover, we assume that & C SX satisfies the regularity properties in the relative topology as
well as the finiteness property

danf DZEP(Q,Q™) < oo (79)
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Additionally, let V' := (V,,)nen be a sequence of random vectors constructed via (23) and (26) (where we write V' instead of

V, since Mp = 1 and thus py, = pr/Mp = pi as well as Z = (). Then, in terms of the random vectors E;‘L’V given by
Z.El(n) Vi E.el(n) Vi
sk oK if S0 .V
&Y = (Zi‘l S WS mv ) 2= Vi 70 (80)
(00,...,00) =: 00, if 20, V=0,
there holds
ngz ﬂ1lnfO DS (m-Q,Q") = %I;fo Helf D47 P (m-Q, Q™) = — 1er;0 Elog M [E S?Z] . (81)

The proof of Theorem 46| will be given in Appendix [A] below.

From Theorem [46] and with the help of (24), one gets immediately

Corollary 47: Let A € R, P € [R o With Mp := ZZ 1pi > 0, and suppose that the divergence generator ¢ satisfies
Condition |5} l Additionally, let Q** € [RK such that (ZT) holds. Moreover, we assume that & C SX satisfies the regularity
properties (67) in the relative topology as well as the finiteness property

anf DSBD(Q Q") < 0.
Additionally, let V := (V,)nen be a sequence of random vectors constructed via (23) and (26). Then there holds (in terms
of with V instead of V)

1 ~
f inf DJRP “)=inf inf DSEP(m-Q.Q") =~ lim ~log N|¢LY € @] 82
QMg nf DIRP(m-Q.Q) = inf  inf DIEP(m-Q,Q") = lim —log N|&;Y (82)

Remark 48: (a) Analogously to Remark a), the involved “inner” m—minimizations on the left-hand side of (and
analogously, of (82)) can be solved explicitly in the important special case of the scaled Bregman power distances (30).
(b) Contrary to Remark @b), the outcomes of (a) can generally NOT be rewritten in terms of invertible functions F'(-)
of the divergences DZBP (Q,Q**) (and analogously of DZBP,(Q, Q**)). This means that we can generally NOT use

c-p~,IP ¢, P
our narrow-sense bare-simulation procedure for the minimization of @ DZPPo(Q, Q™) =: ©p(Q) (respectively Q +
foDP(Q Q**) =: &p(Q)). However, we are able to employ our bare- simulation procedure in the (non-narrow-)sense of

@ for these problems (by applying the below-mentioned Theorem [52] or alternatively, Theorem [55] and Remark [57]

(c) For the special case IP = Q** (respectively P = Q**), the Theorem [6] collapses to Theorem 40| (respectively, Corollary
collapses to Corollary A1)

(d) Notice that the quantity DSBD(Q Q™) := infz0 DSEP(m - Q, Q) satisfies the axioms of a divergence, that is,
Dgf—,,D(Q Q**) > 0, as well as DSBD(Q7 Q**) = 0 if and only if Q = Q** (reflexivity). Hence, (82) reflects a corresponding
narrow-sense bare-simulation for thls

In the following, we illuminate the details of the previous Remark [48|(a),(b). The required representability (69) respectively (9)
is satisfied for all the generators ¢(-) := ¢- ¢, () of (I6) with ¢ €]0,00[ and v € R\ |1, 2[ (cf. Broniatowski & Stummer [1]));
the corresponding crucial probability laws ¢ (respectively ¢ by taking ¢- Mp instead of ¢) can be found in Table 1. Moreover,
we fix A €]0,00[, P € RE,, and employ the following auxiliary notations:

(T1) recall from (S1) that Mv = A-SE for v €] — o0, 0], respectively, /(/lvw = A -SE for v €]0,1] U [2, 00[ and also set
/K/lvv = A-SE for v €]1,2] (the latter will be mainly employed for the purposes of the next theorem only), J\~/ly = RE,
for v € R¥\{2}, respectively, N := R (for consistency of Q** in (B0 and Q** in (B3)).

(T2) the modified (discrete) y—order Hellinger integral of Q and P given by

K
0< H’Y(va) = Z(qk)v ' (pk)l_’yv v e [R\{Oa ]-}7 Q € M"/; (83)
k=1
(T3) the modified (discrete) y—order Hellinger integral of Q** and P given by
K
Hy(Q™,P) =) (g;") - (m)'™", v eR\{0,1}, Q™ € Ny; (84)
k=1

(T4) the v—order triple power sum of Q, Q** and P given by

I,(Q.Q".P): qu @) @) v eRV{1}, QERN, QT e Ny (85)
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(TS) the modified Kullback-Leibler information distance (modified relative entropy) given by

K

k=1 k
(T6) the logarithmic 0—order triple power sum of Q, Q™ and P given by

)’ Qe M, =A-5% Q" e N, =RE; (86)

7)(Q,Q™,P) Zpk log ( an ) Qe R, Q™ e Ny =RE,. (87)

In terms of (T1) to (T6), we obtain the following assertions:

Theorem 49: Let A €]0,00[ and P € RE be arbitrarily fixed.

(a) Let ¢ €10, oo be arbitrary, v €] — oo,O[ 10,1[U]1l, 0], Q € ./\/l and Q** € RX,. Then one has
inf DEEPp(m-Q.Q) = T [H,(QP) = Ty(Q Q" P 07V H, (@ P) O]
= DZEPL(Q,Q™), (88)

and consequently (cf. (82)) for any v €] — 00, 0[U]0, 1[U[2, 00| and any subset A - @ C qu with one gets

inf E . |:H’Y(Q**7P) — TW(Q,Q**,P)"’/”_U 'HW(Q7P)_1/("’_1)}

QeA-® vy
1 ~
_ SBD K\ . 1: - wV
= Qgilfn D2 op(Q Q™) = nllr)rgo - log [I’I[{n € ﬂ} . (39)

For the case v = 2 one can even allow for A < 0 and Q** € R¥.
(b) For any ¢ > 0, Q € M; = A-SK and Q** € R, £, one gets

ko -~ 1 kk ok
nf DI2Pe(m-Q.Q") = & Mg —A-exp(~ 5-1(QQ™))| = DIER(Q.Q™) 90)
(which exceptlonally does not depend on P) and consequently (cf. (82)) for any subset A - C M; = A-SK with one
has

inf - [MQ** —A'eXp(* % 'I(Q,Q**)ﬂ

QcA-2

1 ~
_ SBD *k\ __ 13 - wV
= Qénfn DC - p(Q,Q7) = nlgn - log M [{n € M} . 91)

(c)Forany ¢>0,Qe My=A- SE, and Q** € RX, we obtain

inf DIZPe(m-Q.Q") = & [Mp-log (T0(Q. Q™. P)) + 1h(Q. Q" P) ~ Mp - log(Mp)| = DIZ7p(Q.Q")
92)
and consequently (cf. (82)) for any set subset A- & C My = A - SE, with one gets

Qg [Melog (T(Q. Q" P)) +75(Q, Q" P) — Mp - log(Mp)]

— Wk - wV
= il DEEDR(Q.Q) = — lim. log m{g esm} 93)

Remark 50: In accordance with Remark Hd) the quantity ng DP(Q, Q**) in Theorem (49| can be regarded as (new class
of) divergences between Q and Q**. Accordingly, we call DSB b p(Q, Q") the inner-minimization-scaled-Bregman-distance
(in short, innmin-SBD), which is BS-minimized — in a narrow sense — by B9) respectively (OI) respectively (93). The
BS-minimization — in a wide sense — of the “original” scaled Bregman divergence Q DfﬁDP(Q Q**) will be treated
in Remark [57] below.

The proof of Theorem 49| will be given in Appendix [A]

Analogously to (78), the limit statements 1) and (93] . provide the principle for the approximation of the solution of the
divergence minimization problem ®p () := mee 1 DB o P(Q Q**). Indeed, by replacing the right-hand side in those by
their finite counterparts, we deduce for given large n

1 wV ~ . SBD k0,
——log m[gn esm} ~ Qg}lf_ﬂDc% 5 (Q, Q™) (94)
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it remains to estimate the left-hand side of (78) (see Section [XII| below, where the latter also provides estimates of the
minimizers).

Theorem [A9] establishes the part (a) of our above-mentioned Remark [48] As far as the corresponding part (b) is concerned, it is

clear that the involved functions Q — DCS gDP(Q Q**) can generally NOT be rewritten in terms of Q—independent invertible

ngDP(Q Q**). This means that we can generally NOT employ our narrow-sense bare-
simulation procedure for the minimization of Q + D% ]gDP

the following

functions F'(-) of the divergences
(Q, Q**). However, there are a few important exceptions given in

Theorem 51: Let P € RE, ¢ €]0,00[, v € R and A €]0, 00 be arbitrary but fixed. Moreover, let (W;);c be a family
of independent and identically distributed R—valued random variables with probability distribution ([-] := T1[W; € -] being
connected with the divergence generator ¢ := ¢ - ¢, (-) € T(]a,b[) via the representability (69).

(a) If v € R\{1}, then for all C €]0, 0], ¢ €]0,00[ and Q € M., there holds in the special subsetup Q** := C - P the
representation

DchDP(Qa C- P) = F"y,E,A,Mp,C( -y P(Qa )) 95)
with function F. z 4 asp.c 1] — 00,00[ ] — 00, 00] given by

%.{MP_AW(%D.[CW.MPJﬁy.Cvfl.(A_C.MP)JF@.;U]*V(”*U},
if v €] — 00,0[U]0,1[ and C7- Mp +7-C7 - (A= C-Mp)+ 2D .4 >0,
or if v €]1,2[U]2,00[ and C7- Mp +~-C71- (A~ C - Mp) + 1 .5 >,
e {Mp — A%-[C* Mp+2.C-(A=C-Mp)+2-2] '},
NeAMe,c(T) = if v =2 and :176] (C-Mp —2A),0[, (96)
E-(Mp—%—i—MpJog(%)—Mp-log(Mp)> x, ify=0and z€]— 00,0,
00, ify€]—00,0[U]0,1[ and C7-Mp +7-CV - (A—-C-Mp)+ 20 .4 <,
or if v €]1,2[U]2,00[ and C7- Mp +~-CY"' - (A—C - Mp) + 200 .5 <0,
orif y=2and x €]— 00,5 - (C- Mp — 24)],

which on its effective domain dom( N5, A, Mp,c) is strictly increasing with strictly increasing inverse function

¢ —(v—1) —
7_(7071) .{Av. [M 1 z} TV Mp —-CY 1-(A—C~Mp)}7
if y €] —00,0[U]0,1] and -z <¢-C7 - Mp,
5 or if v €]1,2[U]2,00[ and -z <¢-C7 - Mp,
= zZ) = . _ 97)
124 0p,0 (%) g. {A [Mp — =25 - 2] I—CQ.MP—2~C~(A—C~MP)},
ify=2and 2-z<¢-C?- Mp,
z—E-(Mp—g+MP-1og(g)—MP-log(MP)), if y=0and ze]— 0,00
Consequently (cf. (89), (93)) for any v € R\[1,2[ and any subset A - €& C M., with (§7) one gets
1 ~
BD . ot L wV
ot g Przaniec(DE2p(Q.CP)) = — lim log D[¢7Y € @)
and
SBD _ -
D@0 P (- i Ll )

In particular, the functions ®p(-) := F. 24 rmp.c (ngDP( C-P)) and ®p() := DEZPL(-,C - P) are bare-simulation

minimizable (BS-minimizable) in the narrow sense (cf. (2) in Definition |I| and the special case of Remark |Zka)) on all sets
A - @ C M, satisfying in the relative topology. s
(b) If v = 1, then for all ¢ €]0, 00[, Q** € RE, and Q € M; = A - S¥ there holds the representation

DEEP(Q, Q") = Az (PEEDR(Q.Q™)) (99)
with strictly increasing function F1,57A7MQ** :] — 00, 00[] — 00, 0] given by
o " Mg« T

Fiaang. (@) = ¢ {Ma-—A-exp (=2 —1- )1 2e]-o0,00, (100)
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having strictly increasing inverse function

v

Fiaamg.(2) = ¢ {MQM —A-A- [1og (MQM - %) — log A} } . forall z €] —o00,& Mq-|. (101)
Consequently (cf. (91))) for any set subset A - & C M with one gets

. . *k : 1 w~
inf g anig (DEEPR(Q.Q™)) = — lim ~log M€Y € @]

QeA-@
and
oy 1 <
: SBD kk\ _ T4— 1 - wV
Qo DE2P(Q. Q™) = Bz g g, (— Jim log D€rY c @] ). (102)
In particular, the functions ®p(-) := FI,E,A,]WQ** D‘gngP(-,Q**) and Pp(-) = DgngP(-,Q**) are bare-simulation

minimizable (BS-minimizable) in the narrow sense (cf. in Definition [T] and the special case of Remark [2(a)) on all sets
A- @ C M, satisfying in the relative topology.

The assertions of Theorem [51] follow by straightforward caluclations from Theorem 9] For the special case C' = 1, Theorem
[51] collapses to Theorem [44]

Analogously to (78), the limit statements (98) and (I02) provide the principle for the approximation of the solution of the

minimization problems ®p(2) := infqeca @ D‘ESEBP(Qv C-P) (for v € R\[1,2]) and infqea.@ Dgng(Q, Q**) (for v = 1).

Indeed, we replace the right-hand side in those by their finite counterparts, and accordingly obtain for given large n

3y 1 W .

Fzampc(— losn|eY c@]) ~ inf DITPp(Q.C-P),  fory € R\[L,2], (103)
n 1 wV ~ . SBD Hk .

Fiang. (- losn[eY c@]) ~ i DIZPL(QQ™).  fory=1 (104)

it remains to estimate the left-hand sides of (I03) and (I04) (see Section [XIII| below, where the latter also provides estimates
of the minimizers).

VIII. BARE-SIMULATION-METHOD FOR GENERAL DETERMINISTIC DIVERGENCE-OPTIMIZATION-PROBLEMS WITH
CONSTANT-COMPONENT-SUM SIDE CONSTRAINT

A. Minimization via Base-Divergence-Method 1

Recall that we are interested in the constrained optimization of the continuous functions Q — ®p(Q) in the above-mentioned
cases (D1) to (D8) of Subsection [V-A] and beyond. Notice that — on constraint sets of the form A - € with (to be
treated in this section) — the class (D1) of CASM ¢—divergences ®p(Q) := D,(Q,P) which can not be covered by
the narrow-sense BS minimizability results of Section (namely seemingly all ¢—divergences which are not generalized
power divergences Dz, (Q,P), cf. (7)) is now much larger than the class (D1) of CASM p—divergences which can not be
covered by the narrow-sense BS minimizability results of Section [[TI] dealing with constraint sets of the form Q with (). One
corresponding example is the prominent Jensen-Shannon divergence (being also called symmetrized and normalized Kullback-
Leibler information distance, symmetrized and normalized relative entropy, capacitory discrimination), see Broniatowski &
Stummer [[1]] for details.

However, for such cases — and beyond — we can apply the following new fundamental non-narrow-sense BS-minimizability:

Theorem 52: Let us arbitrarily fix some IP € S%, & €]0,00[, A €]0, 00|, ¢, with v € R\ ]1,2[, , W := (W;)ic and 2%
(cf. (70)) as in Theorem [44} s
(a) Furthermore, suppose that A- € C M., is compact and satisfies the regularity properties (67) in the relative topology, and
that ® : A- @ — R is a continuous function on A - €. Then, there holds
1
inf ®(Q) = — lim - 1og( [Em[exp(n~ (F%g,A (Dg.% (A€W, IP)) —®(A- 5;’;“’))) g (€°W) D (105)

QcA-©2 n—oo n

and the infimum is attained at some (not necessarily unique) point in A - €. In particular, the function ® (-) is bare-simulation
minimizable (BS-minimizable) on A - & (cf. (2)) in Definition [I]).

(b) If A- & C M, is not necessarily compact but satisfies the regularity properties in the relative topology and the
finiteness property with ¢ :=¢-¢,, and ¢ : A- @@ — R is a continuous function which satisfies the lower-bound condition

there exists a constant ¢; € R such that for all Q € A - @ there holds ®(Q) > F, z 4 (Dg,gpW (Q, IP)) —-c1, (106)
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then the representation/convergence (I03) — and hence the corresponding BS-minimizability — still holds, but the infimum
may not necessarily be attained/reached at some point in A - €2,

The proof of Theorem [52] . will be given in Appendix @ below. Clearly, Theorem [52) la) can be applied to obtain infqe 4.2 P(Q)
for all the directed distances/divergences ®(-) := ®(-) (where P needs not coincide ~with IP) and friends given in (D1) to
(D8) of Subsection which are therefore all BS-minimizable on compact A - @ C MW with regularity (67) in the relative
topology.

Analogously to (78)), the limit statement (T03) provides the principle for the approximation of the solution of the minimization
problem ®(2) := infqea.e@ ®(Q). This can be achieved by replacing the right-hand side in (I03) by its finite counterpart,
from which we obtain for given large n

—tog( Enfexp(n- (Fza (Do, (4- €V, P)) (4 £™))) a(€™) ) ~ inf @(@s 07

it remains to estimate the left-hand side of (107) (see Section [XIII| below, where the latter also provides estimates of the
minimizers).

Example 53: As a continuation of Example 28] in connection with Remark 29(b), let us how Theorem [52] n can be used to
tackle the BS-minimizability — on A - & — of the generalized power divergences ®(-) := ®p(-) := Dz (-, IP) (cf. (I7) for
the missing case v €]1,2[ (and ¢ € ]0, co|). Indeed, by employing it is easy to see that

~ c 1 x
> g = — . — . — 1 = _
for all z € [0,00[, A €]0,00], ¢ €]0,00[, v €]1,2] there holds z > Fl’;’A(l‘) 5 {1 A-exp (A 1 Als)}(108)

with equality if and only if z = — - (1 — A) >0

=N

(and even for a wider range of v). By using (59) and (I08) we obtain

for all Q € A-® and all 5 €]1,2[ there holds  ®p(Q) i= Dz, (Q,P) > D, (QP) > Fyc ( ..(Q, IP))
(109)

notice that the inequalities in (I09) turn into equalities if g = py for all k € {1,..., K} (and hence, A = 1) but also e.g. if

gk = 0 and g, = py for all k € {1,..., K — 1} (and hence, A < 1). According to (I09), the bound (T06) is satisfied with

c1 = 0. Thus, we can proceed analogously to Remark [29(b), and choose the W;’s to be i.i.d. copies of the random variable

2 \oz

W of the form W = L - Z for a Poisson POI ( ¢)—distributed random variable Z (cf. Broniatowski & Stummer [T]], see also
Table 1). With these ch01ces (105) specializes to

. 1 wW wW wW
it Do, (QP) = — lim —log( Enfexp(n- (F 2 4 (D2, (A€ P)) = Dey (4-6.)) ) 10 (62%) ])

for all A€ C /(/lva, satisfying the regularity properties in the relative topology and the finiteness property (68) with
pi=35 P

4\0

B. Maximization via Base-Divergence-Method 1

For the non-narrow-sense BS-maximizability we obtain the following new fundamental

Theorem 54: Let us arbitrarily fix some IP € SX, & €]0,00[, A €]0, 00|, ¢, with v € R\]1,2[, (, W := (W;);c and €2V
(cf. (70)) as in Theorem [44}
(a) Furthermore, suppose that A - € C /\/l,y is compact and satisfies the regularity properties (67) in the relative topology, and
that @ : A- € — R is a continuous function on A - €. Then, there holds

sip B(Q) = lim + 1og( Em[exp<n- (F7 . A( o (A€W IP)) B(A- s;';w))) g (€°W) D (110)
QcA- n—oo N

and the supremum is attained at some (not necessarily unique) point in A-$®. In particular, the function ® (-) is bare-simulation
maximizable (BS-maximizable) on A - & (cf. (3) in Definition [T).
(b) If A- @ C M, is not necessarily compact but satisfies the regularity properties (67) in the relative topology and @ :
A- € — R is a continuous function which satisfies the upper-bound condition

there exists a constant ¢; € R such that for all Q € A - € there holds ®(Q) < ¢; — Fy 3 A( 0 (Q, IP))

then the representation/convergence (110) — and hence the corresponding BS-maximizability — still holds, but the supremum
may not necessarily be attained/reached at some point in A - €®.



SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY 33

The proof of Theorem [54] will be given in Appendix [A] below.

Analogously to (I07), the limit statement (I10) provides the principle for the approximation of the solution of the maximization
problem ®(£2) := supqe 4. ®(Q). This can be achieved by replacing the right-hand side in (II0) by its finite counterpart,
from which we obtain for given large n

1 w w w
Elog( [Em[exp(n- (F%E,A(DE%(A oW, IP)) n @(A.gnW))) g (€W) D ~ sup ¥(Q); (111)
Qen
it remains to estimate the left-hand side of (I1I) (see Section [XIII| below, where the latter also provides estimates of the
maximizers).

C. Minimization via Base-Divergence-Method 2

Due to our investigations in Section [VII| as an alternative to the new Theorem [52] we can also derive the following new
assertions, by switching the involved base-divergences:

Theorem 55: Let us arbitrarily fix some P € RE, (recall Mp := S pi > 0), Q, ¢ €]0,00[, A €]0,00], ©~ with
v € R\]1,2[, V and £°V (cf. with V instead of V) as in Theorem we call the corresponding Dg_ffffp(-, Q**) (cf.
(88).(90).(92)) the base-innmin-SBD-divergence (function).

(a) Furthermore, suppose that A- € C M., is compact and satisfies the regularity properties (67) in the relative topology, and
that ® : A- @ — R is a continuous function on A - €. Then, there holds
: : 1 SBD wV Hk wV wV
a8 @ = i (oo (5225 (1-6%.07) “ata-67) wie)])
and the infimum is attained at some (not necessarily unique) point in A - €. In particular, the function ® (-) is bare-simulation
minimizable (BS-minimizable) on A - €2 (cf. () in Definition [T)), in terms of the SBD method.

(b) If A-€® C M., is not necessarily compact but satisfies the regularity properties (67) in the relative topology with ¢ := ¢- ¢,
and ® : A- @ — R is a continuous function which satisfies the lower-bound condition

there exists a constant ¢; € R such that for all Q € A - @ there holds ®(Q) > DZPPL(Q, Q™) — ¢y,

Coy, P

then the representation/convergence (112) — and hence the corresponding BS-minimizability — still holds, but the infimum
may not necessarily be attained/reached at some point in A - €B.

Remark 56: (a) For the case v € R\{1} and the special subsetup Q** := C - P (cf. Theorem [51{a)), in Theorem [55] one

can equivalently replace DcsgDP( C-P) by Fyzanp. c(DC ohe(,C- P)) (cf. (93),(06)). By additionally taking C' = 1

and P := IP to be a probability vector, one collapsedly ends up w1th the corresponding assertions of Theorem [52]
(b) For the case v = 1, in Theorem |55| one can equivalently replace foDP( , Q™) by FLE,A,MQ** (foleP( ,Q**)) (cf.
(©9).(100)).

Remark 57: The BS-minimization — in a wide sense — infqe 4. P(Q) of the scaled Bregman divergence ®(Q) :=

Df gf (Q, Q**) follows immediately as special case of Theorem Notice that in (I12) the corresponding exponential part

ngf (A {wv Q**) —P(A- 5:‘;\7) is generally non-zero.
The proof of Theorem |55| will be given in Appendix @ below. Clearly, Theorem a) can be applied to obtain infqe 4.2 P(Q)
for all the directed distances/divergences QJQ := ®p(+) and friends given in (D1) to (D8) of Subsection which are therefore
all BS-minimizable on compact A - & C M., with regularity (67) in the relative topology.

Analogously to (107), the limit statement (112]) provides the principle for the approximation of the solution of the minimization
problem ®(£2) := infqea.@ P(Q). This can be achieved by replacing the right-hand side in (I12) by its finite counterpart,
from which we obtain for given large n

2 tog((En[exp(n- (D250 (427, @) ~a(4-&))) 10 (&) ]) ~ inf B(Q); (113)

it remains to estimate the left-hand side of (TT13) (see Section [XIII] below, where the latter also provides estimates of the
minimizers).
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D. Maximization via Base-Divergence-Method 2

For the non-narrow-sense BS-maximizability via innmin-SBDs as base divergences, we obtain the following new fundamental

Theorem 58: Let us arbitrarily fix some P € R, (recall Mp := Zfi p; > 0), Q**, ¢ €]0,00[, A €]0,00], ¢, with
~v e R\]1,2[, V and £“V (cf. with V instead of V') as in Theorem recall that we have named the corresponding

Dg ESP(W Q**) (cf. (88).(90).(92)) the base-innmin-SBD-divergence (function).

(a) Furthermore, suppose that A - € C ./\77 is compact and satisfies the regularity properties (67) in the relative topology, and
that ® : A- @ — R is a continuous function on A - €. Then, there holds
1 1 » wV *% wV wV
sup ¢(Q) = lim — log( [E[ﬂ{exp(n . (DngP (A : £nv, Q ) + @(A . €nv))> Py (Env) D (114)
QeA-@ n—o0o N v
and the supremum is attained at some (not necessarily unique) point in A-&2. In particular, the function ® () is bare-simulation
maximizable (BS-maximizable) on A - €2 (cf. in Definition [I)), in terms of the SBD method.

(b) If A- & C M, is not necessarily compact but satisfies the regularity properties in the relative topology, and
®: A Q@ +— R is a continuous function which satisfies the lower-bound condition

there exists a constant ¢; € R such that for all Q € A - € there holds ®(Q) < ¢y — b§BDP(Q, Q™) ,

C Py,

then the representation/convergence (114) — and hence the corresponding BS-minimizability — still holds, but the supremum
may not necessarily be attained/reached at some point in A - €®.

Remark 59: (a) For the case v € R\{1} and the special subsetup Q** := C - P (cf. Theorem a)), in Theorem one
can equivalently replace bgﬁf),p('v C-P)by Fyzampc Dggfp(~, C- P)) (cf. (93),(6)). By additionally taking C' = 1
and P := IP to be a probability vector, one collapsedly ends up with the corresponding assertions of Theorem [54]

(b) For the case v = 1, in Theorem |58 one can equivalently replace DsBD (-, Q**) by F‘LE,A,MQ** (D§BD (-, Q**)) (cf.

c-p1,P cp1,P
({©9),(100)).

The proof of Theoremwill be given in Appendixbelow. Certaiflly, Theorem a) can be applied to obtain Supqe 4.0 (Q)
for all the directed distances/divergences ®(-) := ®3(-) (where P needs not coincide with P) and friends given in (D1) to
(D8) of Subsection which are therefore all BS-maximizable on compact A - € C /WW with regularity properties in
the relative topology.

Analogously to (IT1)), the limit statement (114) provides the principle for the approximation of the solution of the maximization
problem ®(Q) := SUPQe 4. ®(Q). This can be achieved by replacing the right-hand side in (I14)) by its finite counterpart,
from which we obtain for given large n

1 y T s - e
ﬁlog( [Em[exp(n. (Dgfjfp(A.ggv,Q )+<1>(A.5gv))) .IQ(QV)D ~ sup 2(Q); (115)
€
it remains to estimate the left-hand side of (T13) (see Section [XIII] below, where the latter also provides estimates of the

maximizers).

IX. NARROW-SENSE BARE-SIMULATION-MINIMIZATION OF (»—DIVERGENCES UNDER RISK

A. The statistical view

In contrast to the previous Sections [VIIVIIVIIL we now work out our BS method for the important setup where basically IP
is a random (unknown) element of the (open) simplex SX of zeros-free K'—component probability (frequency) vectors and
@ C S (i.e. A= 1). Its importance stems from the fact that in the statistics of discrete data — and in the adjacent research
fields of information theory, artificial intelligence and machine learning — one often encounters the following minimum distance
estimation (