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Deep neural networks (DNNs) for sound recognition learn to categorize a barking sound as a "dog" and a meowing sound as a "cat" but do not exploit information inherent to the semantic relations between classes (e.g., both are animal vocalisations). Cognitive neuroscience research, however, suggests that human listeners automatically exploit higher-level semantic information on the sources besides acoustic information. Inspired by this notion, we introduce here a DNN that learns to recognize sounds and simultaneously learns the semantic relation between the sources (semDNN). Comparison of semDNN with a homologous network trained with categorical labels (catDNN) revealed that semDNN produces semantically more accurate labelling than catDNN in sound recognition tasks and that semDNN-embeddings preserve higherlevel semantic relations between sound sources. Importantly, through a model-based analysis of human dissimilarity ratings of natural sounds, we show that semDNN approximates the behaviour of human listeners better than catDNN and several other DNN and NLP comparison models.

INTRODUCTION

Human sound recognition involves the transformation of acoustic waveforms into meaningful representations of the sound-producing source or event. Whereas this ability is automatic and effortless in humans, engineering artificial systems that reproduce human recognition performance has proven challenging. In machine learning (ML), sound recognition has been typically formulated as a classification problem, where sounds are assigned to predefined classes based on the analysis of various features extracted from the input Fundings/support: Data Science Research Infrastructure (DSRI; Maastricht University); Dutch Research Council (NWO 406.20.GO.030 to EF); French National Research Agency (ANR-21-CE37-0027-01 to BLG). acoustic signal. Different ML approaches have been proposed, showing promising results in several applications [START_REF] Bansal | Environmental sound classification: A descriptive review of the literature[END_REF]. Recently, deep neural networks (DNNs) have been shown to outperform other conventional ML algorithms. Mimicking similar research on visual object recognition [START_REF] Fukushima | Neocognitron: A selforganizing neural network model for a mechanism of visual pattern recognition[END_REF], sound-toevent DNNs have been used for sound classification tasks [START_REF] Huang | Aclnet: efficient end-to-end audio classification cnn[END_REF], [START_REF] Hershey | CNN architectures for large-scale audio classification[END_REF], [START_REF] Kong | PANNs: Large-Scale Pretrained Audio Neural Networks for Audio Pattern Recognition[END_REF]. Trained on a large-scale dataset of human-labelled sounds (Audioset, [START_REF] Gemmeke | Audio set: An ontology and human-labeled dataset for audio events[END_REF]), Google's VGGish and Yamnet have provided remarkable performances. These networks receive spectrogram representations as input and can classify sounds in up to 527 and 521 classes, for VGGish and Yamnet, respectively. Although a taxonomic organization of labels has been proposed (Audioset, [START_REF] Gemmeke | Audio set: An ontology and human-labeled dataset for audio events[END_REF]), in most cases the information on the (hierarchical) relation between labels is not used explicitly to train the networks (but see Jimenez et. al [START_REF] Jimenez | Sound event classification using ontology-based neural networks[END_REF]). Typically, labels are encoded as binary categorical variables, using one-hot or multi-hot (in case of multiple simultaneous labels) encoding; Fig. 1 (a,b).

Interestingly, recent cognitive neuroscience research has shown that sound-to-event DNNs (including VGGish and Yamnet) provide a good approximation of human listeners' behaviour in several real-world auditory perception tasks [START_REF] Kell | A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy[END_REF][START_REF] Giordano | Intermediate acoustic-to-semantic representations link behavioural and neural responses to natural sounds[END_REF]. Giordano et al. [START_REF] Giordano | Intermediate acoustic-to-semantic representations link behavioural and neural responses to natural sounds[END_REF] considered behavioural data consisting of perceived sound (dis)similarities, estimated with a hierarchical sorting task [START_REF] Giordano | Hearing living symbols and nonliving icons: Categoryspecificities in the cognitive processing of environmental sounds[END_REF] and examined to what extent sound-to-event DNNs, and other acoustic, auditory perception and semantic (natural language processing, NLP) models could explain these behavioural data. Results not only showed that sound-to-event DNNs outperformed all other models in predicting human sound dissimilarity judgements but also that NLP models, namely word2vec [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF] and GloVe [START_REF] Pennington | Glove: Global vectors for word representation[END_REF], predicted variance of behavioural data that could not be accounted for by sound-to-event DNNs trained using categorical labels. These findings suggest that, when listening to (and comparing) real-world sounds, human listeners automatically exploit higher-level semantic information on the sources besides acoustic information.

Inspired by these results, we sought to develop DNNs that -mimicking human perception [START_REF] Heller | Synergy between human and machine approaches to sound/scene recognition and processing: An overview of icassp special session[END_REF] -learn to recognize To this aim, we formulated sound recognition as a deep-learning regression problem of mapping spectrograms onto a continuous, multidimensional space, quantitatively capturing the semantic relations between sound sources and events. In the present study, we obtained this multidimensional space from the word2vec embeddings of linguistic sound descriptions, Fig. 1 (a,c). To evaluate the effect of semantics on sound recognition DNNs, we trained two networks (semDNN and catDNN) with identical architecture (except for the output layer, see below) using, in one case, 300-dimensional word2vec embeddings of the linguistic sound description (semDNN; [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF]), and categorical, one-hot encoded single words in the other case (catDNN).

To avoid biases in the comparison, our DNNs were trained from scratch, as all available pre-trained networks have been trained using categorical coding. Furthermore, for training, we curated a dataset of 388,211 sounds (2,584 hours), covering a broad range of real-world sounds (Super Hard Drive Combo [START_REF]SuperHardDriveCombo[END_REF]), characterized by the rich semantic description that we derived from the database metadata (see below).

Based on [START_REF] Giordano | Intermediate acoustic-to-semantic representations link behavioural and neural responses to natural sounds[END_REF], we expected that semDNNs would better approximate human behaviour in auditory cognitive tasks than catDNNs, as the word2vec embeddings preserve the semantic relation between sound sources, which are instead lost with one-hot encoding, Fig. 1 (b,c).

Similar to our approach, other recent studies proposed to combine sound-to-event DNNs with language embeddings. Xie et al. [START_REF] Xie | Zero-shot audio classification with factored linear and nonlinear acoustic-semantic projections[END_REF] combined audio feature embeddings from VG-Gish and semantic class label embeddings from word2vec at the output stage using a bilinear model. However, the audio network was not explicitly trained to learn semantic embeddings in this case. Recently, Elizalde et al. [START_REF] Elizalde | Clap: Learning audio concepts from natural language supervision[END_REF] employed contrastive learning to combine sentence embeddings (BERT, [START_REF] Devlin | Bert: Pre-training of deep bidirectional transformers for language understanding[END_REF]) with an audio encoder into a joint multimodal space. Our present work, however, focuses on evaluating the effects of semantic representation type (continuous vs categorical) on sound-to-event DNNs and assessing networks' ability to predict human perceptions.

METHODS AND MATERIAL

Network Architecture

We developed two different networks: semDNN and catDNN (Fig. 2). Both networks resemble VGGish (four main convolutional blocks; 64, 128, 256, and 512 filters), including the sound preprocessing and log-mel spectrogram input to the network. Compared to VGGish, we added a dropout layer (rate = 0.2; [START_REF] Srivastava | Dropout: A simple way to prevent neural networks from overfitting[END_REF]) and a batch normalization layer [START_REF] Ioffe | Batch normalization: Accelerating deep network training by reducing internal covariate shift[END_REF] after each downsampling operation, and after the fully connected layers. We also applied global average pooling after the last convolutional block to summarize the feature maps into a fixed-length vector. The two networks differed only at the output layer, where semDNN has a 300-units (N dimensions of semantic embedding = 300) layer with linear activation, and catDNN has a 9,960-units (N dictionary words = 9,960) dense layer with sigmoid activation. We additionally trained a convolutional autoencoder (CAE) to assess the network behaviour with acoustic inputs only (no category/semantic label task; same architecture as in Fig. 2 for the encoder and reverted architecture for the decoder; see below for additional control networks). The loss function was adapted to the network task. We used binary cross entropy for catDNN (multi-classification task), an angular distance for semDNN (regression task), and mean square error for the CAE. 

Semantically balanced dataset for training, validation, internal and external evaluation

Networks were trained using sounds and labels from Super-Hard Drive Combo [START_REF]SuperHardDriveCombo[END_REF], a collection of 388,211 variablelength sounds (2,584 hrs) covering a wide range of sound sources and events. We then used a natural language processing pipeline to extract a dictionary of 9,960 sound-descriptive words from the database metadata (median nb. words/sound= 3, range = 1-15). The distribution of the word descriptors in the database was unbalanced (Fig. 3). Thus, we created a semantically balanced dataset based on a hierarchical clustering analysis of the word2vec representations of the dictionary (input = pairwise cosine distance; ward-linkage). We considered a clustering solution with K = 300 semantic word clusters (Fig. 3). The resulting balanced dataset included 273,940 sounds (training set = 90% = 246,546 sounds; 1,366,848 frames; validation set 5%; internal evaluation = 5%).

Without further training, the networks were validated on four publicly-available external datasets: FSD50k [START_REF] Fonseca | FSD50K: An Open Dataset of Human-Labeled Sound Events[END_REF], ESC-50 [START_REF] Piczak | Esc: Dataset for environmental sound classification[END_REF], Urban Sound 8K [START_REF] Salamon | A dataset and taxonomy for urban sound research[END_REF] and MSOS [START_REF]MSOS-dataset[END_REF].

Comparative networks evaluation

We compared semDNN and catDNN relative to two predictionaccuracy metrics, one requiring the conversion of semDNN word2vec embedding predictions onto word predictions (Ranking score), and the other requiring the computation of word2vec embeddings of catDNN word predictions (average maximum cosine similarity, see below). To obtain single-word predictions for semDNN, we projected the pre-dicted semantic embeddings, potentially reflecting a mixture of words, onto the single-word embeddings in the dictionary using non-negative least squares (NNLS) regression [START_REF] Lawson | Solving least squares problems[END_REF].

Ranking Score We first sorted the NNLS β-values (semDNN) and the output probabilities (catDNN) in ascending order to compare prediction accuracy. The ranking score was defined as:

m = 1 - rank -1 N -1 ( 1 
)
where N is the dictionary length and rank is the position of β/probability corresponding to the "true" label. When labels included multiple words, we averaged the ranking score obtained for every single word.

Average maximum cosine similarity score (AMCSS) For each sound, we computed the cosine similarity between the topN (5 ≤ topN ≤ 15) predicted words and a word in the true label and then considered its maximum value. This operation was repeated for each word in the label. The AMCSS was obtained as the average of these values (e.g. if the true label is 3 words long, 3 max values are obtained and then averaged).

Prediction of human behavioural data

We evaluated to what extent layer-by-layer embeddings of semDNN and catDNN, and of several control networks, including the CAE, and of additional control models, approximated perceived dissimilarity judgements obtained with humans ([10], Exp. 2, hierarchical sorting task; N sounds = 80). We adopted a cross-validated representational similarity analysis (RSA, [START_REF] Kriegeskorte | Representational similarity analysis -connecting the branches of systems neuroscience[END_REF][START_REF] Giordano | Intermediate acoustic-to-semantic representations link behavioural and neural responses to natural sounds[END_REF]), implying the comparison of behavioural data and model representations in the distance domain (model distance = cosine between-sound distances). We considered as additional comparison models. First, two NLP embeddings (word2vec and GloVe [START_REF] Mikolov | Efficient estimation of word representations in vector space[END_REF][START_REF] Pennington | Glove: Global vectors for word representation[END_REF]) to compare our audio-based learning of semantic relations in semDNN with text-based learning. Second, we considered three prepublished categorical sound-to-event DNNs (Yamnet, VG-Gish and Kell [START_REF] Hershey | CNN architectures for large-scale audio classification[END_REF][START_REF] Gemmeke | Audio set: An ontology and human-labeled dataset for audio events[END_REF][START_REF] Kell | A task-optimized neural network replicates human auditory behavior, predicts brain responses, and reveals a cortical processing hierarchy[END_REF]), and three variants of the semDNN network (semDNN unbal , trained with a randomly selected semantically unbalanced dataset, semDNN GloVe , trained to learn GloVe embeddings, and semDNN notrain , the random initialization of an untrained semDNN network).

RESULTS

Internal and external network-prediction accuracy

Fig. 4 shows the ranking score and AMCSS for semDNN vs catDNN, averaged over all evaluation sounds, for the internal (SuperHardDrive) and the four external datasets. In all cases, the ranking score was higher for semDNN, which indicates that training using semantic embeddings produces more accurate predictions than categorical labels. AMCSS was also higher for semDNN in all cases, indicating that Top-N ranked words for semDNN predictions are more semantically related to the true labels than catDNN. This advantage increases when a larger number of words is considered (Fig.

4, arrows).

A relevant hypothesis was that semDNN embeddings would predict higher-order semantic relations between sounds better than catDNN. We tested the MSOS dataset (see 2.2), for which sounds are organized in five macro-classes (effects, human, music, nature, urban). For both semDNN and catDNN, we computed the pairwise cosine distance between sound embeddings in the last intermediate layer (Fig. 2, arrow). Fig. 5 shows that the semDNN embedding (middle panel) reflects better the macro-class organization (left panel) than the catDNN embedding (right panel; correlation with True categorical model = 0.330 and 0.193 for semDNN and catDNN, respectively). 

Comparisons human behavioural data

CONCLUSIONS

We systematically investigated the effects of training DNNs for sound recognition with continuous semantic embeddings (word2vec) vs categorical labels (one-hot encoding). We showed that training with continuous embeddings is beneficial, as it produces semantically more accurate labelling of sounds. Importantly, using human behavioural data, we showed that DNNs trained with continuous semantic embeddings approximate human behaviour better than categorical DNNs. Here, we considered word2vec embeddings of the linguistic sound descriptions to retain information on the (linguistic) semantic relations between the sound sources. In the future, the same approach could be extended to different types of semantic embeddings, for example, derived from natural sound ontologies [START_REF] Giordano | What do we mean with sound semantics, exactly? a survey of taxonomies and ontologies of everyday sounds[END_REF].
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 1 Fig. 1: Categorical vs Semantic label encoding (a) Labelencoding step for the two approaches. (b,c) Example visualization of one-hot vs word2vec spaces
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 2 Fig. 2: Pre-processing and catDNN/semDNN's architecture. Note how the architectures differ only at the last dense layer.
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 3 Fig. 3: t-SNE visualization of 25 clusters of the semantic space. Circle size indicates the number of occurrences of word.

Fig. 4 :

 4 Fig. 4: Networks comparison, Sounds-averaged ranking scores (left) and AMCSS (right) for semDNN and catDNN. Arrows indicate increasing top-N from 5 to 15.

Fig. 6 Fig. 5 :

 65 Fig.6shows the results of the RSA of human dissimilarity ratings of natural sounds for SemDNN, catDNN and other
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 6 Fig. 6: Behaviour prediction. SemDNN outperforms all other models at predicting perceived sound dissimilarity.
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	compared models. SemDNN (R 2 CV =0.371) outperformed
	catDNN (R 2 CV = 0.199) and other DNNs trained using cate-
	gorical labels (VGGish, R 2 CV = 0.226; Yamnet, R 2 CV = 0.302;
	Kell, R 2 CV = 0.179. Also, embeddings from SemDNN ex-
	plained human behavioural data better than embeddings de-
	rived by applying NLP models (word2vec (R 2 CV = 0.211;
	GloVe, R 2 CV = 0.156) to sound descriptors. These results con-
	firm our hypothesis that a network combining acoustic and
	semantic information approximates human behaviour in au-
	ditory cognitive tasks better than models considering acoustic
	(categorical sound-to-event DNNs) or semantic (NLP) in-
	formation alone. Finally, SemDNN outperformed several
	other DNNs with the same architecture that we trained in
	different configurations to evaluate the effects of individ-
	ual factors: CAE (convolutional autoencoder, R 2 CV = 0.090),
	semDNN notrain (random initialization for untrained semDNN, R 2 CV = 0.034), semDNN unbal (semDNN trained on unbalanced dataset, R 2

CV = 0.191).
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