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Abstract: KKL (Kazantzis-Kravaris/Luenberger) observers are based on the idea of immersing
a given nonlinear system into a target system that is a linear stable filter of the measured output.
In the present paper, we extend this theory by allowing this target system to be a nonlinear
contracting filter of the output. We prove, under a differential observability condition, the
existence of these new KKL observers. We motivate their introduction by showing numerically
the possibility of combining convergence speed and robustness to noise, unlike what is known
for linear filtering.

1. INTRODUCTION.

We consider nonlinear systems of the form

ẋ = f(x), (1a)

y = h(x), (1b)

where x lying in Rn is the state of the system, y lying in
R is the measured output, and f and h are smooth maps.

The synthesis of state observers for such systems is a
major topic in control theory, and numerous methods
have been developed over the years. Interested readers
can refer to Bernard et al. (2022) for an overview of
existing methods. Among these methods, the so-called
KKL approach has recently garnered significant attention
due to its generality and the weak assumptions required
ensuring its existence. This methodology, originating from
the seminal work of Luenberger (1964) for linear systems,
has been extended for nonlinear systems first locally in
Kazantzis and Kravaris (1998); Shoshitaishvili (1990) and
then globally in Kreisselmeier and Engel (2003); Andrieu
and Praly (2006); Brivadis et al. (2023). The strategy
consists in finding a positive integer m and a nonlinear
mapping T : Rn → Rm such that if (x, y) is a solution of
(1), then z = T (x) satisfies

ż = Az +By, (2)

where A ∈ Rn×m is a Hurwitz matrix and B ∈ Rm is
a vector. In that case, d

dt (z − T (x)) = A(z − T (x)),

1 The research of this author was funded in whole or in part by the
National Research Agency (ANR) under the project titled ”ANR-
23-CE48-0006-02.”

hence an asymptotic exponential approximation of T (x)
can be obtained by running the linear filter of the output
(2). Then, if T admits a uniformly continuous left-inverse

T inv : Rm → Rn, an observer of x can be defined as
x̂ = T inv(z) and on has limt→+∞(x̂(t)− x(t)) = 0.

Different kind of sufficient conditions for the existence of
such mappings T and T inv are given in Andrieu and Praly
(2006).

In this paper, we propose to extend the class of admissible
filters of the output for the design of the observer. More
precisely, we replace (2) by

ż = kσ(z, y) (3)

where k is a positive real number and σ ensures that (3)
has exponentially contracting dynamics (in a sense to be
defined), ensuring in particular that the distance between
any pair of solutions sharing the same y exponentially
decreases towards 0. This is a natural extension, since,
similar to the linear case, if one finds a mapping T such
that z = T (x) is solution to (3), an asymptotic exponential
estimation of T (x) can be obtained, by running (3) from
any initial condition. Then, as with the linear filter (2), if

T admits a left-inverse T inv : Rm → Rn, an observer can
be defined as

x̂ = T inv(z) (4)

and one has limt→+∞(x̂(t)− x(t)) = 0 provided that T inv

is uniformly continuous.

This study is motivated by three main reasons: nonlinear
filters may (i) give access to better observer performance,



for instance allowing to combine convergence speed and
robustness to noise or increase robustness to model uncer-
tainties; (ii) bridge the gap between the fields of observer
design and recursive neural networks in machine learning;
(iii) give more flexibility in the research of an analytical
expression of the map T .

Regarding item (i), while it is well-known that in the
context of linear dynamics with Gaussian noise, the use
of linear correction gains, as provided by a Kalman filter,
is optimal (Kalman and Bucy (1961)), the same cannot
be said when departing from this context. For instance,
it is typically interesting to introduce nonlinear phenom-
ena such as saturations in the case of sporadic noise,
or, dead zones in the case of high-frequency and low-
amplitude noise Tarbouriech et al. (2022). Furthermore,
the interest in non-linear observers for achieving robust-
ness to model errors is typically highlighted in the con-
text of homogeneous observers or sliding mode observers
(see for instance Levant (2003)). Moreover, convergence
speed and robustness to noise are usually antinomic, unless
varying/switching gains are introduced or even switches
among different observers, depending on the size of the
output error, but with thresholds that may be hard to
tune Petri et al. (2023); Chong et al. (2015); Esfandiari
and Shakarami (2019). Our goal in considering (3) is to
allow such performance, without requesting any canonical
form of the system (1), or having any online threshold to
handle.

This also brings us to item (ii) since it is well-known
in the machine learning community that the addition
of nonlinear terms can enhance the expressiveness of
neural networks and improve performance. Actually the
resemblance between KKL observers – where the system
output is fed to a series of filters and the estimate is
recovered from those internal states via a nonlinear map
to be found – and recursive neural networks (RNNs) is
uncanny (see Janny et al. (2021) for a comparison). In fact,
when no explicit expression of the map T is available, it
has been proposed to learn an approximate model of it via
neural networks in Ramos et al. (2020); Niazi et al. (2023);
Buisson-Fenet et al. (2023); Peralez and Nadri (2021);
Janny et al. (2021). Allowing nonlinear contractions in
KKL could pave the road towards understanding this
similarity and providing theoretical foundations to the
convergence of RNNs as well as guidelines in terms of
dimensions.

However, all those methods require a significant (offline)
computational load and suffer from a curse of dimension-
ality, sometimes at the expense of asymptotic precision on
the online estimate. Our third goal (iii) is thus to enlarge
the class of systems for which an explicit expression of
the transformation T can be obtained by providing more
flexibility in the target dynamics (3).

From a theoretical point of view, the existence of an
immersion T of any system (1) into dynamics (3) is
typically guaranteed, for instance exploiting the theory
of uniformly convergent systems in Pavlov et al. (2004).
The challenge rather lies in proving its injectivity under
observability conditions. This paper achieves a first step
by showing this injectivity for a particular structure of (3),
consisting of m sufficiently fast parallel filters and under

an assumption of strong differential observability of order
m.

The article is structured as follows. Firstly, we present
a general theorem that establishes the existence of a
Lipschitz injective application T which, when applied on
the state trajectory is a specific solution to the nonlinear
filter equation for sufficintly large parameter k. The next
section provides a demonstration, presented as a series of
propositions, with proofs provided in the Appendix. In
the following section, we offer a preliminary illustration
of these results within a robustness context. Lastly, the
conclusion is provided.

Notation. For a subset O of Rn, we denote by O + δ
the set O + δ = {x ∈ Rn| ∃x0 ∈ O, |x− x0| ≤ δ}. When
needed, to exhibit the dependency on initial conditions
x ∈ Rn, we denote, when defined, X(x, t) the (unique)
solution to (1a) at time t, initialized at x. By Lfh we
denote the Lie derivative of h alongside the vector field
f , i.e., Lfh(x) = ∂h

∂x (x)f(x), for all x ∈ Rn. Given a
map g : Rn → Rp, we define ∆g : Rn × Rn → Rp by
∆g(xa, xb) = g(xa) − g(xb) for (xa, xb) ∈ Rn × Rn, and
we say that g is (k-)Lipschitz injective on S ⊂ Rn, if
there exists k > 0 such that for all (xa, xb) ∈ S × S,
|∆g(xa, xb)| ≥ k|xa − xb|. Given a polynomial in powers

of 1
λ in the form p(λ) =

∑ℓ
j=0

pj
λj and given an integer

m, the notation [p(λ)]|m≤i (resp. [p(λ)]|m=i) represents the

polynomial in powers of 1
λ obtained by keeping only the

monomials of power 1
λj with j ∈ {0, . . . , i} (resp. j = i) in

p(λ)m.

2. MAIN RESULT

We assume (i) the system solutions of interest, initialized
in some set X0 ⊂ Rn, are defined on R≥0 and remain in
a compact set X ⊂ Rn, and (ii) the system (1) is strongly
differentially observable of order m on X , as detailed next.

Assumption 1. There exists a compact set X ⊂ Rn such
that for all solution of (1) such that x(0) ∈ X0 then
x(t) ∈ X for all t ≥ 0.

Assumption 2. There exists an integer m ≥ 1 such that
the map Hm : Rn → Rm defined by:

Hm : x 7→


h(x)
Lfh(x)

...
Lm−1
f h(x)

 (5)

is kH -Lipschitz injective on X for some constant kH > 0.

The latter assumption is guaranteed as soon as Hm is
injective and its jacobian is full-rank on X , i.e., when Hm

is an injective immersion on X .

In this paper, we show that the system (1) can then be
transformed through a left-invertible change of coordinates
into a contracting filter (3) with σ consisting of m parallel
contracting filters of the output in the form

σ(z, y) =

 λ0σ(z0, y)
...

λm−1σ(zm−1, y)

 (6)

where λ0, . . . , λm−1 are positive distinct scalars, and σ :
R× R → R satisfying:



Assumption 3. The map σ : R × R → R is of class Cm+1

and verifies for all (z, y) ∈ R× R,

0 < γ ≤
∣∣∣∣∂σ∂y (z, y)

∣∣∣∣ (7a)

−β ≤∂σ
∂z

(z, y) ≤ −α < 0 (7b)

for some constants α, β, γ > 0.

It can be noticed that the map σ defined in (6) then verifies

∂σ

∂z
(z, y) +

∂σ

∂z
(z, y)⊤ < −µ Im ,∀(z, y) ∈ Rm × R, (8)

where µ = −αmin0≤i≤m−1 λi > 0 which according to
(Pavlov et al., 2004, Theorem 1), guarantees that the filter
(3) is uniformly convergent in the sense of Pavlov et al.
(2004). From this, we show the following result.

Theorem 1. Under Assumptions 1, 2 and 3, for allm-uplet
(λ0, . . . , λm−1) of distinct positive scalars, there exists
k∗ > 0 such that for all k > k∗, there exists a map
T : Rn → Rm that is Lipschitz injective on X and such
that, for all solution t 7→ x(t) of (1a) with initial condition
in X0, t 7→ T (x(t)) is solution to (3) with t 7→ y(t) given
by (1b) and σ defined in (6).

This result is proved in Section 3. Under the conditions
of the above theorem, we deduce from the injectivity of T
that there exists a continuous map T inv : Rm → Rn that
is a left-inverse of T on X , namely

T inv(T (x)) = x ∀x ∈ X .

For any such left-inverse, any solution (x, z) of (1)-(3)
initialized in X0 × Rm, with σ defined in (6), verifies
limt→+∞(x̂(t) − x(t)) = 0, with x̂ given by (4) (see for
instance (Brivadis et al., 2023, Theorem 1.1)). Note that

from the Lipschitz -injectity of T , T inv can even be picked
globally Lipschitz, providing exponential convergence of
the estimation error as in Andrieu (2014).

3. PROOF

3.1 Some preliminaries

For each y in R, the function z 7→ σ(z, y) is decreasing
and is a bijection from R to R from Assumption 3. Hence,
there exists a unique map ψ : R → R such that for all
y ∈ R,

σ(ψ(y), y) = 0. (9)

Moreover, according to the implicit function theorem,
ψ ∈ Cm+1(R,R) since σ ∈ Cm+1(R,R).

Also, it can be observed that, from Assumption 1, the
solutions to (1a) initialized in X0 coincide in positive time
with that of the modified dynamics

ẋ = f̆(x) = χ(x)f(x), (10)

with χ a smooth function such that

χ(x) = 1 if x ∈ X , χ(x) = 0 if x /∈ X + δu
for some δu > 0. Besides, Assumptions 1 and 2 still hold
for (10) with output map (1b). In the rest of the proof,

we thus assume without loss of generality that f = f̆ and
we consider that Assumption 1, whenever used, ensures
(forward and backward) invariance of the compact set
X + δu as well as completeness and boundedness of all
solutions.

3.2 Construction of T

Proposition 1. Under Assumptions 1 and 3, for allm-uplet
(λ0, . . . , λm−1) of distinct positive scalars, and for all k > 0
there exists T : Rn → Rm such that, for all solution
t 7→ x(t) of (1a) with initial condition in Rn, t 7→ T (x(t))
is solution to (3) with t 7→ y(t) given by (1b) and σ defined
in (6).

Proof. With Assumption 1, for all x ∈ Rn, the function

s 7→ y(s) := h(X(x, s))

is defined, smooth, and bounded for all positive time.
According to (Pavlov et al., 2004, Theorem 1), Assumption
3 guarantees that for all x in Rn, the system

ż = λσ(z, y) (11)

with state z ∈ R and λ > 0 admits a unique bounded
solution t 7→ Z̄(t, y, λ) defined on R, which is uniformly
globally asymptotically stable. For all x ∈ Rn and all
λ > 0, we then define

T (x, λ) = Z̄(0, s 7→ h(X(x, s)), λ), (12)

and for all λ0, . . . , λm−1 > 0, and all k > 0,

T (x) =


T (x, kλ0)
T (x, kλ1)

...
T (x, kλm−1)

 . (13)

We then show that for any x ∈ Rn, t 7→ T (X(x, t)) is
solution to (3). To do so, it is sufficient to show that for
any λ, k > 0, T (X(x, t), kλ) = Z̄(t, s 7→ h(X(x, s)), kλ) for
all t ∈ R. For all t in R, we have

T (X(x, t), kλ) = Z̄(0, s 7→ h(X(X(x, t), s)), kλ)

= Z̄(0, s 7→ h(X(x, t+ s)), kλ).

It is thus enough to show that for each t ∈ R,
Z̄(0, s 7→ h(X(x, t+ s)), kλ) = Z̄(t, s 7→ h(X(x, s)), kλ).

(14)
Let t ∈ R. For any bounded τ 7→ y(τ), the system

dz

dτ
(τ) = kλσ(z(τ), y(τ)), ∀τ ∈ R, (15)

is uniformly convergent in the sense of Pavlov et al. (2004).
Therefore, it admits a unique bounded solution defined
on R that is τ 7→ Z̄(τ, s 7→ y(s), kλ). Consider the map
zt : τ 7→ Z̄(τ + t, s 7→ h(X(x, s)), kλ). It is bounded on R
and verifies, by definition of Z̄,

dzt
dτ

(τ) = kλσ(Z̄(τ+t, s 7→ h(X(x, s)), kλ), h(X(x, t+τ))).

So by uniqueness of the bounded solution of (15),

zt(τ) = Z̄(τ, s 7→ h(X(x, t+ s)), kλ).

Taking τ = 0 yields (14) and concludes the proof. □

3.3 Construction of an approximation of T which is
Lipschitz injective

To prove Theorem 1, we need to show that the mapping
T obtained from Proposition 1 is Lipschitz injective on
X for sufficiently large k. The idea of the proof is to use
an approximation of the components of T (i.e. T (·, kλi)),
and more precisely a development in powers of 1

k . The

approximation we consider is obtained from a C1 mapping



ϕ : Rn → Rm, with ϕ = (ϕ0, . . . , ϕm−1) where ϕℓ are of
class Cm−i+1 and are defined recursively for x in Rn as

ϕ0(x) = ψ(h(x)), (16)

and for ℓ ∈ {1, . . . ,m− 1}:
ϕℓ(x) =

κ(h(x))

[
Lfϕℓ−1(x)−

ℓ∑
j=1

1

j!

∂jσ

∂zj
(ψ(h(x)), h(x))

×
∑

ℓ1+···+ℓj=ℓ
1≤ℓ1,...,ℓj≤ℓ−1

ϕℓ1(x) · · ·ϕℓj (x)
]
, (17)

where

κ(y) =

(
∂σ

∂z
(ψ(y), y)

)−1

. (18)

Notice that the definition of ϕℓ(x) for ℓ ≥ 1 involves ϕi(x)
with i ∈ {1, · · · , ℓ − 1} only and is independent from λ.
The approximation of T (x, λ) is then defined as

Ta(x, λ) =

m−1∑
ℓ=0

ϕℓ(x)

λℓ
. (19)

From there, given λ = (λ0, . . . , λm−1) and given k > 1, we
thus get from (13) the following approximation of T

Ta(x) = VK−1ϕ(x), (20)

where K = diag
(
1, . . . , km−1

)
and V is the Vandermonde

matrix

V =

1 λ−1
0 . . . λ

−(m−1)
0

...
...

. . .
...

1 λ−1
m−1 . . . λ

−(m−1)
m−1

 . (21)

Clearly, injectivity of Ta may be deduced from the injectiv-
ity of ϕ as soon as the λi’s are all distinct. Actually, in the
following proposition, it is shown that with Assumption 2,
injectivity of ϕ is ensured on X .

Proposition 2. Under Assumption 2, ϕ is Lipschitz injec-
tive in X . In other word, there exists a positive real number
kϕ such that for all (xa, xb) in X 2

|ϕ(xa)− ϕ(xb)| ≥ kϕ |xa − xb| . (22)

The proof of Proposition 2 can be found in Section A.5. A
direct consequence is that for all m-uplet (λ0, . . . , λm−1)
of positive distinct scalars, all k > 1, all (xa, xb) in X 2 the
following inequality is satisfied

|Ta(xa) − Ta(xb)| ≥
kϕ

km−1∥V−1∥
|xa − xb|, (23)

since ∥K∥ ≤ km−1, which establishes that Ta is Lipschitz
injective in X .

3.4 Ta is an approximation of order λ−m of T

The reason for stating that Ta is an approximation of
T will be shown in this section. Indeed, we demonstrate
that the difference between these two functions is of the
order λ−m. In Proposition 1, we have shown that for
any λ0, . . . , λm−1 > 0, any k > 0 and any x ∈ Rn,
t 7→ T (X(x, t)) is solution to (3). From the definitions
of σ and T in (6) and (13), we deduce that T is supposed
to verify, for all x ∈ Rn and all λ > 0,

LfT (x, λ) = λσ(T (x, λ), h(x)). (24)

In order to establish that Ta approximates T , we first study
the error in the partial differential equation (24) induced
by this approximation.

Proposition 3. Let ω : Rn × R>0 → R be defined as

ω(x, λ) =
LfTa(x, λ)− λσ(Ta(x, λ), h(x))

λ
with Ta defined in (19). Under Assumptions 1 and 3 there
exist two positive real numbers ω̄ and kω such that

∀x ∈ X + δu,∀λ > 1, |ω(x, λ)| ≤ ω̄

λm
, (25)

and for all (xa, xb) ∈ (X + δu)
2,∀λ > 1,

|ω(xa, λ)− ω(xb, λ)| ≤
kω
λm

|xa − xb|. (26)

The proof of Proposition 3 can be found in Section
A.1. We introduce R the difference between T and its
approximation Ta:

R(x, λ) = T (x, λ)− Ta(x, λ). (27)

Employing the bounds obtained in Proposition 3, the
following two propositions establish that R is bounded and
is Lipschitz with order 1

λm :

Proposition 4. Under Assumption 1 and 3,

∀x ∈ X + δu,∀λ > 1, |R(x, λ)| ≤ ω̄

αλm
. (28)

Proposition 5. Under Assumption 1 and 3, there exist
λ∗ > 1 and a positive real number kR such that for all
(xa, xb) in (X + δu)

2 for all λ > λ∗,

|R(xa, λ)−R(xb, λ)| ≤
kR
λm

|xa − xb|. (29)

The proof of Proposition 4 and 5 can be found in Section
A.2 and Section A.4.

3.5 Proof of Theorem 1

For k > 1 and for a givenm-uplet λ of distinct positive real
numbers, let T be given by Proposition 1. For all solution
t 7→ x(t) of (1a) with initial condition in X0, t 7→ T (x(t)) is
solution to (3) with t 7→ y(t) given by (1b) and σ defined
in (6). With Ta given previously, we can introduce the
mapping R as

T (x) = Ta(x) +R(x), (30)

with
R(x) = (R(x, kλ0), . . . , R(x, kλm−1)).

With Proposition 2, equation (23) and Proposition (29),
we conclude that for all k such that kλi > λ∗ for all
i = 0, . . . ,m− 1,

|∆T (xa, xb)| ≥
1

km−1

(
kϕ

∥V−1∥
− 1

k

m−1∑
i=0

kR
λmi

)
|xa−xb|.

This proves that there exists k∗ > 0 such that, for any
k ≥ k∗, x 7→ T (x) given in (13) is Lipschitz injective on X
which concludes the proof of Theorem 1.

4. ILLUSTRATION

In this part, we show how a KKL observer with nonlinear
filter dynamics may allow to obtain simultaneously fast
convergence and robustness to measurement noise. For



that, we compare its performance to two KKL observers
with linear filter dynamics, one fast and the other slow

ż = λafast(z − y), ż = λaslow(z − y), (31)

where λ > 0, and afast < aslow < 0. When choosing a
family (λi)1≤i≤m, the corresponding observers are given
by (2) with Afast = afast diag(λi)1≤i≤m and Bfast =
−afast(1, . . . , 1)⊤ (resp. Aslow = aslow diag(λi)1≤i≤m and
Bslow = −aslow(1, . . . , 1)⊤). It is well-known that when
tuning the parameters of linear filters, a compromise has to
be found between speed of convergence and robustness to
noise. More precisely, modulo the nonlinear left-inversion
of T , KKL observers built with fast (resp. slow) linear
filters usually exhibit fast (resp. slow) convergence prop-
erties but poor (resp. good) robustness to measurement
noise.

On the other hand, building a KKL observer based on
nonlinear filters allows to consider dynamics of the form

ż = λ(afast(z − y) + (aslow − afast)tanh(z − y)) (32)

which can be checked to verify Assumption 3. When
choosing a family (λi)1≤i≤m, the corresponding observer is
given by (3) for k = 1 and the corresponding contraction
σ as in (6). The motivation is the following: On the one
hand, for large values of |z − y|, the nonlinear dynamics
behave as the fast linear dynamics. Therefore, a fast
convergence is expected. On the other hand, for small
values of |z − y|, the nonlinear dynamics behave as the
slow linear dynamics. Therefore, the same robustness with
respect to small perturbations of the measurement y is
expected. In other words, the nonlinear KKL observers is
expected to take the best of both worlds.

For simulations, we consider a nonlinear Duffing oscillator{
ẋ1 = x2
ẋ2 = −0.2x1 − x31

, y = x1, (33)

which verifies Assumptions 1 and 2 with X0 = [−2, 2]2 and
m = 2. We pick λ1 = −2, λ2 = −4, λ3 = −6, afast = 5 and
aslow = 0.5. For each KKL observer, we create a dataset
of points (x, z) approximating (x,T (x)), with the map T
such that the image of solutions to (33) by T is solution
to the corresponding observer dynamics (2) or (3). This
is done by simulating the interconnection of (33) with
(2) or (3) from a grid of 200 × 200 initial conditions in
X0 × {0}, and storing the obtained pairs (x, z) after a
time tl := 20/min{|λi|}, needed for the filters to “forget”
their initial condition. Values of T (x) for a given x and of

T inv(z) for a given z can then be obtained by fetching the
closest point in the dataset.

We then propose two simulation scenarios: 1) we initialize
all observers with the same initial error randomly picked
so that |z(0) − T (x(0))| = 100 and we do not add mea-
surement noise, and 2) we initialize all observers to their
correct initial condition T (x(0)) and we add a sinusoidal
measurement noise (ν(t) = 0.1 sin(10t)). The first (resp.
second) scenario aims at comparing the convergence times
(resp. the impact of measurement noise). The numerical
results for a particular choice of x(0) are provided in
Figure 1. As expected, the KKL observer with nonlinear
dynamics converges as fast as the one with fast linear
dynamics and seems almost as robust to noise than the
one with slow linear dynamics. Minimum, maximum and
mean convergence time and gain with respect to noise for

Fast linear Slow linear Nonlinear

Convergence
time

Min 0.78 6.29 1.52
Max 0.87 7.72 3.15
Mean 0.83 6.79 2.27

Gain
w.r.t. noise

Min 7.23 0.94 1.56
Max 8.07 1.53 2.37
Mean 7.57 1.15 1.95

Table 1. Comparison of KKL observers with
slow/fast linear dynamics and KKL observer
with nonlinear dynamics in terms of conver-
gence time and gain with respect to noise of

|x̂− x|.

100 random x(0) are given in Table 1. The convergence
time is computed in Scenario 1 as the first time after which
the error remains below tolerance thresholds, determined
by the precision of the approximation of T and T inv. The
robustness to measurement noise is quantified in Scenario
2 by dividing the 2-norm of the steady state error by the
amplitude of the noise. We refer the reader to Brivadis
et al. (2024) to experiment the simulations.
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(a) Scenario 1: |x̂(t)− x(t)|
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(b) Scenario 1: |z(t)−T (x(t))|
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(c) Scenario 2: |x̂(t)− x(t)|
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Fig. 1. Estimation error in x and z coordinates from two
KKL observers with linear dynamics (2) with slow and
fast pairs (Aslow, Bslow) and (Afast, Bfast) defined from
(31), and by a KKL observer with nonlinear dynamics
(3) defined from (32). Scenario 1: initial error but no
noise; Scenario 2 : no initial error but noise.

5. CONCLUSION

In this article, we have presented a KKL-type observer
with non-linear dynamics. In the scenario where the sys-
tem is differentially observable of orderm, we have demon-
strated the existence of such an estimation algorithm when
the observer’s dynamics are structured as m non-linear
filters operating in parallel, provided that their dynamics
are sufficiently fast. Through a simplified illustration, we
have highlighted a potential application of this technique
to obtain a better qualitative behavior of the estimate.
In a more general context, demonstrating the existence of
such an observer for a broader class of contractions would



be highly intriguing. However, the techniques employed in
this article may not readily adapt to this more general
framework.

REFERENCES

Andrieu, V. (2014). Convergence speed of nonlinear
Luenberger observers. SIAM Journal on Control and
Optimization, 52(5), 2831–2856.

Andrieu, V. and Praly, L. (2006). On the existence of a
kazantzis–kravaris/luenberger observer. SIAM Journal
on Control and Optimization, 45(2), 432–456.

Bernard, P., Andrieu, V., and Astolfi, D. (2022). Observer
design for continuous-time dynamical systems. Annual
Reviews in Control, 53, 224–248.

Brivadis, L., Andrieu, V., Bernard, P., and Serres, U.
(2023). Further remarks on KKL observers. Systems
& Control Letters, 172, 105429.

Brivadis, L., Bernard, P., and Andrieu, V. (2024).
KKL observers with nonlinear dynamics. Avail-
able at https://github.com/paulinebernard/
KKL-with-Nonlinear-Dynamics.

Buisson-Fenet, M., Bahr, L., Morgenthaler, V., and
Meglio, F.D. (2023). Towards gain tuning for numerical
KKL observers. IFAC-PapersOnLine, 56(2), 4061–4067.
22nd IFAC World Congress.
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Appendix A. PROOFS

This part of the paper is not in the version which has been
published in Pachy et al. (2024).

In this section, we give the technical proofs employed to get
the main result. Note that to simplify the presentation, we

use the following notation: σ(j)(x) = ∂jσ
∂zj (ψ(h(x)), h(x)).

A.1 Proof of Proposition 3

First of all, we have the following technical lemma whose
proof can be found in Appendix A.3.

Lemma 1. For each x ∈ Rn and λ > 0,

LfTa(x, λ) = λ

m−1∑
j=1

σ(j)(x)

j!

[m−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
≤m−1

+
1

λm−1
Lfϕm−1(x). (A.1)

Hence, with (18), (19), (16) and (A.1), it yields

ω(x, λ) =

m−1∑
i=1

σ(i)(x)

i!

[m−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣i
≤m−1

−σ

(
ψ(h(x)) +

m−1∑
ℓ=1

ϕℓ(x)

λℓ
, h(x)

)
+

1

λm
Lfϕm−1(x)

As σ is Cm+1, using (9) and a Taylor expansion of σ
around (ψ(h(x)), h(x)),

ω(x, λ) =
ω0(x, λ)

λm
−G(x, λ) +

1

λm
Lfϕm−1(x)

where

ω0(x, λ) =
1

(m− 1)!

∫ 1

0

[
(1− s)m−1 ∂

mσ

∂zm

(
ψ(h(x))

+ s

m−1∑
ℓ=1

ϕℓ(x)

λℓ
, h(x)

)]
ds

[m−1∑
ℓ=1

ϕℓ(x)

λℓ−1

]m
G(x, λ) =

m−1∑
i=1

σ(i)(x)

i!

([m−1∑
ℓ=1

ϕℓ(x)

λℓ

]i
−
[m−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣i
≤m−1

)



Note that G equals 0 if i = 1 and equals

1

λm

i(m−1)∑
j=0

1

λj
ϕ̃ij(x)

if i > 1, with ϕ̃ij being a certain polynomial of the ϕℓ for
ℓ = 1, . . . ,m− 1, therefore this gives

ω(x, λ) =
ω0(x, λ) + Lfϕm−1(x)

λm

+
1

λm

m−1∑
i=2

σ(i)(x)

i!

i(m−1)∑
j=0

ϕ̃ij(x)

λj
. (A.2)

Therefore, using triangular inequality, for x ∈ X + δu and
λ > 0,

|λm||ω(x, λ)| ≤ |ω0(x, λ)|+ |Lfϕm−1(x)|

+

m−1∑
i=2

1

i!

∣∣∣∣σ(i)(x)

∣∣∣∣ i(m−1)∑
j=0

1

λj
|ϕ̃ij(x)|. (A.3)

As σ and ψ are Cm+1, σ(i) is continuous, and therefore
bounded on the compact set X + δu for all i in {1, . . . ,m}.
Moreover, ϕ̃kj is a polynomial of the continuous functions
ϕℓ, and therefore is bounded on the compact set X+δu. As
ϕm−1 is C2, Lfϕm−1 is also bounded on X +δu. Moreover,

there exists δψ > 0 such that
∣∣∣∑m−1

ℓ=1
ϕℓ(x)
λℓ

∣∣∣ ≤ δψ for all

x ∈ X + δu and all λ > 1. By continuity of ∂mσ
∂zm , it is

bounded on (ψ(h(X + δu)) + δψ) × h(X + δu), uniformly
in λ > 1. We can conclude that there exists ω̄ > 0,
independent from λ, such that (25) holds. Note also that ω
is C1 and so are all the previously listed maps. So similarly,
it yields,

λm
∣∣∣∣∂ω∂x (x, λ)

∣∣∣∣ ≤ ∣∣∣∣∂ω0

∂x
(x, λ)

∣∣∣∣+ ∣∣∣∣∂Lfϕm−1

∂x
(x)

∣∣∣∣
+

m−1∑
i=2

1

i!

∣∣∣∣∂σ(i)

∂x
(x)

∣∣∣∣ i(m−1)∑
j=0

1

λj

∣∣∣∣∣∂ϕ̃ij∂x
(x)

∣∣∣∣∣ . (A.4)

Hence, there exists a positive real number k′ω, such that
for all λ > 1 and x ∈ X + δu, it yields

λm
∣∣∣∣∂ω∂x (x, λ)

∣∣∣∣ ≤ k′ω.

Inequality (26) is obtained for some kω > k′ω.

A.2 Proof of Proposition 4

The evaluation R(X(x, t), λ) of R along any solution
initiated at x ∈ X + δu satisfies

d

dt
R(X(x, t), λ) =

λ[σ(Ta(X(x, t), λ) +R(X(x, t), λ), h(X(x, t)))

− σ(Ta(X(x, t), λ), h(X(x, t)))]− λω(X(x, t), λ)

With the condition (7b) it yields for all x ∈ X + δu

R(x, λ)
[
σ(T (x, λ) +R(x, λ), h(x))− σ(T (x, λ), h(x))

]
≤ −αR(x, λ)2.

Since moreover, X + δu is negatively invariant along the
flow and with Young’s inequality, for all ε > 0 it gives

d

dt
R(X(x, t), λ)2 ≤ −2λαR(X(x, t), λ)2

+
λ

ε
ω(X(x, t), λ)2 + λεR(X(x, t), λ)2

= −λαR(X(x, t), λ)2 +
λ

α
ω(X(x, t), λ)2

where we chose ε = α for the last equality to hold. By
multiplying each side by eλαt and rearranging the terms,
we obtain

d

dt
(R(X(x, t), λ)2eλαt) ≤ λ

α
ω(X(x, t), λ)2eλαt. (A.5)

Let δ > 0. Integrating between −δ and 0 and using (25),
we get for any x ∈ X + δu and any λ > 1,

R(x, λ)2 ≤ R(X(x,−δ), λ)2e−λαδ

+
λ

α

∫ 0

−δ
ω(X(x, s), λ)2eλαsds

≤ R(X(x,−δ), λ)2e−λαδ + λ

α

ω̄2

λ2m

∫ 0

−δ
eλαsds

= R(X(x,−δ), λ)2e−λαδ + λω̄2(1− e−λαδ)

α2λ2m+1

δ 7→ X(x,−δ) is bounded, so with the definition of T in
(12), δ 7→ T (X(x,−δ), λ) is bounded, and, by continuity
of ϕℓ for each ℓ ∈ {0, . . . ,m − 1}, δ 7→ R(X(x,−δ), λ) is
also bounded. Letting δ go to +∞, it yields

∀λ > 1,∀x ∈ X + δu, R(x, λ)2 ≤ ω̄2

α2λ2m
.

We finally get (28).

A.3 Proof of Lemma 1

Define Ta,i(x, λ) =
∑i−1
j=0

ϕj(x)
λj , so that Ta,m = Ta. The

proof of Lemma 1 is obtained by recursion. We are going
to prove the following property for i ≥ 1:

P(i): For all x ∈ Rn and λ > 0, Ta,i verifies

LfTa,i(x, λ) = λ

i−1∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
≤i−1

+
Lfϕi−1(x)

λi−1
. (A.6)

Clearly, LfTa,1 = Lfϕ0 so the property is true for i = 1.
Assume P(i) is true for a certain i ≥ 1. Let us show that
P(i+ 1) holds. We have

LfTa,i+1(x, λ) =

i∑
ℓ=0

Lfϕℓ(x)

λℓ

= LfTa,i(x, λ) +
Lfϕi(x)

λi

= λ

i−1∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
≤i−1

+
Lfϕi−1(x)

λi−1
+
Lfϕi(x)

λi
.

On another hand, we have



λ

i∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ
+
ϕi(x)

λi

]∣∣∣∣j
≤i

+
Lfϕi(x)

λi

= λ

[ i−1∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
≤i

+
σ(1)(x)

λi
ϕi(x)

+
σ(i)(x)

i!

[ i−1∑
ℓ=1

1

λℓ
ϕℓ(x)

]∣∣∣∣i
≤i

]
+
Lfϕi(x)

λi

= λ

[ i−1∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
≤i−1

+

i−1∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
=i

+ σ(1)(x)
ϕi(x)

λi
+

1

λi
σ(i)(x)

i!
(ϕ1(x))

i

]
+
Lfϕi(x)

λi

= LfTa,i+1(x, λ) + λ

[ i−1∑
j=1

σ(j)(x)

j!

[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
=i

+ σ(1)(x)
ϕi(x)

λi
+

1

λi
σ(i)(x)

i!
(ϕ1(x))

i

]
− Lfϕi−1(x)

λi−1
.

Therefore, with ϕi defined in (17) and noting that[ i−1∑
ℓ=1

ϕℓ(x)

λℓ

]∣∣∣∣j
=i

=
1

λi

∑
ℓ1+···+ℓj=i

1≤ℓ1,...,ℓj≤i−1

ϕℓ1(x) · · ·ϕℓj (x)

it yields the result.

A.4 Proof of Proposition 5

To simplify the readability of this proof, in the following
the dependencies on λ have been removed.

Note that given (za, ra, ya, zb, rb, yb) in R6, the function σ
being C2, we have

σ(za + ra, ya)− σ(za, ya) =

[∫ 1

0

∂σ

∂z
(za + θra, ya)dθ

]
ra

and

(σ(za + ra, ya)− σ(za, ya))− (σ(zb + rb, yb)− σ(zb, yb))

=

[∫ 1

0

∂σ

∂z
(za + θra, ya)dθ

]
ra −

[∫ 1

0

∂σ

∂z
(zb + θrb, yb)dθ

]
rb

=

[∫ 1

0

∂σ

∂z
(za + θra, ya)dθ

]
[ra − rb]

+

[ ∫ 1

0

∂σ

∂z
(za + θra, ya)−

∂σ

∂z
(zb + θrb, yb)dθ

]
rb

=

[ ∫ 1

0

∂σ

∂z
(za + θra, ya)dθ

]
[ra − rb]

+

(∫ 1

0

[ ∫ 1

0

∂2σ

∂z2
(z(θ, ρ), y(ρ))(za − zb + θ(ra − rb))dρ

]
dθ

)
rb

+

(∫ 1

0

[ ∫ 1

0

∂2σ

∂z∂y
(z(θ, ρ), y(ρ))(ya − yb)dρ

]
dθ

)
rb

where

z(θ, ρ) = zb + θrb + ρ[za − zb + θ(ra − rb)]

y(ρ) = yb + ρ(ya − yb).

Moreover, for all (xa, xb) in (X + δu)
2,

d

dt
(R(X(xa, t))−R(X(xb, t)))

= λ

[
σ(Ta(X(xa, t)) +R(X(xa, t)), h(X(xa, t)))

− σ(Ta(X(xa, t)), h(X(xa, t)))

−
(
σ(Ta(X(xb, t)) +R(X(xb, t)), h(X(xb, t)))

− σ(Ta(X(xb, t))), h(X(xb, t))
)]

− λ
[
ω(X(xa, t))− ω(X(xb, t))

]
.

On another hand, with Proposition 4, there exists a
positive real number Bσ,2 such that for all (xa, xb) in
(X + δu)

2 and for all λ > 1, and (θ, ρ) in [0, 1]2,∣∣∣∣∂2σ∂z2
(z(θ, ρ), y(ρ))

∣∣∣∣ ≤ Bσ,2∣∣∣∣ ∂2σ∂z∂y
(z(θ, ρ), y(ρ))

∣∣∣∣ ≤ Bσ,2

with za = Ta(xa), zb = Ta(xb), ra = R(xa), rb = R(xb),
ya = h(xa), and yb = h(xb). Hence, since X+δu is invariant
along the flow and with (7a), we get

d

dt
∆R(X(xa, t), X(xb, t))

2

≤ −2λ(α−Bσ,2|R(X(xb, t))|)∆R(X(xa, t), X(xb, t))
2

+ 2λBσ,2|R(X(xb, t))|
S(X(xa, t), X(xb, t))|∆R(X(xa, t), X(xb, t))|

+ 2λ|∆ω(X(xa, t), X(xb, t))||∆R(X(xa, t), X(xb, t))|,

where S = |∆Ta| + |∆h|. Using Young’s inequality twice,
we obtain for some ε and ε′ strictly positive:

d

dt
∆R(X(xa, t), X(xb, t))

2

≤ −2λ

(
α− ε′

2
−Bσ,2|R(X(xb, t))|

(
1 +

ε

2

))
×∆R(X(xa, t), X(xb, t))

2

+
λ

ε
Bσ,2|R(X(xb, t))|S(X(xa, t), X(xb, t))

2

+
λ

ε′
∆ω(X(xa, t), X(xb, t))

2

Then, using Proposition 4,

d

dt
∆R(X(xa, t), X(xb, t))

2

≤ −2λ

(
α− ε′

2
−Bσ,2

ω̄

αλm

(
1 +

ε

2

))
×∆R(X(xa, t), X(xb, t))

2

+
ω̄λBσ,2
αελm

S(X(xa, t), X(xb, t))
2

+
λ

ε′
∆ω(X(xa, t), X(xb, t))

2.

Choosing ε = α2

2Bσ,2ω̄
λm and ε′ = α

2 gives



d

dt
∆R(X(xa, t), X(xb, t))

2

≤ −λ
2

(
α− 4Bσ,2

ω̄

αλm

)
∆R(X(xa, t), X(xb, t))

2

+
ω̄2Bσ,2λ

α3λ2m
S(X(xa, t), X(xb, t))

2

+
2λ

α
∆ω(X(xa, t), X(xb, t))

2.

If we multiply by exp
(
λ
2

(
α− 4Bσ,2

ω̄
αλm

)
t
)
≡ exp(Θt) on

both sides, we obtain (by ommitting the dependency on λ
of Θ for now)

d

dt

(
∆R(X(xa, t), X(xb, t))

2 exp(Θt)

)
≤
(
ω̄2Bσ,2λ

α3λ2m
S(X(xa, t), X(xb, t))

2

+
2λ

α
∆ω(X(xa, t), X(xb, t))

2

)
exp(Θt)

We then integrate between −δ < 0 and 0, for (xa, xb) ∈
(X + δu)

2 and λ > 1,

∆R(xa, xb)
2

≤ ∆R(X(xa,−δ), X(xb,−δ))2 exp(−Θδ)

+

∫ 0

−δ

ω̄2Bσ,2λ

α3λ2m
S(X(xa, s), X(xb, s))

2 exp(Θs)ds

+

∫ 0

−δ

2λ

α
∆ω(X(xa, s), X(xb, s))

2 exp(Θs)ds

Since by Proposition 3, s 7→ ∆ω(X(xa, s), X(xb, s))
2

is bounded and s 7→ ∆T (X(xa, s), X(xb, s))
2 is also

bounded, it yields that for all λ >
(
4Bσ,2

ω̄
α2

)1/m
the

former integrals are well defined when δ goes to +∞.
Moreover, since by Proposition 4 and the invariance of
(X + δu), δ 7→ ∆R(X(xa,−δ), X(xb,−δ))2 is bounded it
yields

∆R(xa, xb)
2

≤
∫ 0

−∞

ω̄2Bσ,2λ

α3λ2m
S(X(xa, s), X(xb, s))

2 exp(Θs)ds

+

∫ 0

−∞

2λ

α
∆ω(X(xa, s), X(xb, s))

2 exp(Θs)ds.

Also, the functions h and ϕℓ being C
1, by definition of Ta

in (19), there exists kS such that for all λ > 1 and all
(xa, xb) in (X + δu)

2,

S(xa, xb) ≤ kS |xa − xb|.

Using Proposition 3 with λ > max{
(
4Bσ,2

ω̄
α2

)1/m
, 1} we

can write

∆R(xa, xb)
2

≤ ω̄2Bσ,2λ

α3λ2m
k2S

∫ 0

−∞
|X(xa, s)−X(xb, s)|2 exp(Θs)ds

+
2λ

α

k2ω
λ2m

∫ 0

−∞
|X(xa, s)−X(xb, s)|2 exp(Θs)ds.

(A.7)

Since f is Lipschitz on (X + δu), there exists kf > 0 such
that for all s < 0 and (xa, xb) in (X + δu)

2,

|X(xa, s)−X(xb, s)|

≤ |xa − xb|+
∫ 0

s

kf |X(xa, s)−X(xb, s)|ds.

Grönwall’s lemma gives for t < 0,

|X(xa, t)−X(xb, t)| ≤ |xa − xb| exp(−kf t)
and reinjecting this in (A.7),

∆R(xa, xb)
2

≤ ω̄2Bσ,2λk
2
S

α3λ2m
|xa − xb|2

∫ 0

−∞
exp ([Θ− 2kf ] s) ds

+
2λ

α

k2ω
λ2m

|xa − xb|2
∫ 0

−∞
exp ([Θ− 2kf ] s) ds.

Let λ∗ > 1 be large enough such that

λ

2

(
α− 4Bσ,2

ω̄

αλm

)
− 2kf > 0.

Then, for all λ > λ∗, the integrals converge and we get∫ 0

−∞
exp ([Θ− 2kf ] s) ds =

1

Θ− 2kf
.

By integrating the last identity into the previous one and
taking the square root, we have for any (xa, xb) ∈ X 2 and
any λ > λ∗,

|∆R(xa, xb)| ≤
1

λm

(
ω̄2Bσ,2λk

2
Sα

2 + 2λk2ω
α3(Θ− 2kf )

)1/2

|xa − xb|.

Which can be rewritten as (29) for some positive real
number kR.

A.5 Proof of Proposition 2

We now establish Lipschitz injectivity of ϕ. For ϕ0, under
Assumption 3, we have∣∣∣∣dψdy (y)

∣∣∣∣ >
∣∣∣∣∣
∂σ
∂y (ψ(y), y)
∂σ
∂z (ψ(y), y)

∣∣∣∣∣ ≥ γ

β
≡ µ0 > 0. (A.8)

So we deduce that

∀(xa, xb) ∈ X 2, |∆ϕ0(xa, xb)| ≥ µ0|∆h(xa, xb)|.

Then, an immediate recursion from (16)-(17) shows that
there exist C1 functions P1, . . . , Pm−1 such that for all
x ∈ X + δu, λ > 0, and ℓ ∈ {1, . . . ,m− 1}, ϕℓ is written as

ϕℓ(x) = κ(h(x))ℓ
dψ

dy
(h(x))Lℓfh(x) + Pℓ(Hℓ(x)).

where

Hℓ = (h, . . . , Lℓ−1
f h).

To simplify the expressions, when there is no ambiguity,
we write g(h) = g ◦ h for the composition of functions.

For ℓ ≥ 1 and (xa, xb) ∈ X 2, the triangular inequality
gives

|∆ϕℓ(xa, xb)| ≥
∣∣∣∣∆(κℓ(h)

dψ

dy
(h)Lℓfh)(xa, xb))

∣∣∣∣
−|∆Pℓ(Hℓ)(xa, xb)|.

The first term can be decomposed this way



∣∣∣∣∆(κℓ(h)
dψ

dy
(h)Lℓfh)(xa, xb)

∣∣∣∣
≥
∣∣∣∣(κℓ dψdy

)
(h(xa))∆L

ℓ
fh(xa, xb)

∣∣∣∣
−
∣∣∣∣Lℓf (h(xb))κ(h(xa))ℓ∆(dψdy

)
(h(xa), h(xb))

∣∣∣∣
−
∣∣∣∣Lℓf (h(xb))dψdy (h(xb))∆κℓ(h(xa), h(xb))

∣∣∣∣ .
We want to lower bound the first term, and upper bound
the other two. The output h(x) is bounded for x in the
compact X , and as h and f are regular enough and x
lies in a compact, Lℓfh(x) is bounded too. Moreover, κ

is Cm and dψ
dy is Cm, therefore they are bounded and

Lipschitz on the compact set h(X ). It follows that κl is
Lipschitz on the compact set h(X ). Moreover, using (A.8)
and the definition of κ with Assumption 3, we get for all
(xa, xb) ∈ X 2∣∣∣∣∆(κℓ(h)

dψ

dy
(h)Lℓfh)(xa, xb))

∣∣∣∣ ≥ µ0

β
|∆Lℓfh(xa, xb))|

−ρ̃ℓ|∆h(xa, xb)|
for some ρ̃ℓ ≥ 0.

Moreover, Pℓ is C
1 on the compact set Hℓ(X ), so we have

∀(xa, xb) ∈ X 2, |∆Pℓ(Hℓ)(xa, xb))| ≤ kPℓ
|∆Hℓ(xa, xb)|

for some kPℓ
> 0. So we finally get

∀(xa, xb) ∈ X 2, |∆ϕℓ(xa, xb)| ≥ µℓ|∆Lℓf (h(xa), h(xb))|

−ρℓ
ℓ−1∑
i=0

|∆Lif (h(xa), h(xb))|

for some µℓ > 0 and ρℓ ≥ 0.

To conclude the proof, we show the Lipschitz injectivity
of Dϕ with D = diag(d0, d1, . . . , dm−1) for some di > 0 to
be picked. We compute

|∆(Dϕ)(xa, xb)| =
m−1∑
ℓ=0

dℓ|∆ϕℓ(xa, xb)|

≥
m−1∑
ℓ=0

dℓ

(
µℓ|∆Lℓfh(xa, xb)| − ρℓ

ℓ−1∑
i=0

|∆Lifh(xa, xb))|
)

=

m−1∑
ℓ=0

(dℓµℓ −
m−1∑
i=ℓ+1

diρi)|∆Lℓfh(xa, xb))|.

We want to fix dℓµℓ−
∑m−1
i=ℓ+1 diρi = 1 for all ℓ = 0, . . . ,m−

1. This is equivalent to
µ0 −ρ1 · · · · · · −ρm−1

0 µ1 −ρ2 · · · −ρm−1

...
. . .

. . .
. . .

...
... 0

. . .
. . . −ρm−1

0 · · · · · · 0 µm−1


 d0

...
dm−1

 =

1
...
1

 .

Since all µi are non-zero, the matrix is invertible. Hence
there exists a suitable choice of di. Assumption (2) of
differentiable observability gives for any (xa, xb) ∈ X 2

|∆(Dϕ)(xa, xb)| ≥ |∆Hm(xa, xb)| ≥ kH |xa − xb|.
Hence, we readily get that for all (xa, xb) ∈ X 2,

|∆ϕ(xa, xb)| ≥
kH

max di
|xa − xb|.


