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Abstract

Error control by means of a posteriori error estimators or indica-
tors and adaptive discretizations, such as adaptive mesh refinement, have
emerged in the late seventies. Since then, numerous theoretical develop-
ments and improvements have been made, as well as the first attempts
to introduce them into real-life industrial applications. The present intro-
ductory chapter provides an overview of the subject, highlights some of
the achievements to date and discusses possible perspectives.

This preprint corresponds to the Chapter 1 of volume 58 in AAMS,
Advances in Applied Mechanics (to appear).

Keywords : error control ; a posteriori error estimators ; adaptive
discretizations ; mesh refinement ; applications.

1 Introduction

The numerical solution of partial differential equations is a crucial aspect of
computational science and engineering, finding applications in diverse fields of
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physics and engineering. However, achieving accurate and efficient solutions to
partial differential equations is often challenging and a posteriori error estima-
tors are crucial tools that evaluate the accuracy and enhance computational
efficiency of numerical methods. Unlike a priori error estimators, which are not
computable, these estimators assess solutions after computation, providing a
pragmatic evaluation of accuracy.

A posteriori estimators work as evaluative tools, systematically analysing
error distributions to offer insight into numerical approximation fidelity. This
shift from anticipatory to retrospective assessment enables practitioners to it-
eratively refine solutions to align them more closely with the intricate details of
the underlying mathematical models.

This article explores the conceptual landscape of a posteriori error estima-
tors, examining their theoretical foundations, applications, and consequential
impact on partial differential equations problem-solving. The discussion invites
an exploration of numerical accuracy, navigating the terrain where mathemati-
cal abstraction converges with computational reality.

2 A few basic notions

Before entering the core of the topic, let us describe a few useful basic notions,
in a very general setting and without entering into details. For reviews about a
posteriori error estimation, see, e.g., Eriksson and Johnson (1985); Carstensen
and Merdon (2010); Nochetto and Veeser (2012); Chamoin and Legoll (2023).

2.1 Numerical approximation of a mathematical model

For several decades, computers have been used in routine calculations to provide
an approximate solution to the sophisticated mathematical models in current
engineering practice, which are, for example, (linear or non-linear) partial dif-
ferential equations supplemented by (linear or non-linear) boundary conditions
and by initial conditions, and possibly coupled to other equations, and now, to
data (even in real-time).

Let us call u the exact solution of this mathematical model, which belongs to
a set S of admissible solutions. There are now many techniques for transforming
the original equation through a sophisticated pipeline, so that, in the end, a
concrete approximation to the solution u is provided by a computer in the form
of a collection of numbers (U1, . . . , UN ) ∈ RN which can be used to recover a
function ucomputer(U1, . . . , UN ) (hopefully) close enough to u.

Figure 1 and Figure 2 below provide an overview of the process of mathe-
matical modelling.

2.2 Galerkin methods and the discretization error

To be illustrative, we consider (Petrov-)Galerkin methods, that include a broad
class of numerical approximation techniques based on the weak form of the
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Figure 1: Mathematical modelling and sources of error. This figure show-
cases the steps involved in mathematical modelling, which is a process used
to represent real-world phenomena using mathematical equations. The diagram
highlights the different stages of mathematical modelling, including problem
formulation, model development, parameter estimation, model validation, and
prediction. Additionally, the figure identifies potential sources of error that may
impact the accuracy and reliability of the mathematical model. These sources
of error can arise from various factors, such as measurement uncertainties, as-
sumptions made during model development, limitations in data availability, sim-
plifications in model assumptions, and uncertainties in parameter estimation.
The figure serves as a visual representation of the complexities and challenges
associated with mathematical modelling, emphasising the need for careful con-
sideration of potential sources of errors to ensure the robustness and validity of
the model’s results. It underscores the importance of thorough validation and
verification processes to enhance the accuracy and reliability of mathematical
models, which are crucial for decision-making, prediction, and understanding
complex systems in various fields of science, engineering, and beyond.

mathematical model. This includes particularly the case of well-known Finite
Element Methods (Lagrange, mixed, etc), see, e.g., Brenner and Scott (2008);
Ciarlet (2002); Ern and Guermond (2021); Quarteroni and Valli (1994); Szabó
and Babuška (2021) but also many other new methods, among which:
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Figure 2: This figure showcases the process of mathematical modelling along
with the identification and estimation of potential sources of error. The dia-
gram illustrates the steps involved in mathematical modelling, including prob-
lem formulation, model development, parameter estimation, model validation,
and prediction. Furthermore, the figure highlights the importance of error es-
timation in the modelling process. It identifies potential sources of error, such
as measurement uncertainties, assumptions made during model development,
limitations in data availability, simplifications in model assumptions, and un-
certainties in parameter estimation. The figure emphasises the need to account
for and quantify these sources of error in order to assess the reliability and
accuracy of the mathematical model. The figure serves as a visual representa-
tion of the comprehensive approach to mathematical modelling, which includes
not only model development but also thorough error estimation to enhance the
robustness and validity of the model’s results. It underscores the significance
of error estimation in improving the quality of mathematical models and their
applicability in various fields of science, engineering, and beyond.

• discontinuous Galerkin (DG) methods, see for instance the pioneering
works Arnold (1982); Lesaint and Raviart (1974) and the recent mono-
graph Di Pietro and Ern (2012);

• recent polytopal methods such as Conforming Polygonal Finite Elements,
see, e.g., Sukumar and Tabarraei (2004); Hybrid Discontinuous Galerkin

4



(HDG), see, e.g., Cockburn et al. (2016), Hybrid High Order (HHO) meth-
ods, see, e.g., Cicuttin et al. (2021); Cockburn et al. (2016); Di Pietro
and Droniou (2020); Lemaire (2021), the Weak Galerkin Method, see,
e.g., Dong and Ern (2022), the Virtual Element Method (VEM), see, e.g.
Beirão da Veiga et al. (2013); Lemaire (2021); the Smooth Finite Ele-
ment Method (SFEM), see, e.g., Liu et al. (2007); Nguyen-Xuan et al.
(2008b); modified discontinuous Galerkin with static condensation, see,
e.g., Lozinski (2019);

• Discontinuous Petrov Galerkin (DPG) methods, see, e.g., Demkowicz and
Gopalakrishnan (2010); Demkowicz et al. (2012);

• IsoGeometric Analysis (IGA) and variants, see, e.g., Atroshchenko et al.
(2018); Cottrell et al. (2009); Nguyen et al. (2015), motivated by the link
between computer aided design and numerical simulation;

• unfitted finite elements or geometrically nonconforming finite elements,
where the mesh boundary and the domain boundary do not match, as it
occurs in fictitious domain methods, the eXtended Finite Element Method
(XFEM) or the cut Finite Element Method (cutFEM): see, e.g., Bordas
and Menk (2023); Burman et al. (2015); Duprez and Lozinski (2020);
Glowinski et al. (1994); Haslinger and Renard (2009); Moës et al. (2006);
Nguyen et al. (2008); Peskin (2002);

• reduced basis techniques, such as Reduced Order modelling (ROM) or
Proper Orthogonal Decomposition (POD), see, e.g., Grepl et al. (2007);
Hesthaven et al. (2016); Kerfriden et al. (2011);

• spectral methods, see, e.g., Bernardi and Maday (1997) or Canuto et al.
(2006);

• wavelet-based discretization, see, e.g., Bertoluzza et al. (1994); Bertoluzza
(1995); Cohen and Masson (2000); Cohen et al. (2001); Monasse and Per-
rier (1998).

Of course, the above list is far from exhaustive and the discussion can be
extended, with appropriate modifications, to other classes of approximation
techniques such as finite differences, finite volumes, collocation methods, etc,
which are not based on a variational paradigm.

So, for a Petrov-Galerkin method, let us suppose the exact solution u satisfies
(for instance) the weak problem

u ∈ V : a(u; v) = L(v) ∀v ∈ W, (1)

where V,W are some function spaces and L is a linear form. The form

a : V ×W → R

is possibly nonlinear in the first variable.

5



Remark 1. The above formalism (1) does not encompass nonlinear nonsmooth
problems related to variational inequalities for instance, such as contact, fric-
tion, plasticity. However this is not critical for the present discussion, and
to see how extensions for variational inequalities can be carried out, see, e.g.,
Han (2005) or some contributions in these volumes, among which Bartels and
Kaltenbach (2024); Gustafsson (2024); Repin (2024).

.

A discrete Petrov-Galerkin method consists in approximating Problem (1)
by a simpler problem in finite dimensional vector spaces:

uN ∈ VN : aG(uN ; vN ) = LG(vN ) ∀vN ∈ WN , (2)

where VN and WN are finite dimensional spaces of dimension N , and aG, resp.
LG, is a form that mimics a, resp. L (in the simplest situations, we can take
aG = a, resp. LG = L).

Remark 2. For many methods, the trial space VN and the test space WN are the
same (VN = WN ) and this corresponds to standard Galerkin (or standard Ritz-
Galerkin) methods. The case where the spaces differ is often associated with
the terminology of Petrov-Galerkin methods, or non-standard (Ritz-)Galerkin
methods, see Ern and Guermond (2004). For a historical perspective about this
class of methods, see Gander and Wanner (2012) and references therein, which
emphasise W. Ritz’s outstanding contributions related to the approximation of
the spectral biharmonic problem for Chladni figures.

As a result, uN can be represented in a basis of N functions, and a computer
can provide the N values of the components when Problem (2) is solved.

The challenge now is to design the spaces VN and WN carefully enough to
calculate a discrete solution uN that represents the exact solution u as accu-
rately as possible. To measure the difference between u and uN , the concept of
discretisation error ϵN is introduced. A natural and simple definition can be

ϵN (u, uN ) := ∥u− uN∥V , (3)

where ∥ · ∥V is the natural norm associated with the Banach or Hilbert struc-
ture of V (Sobolev norm or energy norm). Of course, other possibilities exist
motivated by practical applications, see paragraph 2.5 below.

Since N is linked to the available computing resources, a practitioner may
wish to achieve the lowest possible value for the discretisation error ϵN , while
keeping N as small as possible. For example, and ideally, one would like ϵN to be
of the order of machine precision (ϵN ≃ 10−16 for double precision arithmetic),
andN to be such that the solution uN is obtained in real time (a few milliseconds
for example). Today, even with the enormous progress made in computing
power, this objective remains a challenge, particularly for industrial applications
where the geometry and mathematical model can be very complex. In general,
a compromise has to be found between acceptable accuracy and acceptable
use of computing resources, and this compromise is highly dependent on the

6



context and the targeted applications. To achieve acceptable accuracy, the
main problem one encounters is that ϵN is unknown, because the exact solution
u itself is unknown.

Another issue is that the solution uN to Problem (2) is not exactly the so-
lution ucomputer(U1, . . . , UN ) delivered by a computer. Indeed, the code written
to provide ucomputer(U1, . . . , UN ) also contains other approximations, that are
mostly due to: numerical integration, iterative solvers for nonlinear and/or lin-
ear systems, and finite precision arithmetic, see, e.g., Ciarlet (2002); Ern and
Guermond (2004) in the context of finite element methods. This fact introduces
another layer of errors, numerical errors, that can be quantified as, for instance:

∥ucomputer(U1, . . . , UN )− uN∥D

where ∥ · ∥D is a convenient norm to measure this in finite dimensions (it does
not have to be necessarily the same norm as for the discretization error).

In general, it is assumed that the numerical errors are of very small magni-
tude in comparison to discretization errors. However, in some situations they
need to be taken into account: for instance a gradient conjugate solver can be
stopped after a few iterations to save computation time. See for instance Ern
and Vohraĺık (2013) for a technique that can resolve this issue.

Finally we can get back to Figure 1 and Figure 2 in which the discretization
error and numerical error are depicted, and complemented with the model error
that encompasses all the discrepancies between the actual physical system that
needs to be modelled and the idealised mathematical model (this important
topic is far beyond the scope of this short overview).

2.3 Error estimators and error control

Since the late 1970s, pioneering work within the finite element community has
shown how it is possible to compute a quantity ηN (= ηN (uN )) that depends
only of the discrete solution uN and that is equivalent to the discretization error:

ηN (uN ) ≃ ϵN (u, uN ). (4)

Classical references are Babuška and Rheinboldt (1978), Ladeveze and Leguillon
(1983), Eriksson and Johnson (1985), Bank and Weiser (1985), and the books
Ainsworth and Oden (2000) and Verfürth (2013). For simple mathematical
models, we can take

ηN (uN ) = ∥LG(·)− aG(uN ; ·)∥⋆ (5)

where LG(·) − aG(uN ; ·) is the residual associated with Problem (2) and ∥ ·
∥⋆ is a dual norm. A problem with (5) comes from the norm ∥ · ∥⋆, that is
not computable. A highly desirable property of an estimator is not only its
computability from uN , but it should allow for an implementation, such that the
necessary time for computation is negligible in comparison to the time needed
to solve Problem (2).
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An important mathematical property to have a trustworthy estimator is its
reliability : if it can not provide the exact discretization error, it should at least
provides an upper bound of the discretization error, in the sense that, there
exists C > 0 independent of N and uN , such that

ϵN (u, uN ) ≤ C ηN , (6)

for all u ∈ V and uN ∈ VN . See for instance Verfürth (1999); Veeser and
Verfürth (2009, 2012) for a discussion and details in the case of the residual error
estimate. If the constant C in (6) is equal to 1, we have an exact guaranteed
upper bound :

ϵN (u, uN ) ≤ ηN , (7)

which is of high practical interest since it ensures the discrete solution uN is
approximated with a degree of accuracy that is known. See for instance Neit-
taanmäki and Repin (2004); Vohraĺık (2007); Braess and Schöberl (2008) and a
discussion in Verfürth (2009) about these “constant-free” estimates. This paves
the way for certified numerical methods in which one can ensure that the dis-
cretization error is below a known threshold. Indeed, note that if (6) is satisfied
only, the estimator ηN can underestimate the error for instance.

Last but not least, it is usual to define the effectivity index of an estimator
as

eff :=
ηN (uN )

ϵN (u, uN )
. (8)

The above definition is motivated by (4) and is meant to describe the accuracy
of an estimator. Hopefully, it should not vary too much with N and u, and
should be close to 1. First, if (6) holds, this implies that

eff ≥ 1

C
. (9)

Clearly, the boundedness of the effectivity index is equivalent to the lower bound

ηN ≤ c ϵN (u, uN ) (10)

for some c > 0 independent of u and N ; we then have eff ≤ c. Lower bounds are
often called effectivity and have been an important research topic, see Verfürth
(2013). In the context of the finite element method, they generally even have a
local form, see (17) .

Asymptotic exactness of an estimator refers to

lim
N→∞

effN = 1. (11)

This property depends on u, the method to compute uN and the sequence of
spaces VN . In special cases, estimators such as the Bank and Weiser type, are
known to yield (11), see Babuška et al. (1992); Bank and Weiser (1985); Durán
et al. (1991) for details.
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2.4 Error estimators and mesh refinement

In addition to assess the accuracy of a simulation, error estimators are used to
iteratively improve the numerical approximation. The typical form of the loop
is

Solve → Estimate → Mark → Adapt → · · ·

where Solve refers to solution of the discrete problem for given approximation
spaces, see, e.g., Problem (2), and the estimator is then used to adapt the
approximation spaces. The algorithm produces a sequence of meshes Kℓ and
associated spaces Vℓ, solutions uℓ and estimators ηℓ. The global upper bound
justifies the use of the estimator ηℓ as a stopping criterion.

In the finite element method, the approximation spaces are built from meshes
and the Adapt step usually consists in local mesh-refinement. Since the spatial
domain associated with the mathematical problem is subdivided into cells K,
say triangles in two dimensions, the solution uN is obtained by collecting over all
the local cell contributions uK , representing the approximation of the solution
u on the cell K:

uK = uℓ|K . (12)

In order to be useful for local mesh refinement, the estimator ηℓ is supposed
to have a similar local structure, i.e., it is the sum of local contributions ηK
corresponding to K:

ηℓ =

(∑
K

η2K

) 1
2

. (13)

The information encoded in the estimator map ηK is used in different ways to
adapt or refine the mesh. The main idea is to split locally a cell K, if the local
error indicator ηK is considered too large, see for instance Pelle et al. (1996) or
Dörfler (1996). In a similar way one could use local coarsening, i.e., neighbouring
cells are glued together to define a bigger cell where the local error indicator is
small enough. The algorithm used to select cells for refinement (or coarsening)
is called Mark and the step of mesh modification Adapt. The first natural
question is about convergence of the adaptive algorithm (which does not follow
from a priori error analysis). Under the condition of convergence, the second
question is about the speed of convergence, measured in terms of number of
unknowns.

Let us sketch a short argument for convergence. We consider the step from
ℓ to ℓ + 1. For the sake of simplicity, we suppose that the boundary value
problem (1) corresponds to the minimisation of a quadratic energy functional.
Moreover, we suppose that the finite element spaces Vℓ form a sequence of
conforming nested spaces (Vℓ ⊂ Vℓ+1 ⊂ V ) and that there holds a Galerkin
orthogonality (eℓ+1, uℓ+1 − uℓ)V = 0, with (·, ·)V the inner product in V . Then
the errors eℓ := ∥u− uℓ∥V are related by

e2ℓ+1 = e2ℓ − ∥uℓ+1 − uℓ∥2V
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and we get geometrical convergence if for some constant β > 0

eℓ ≤ β∥uℓ+1 − uℓ∥V . (14)

since then eℓ+1 ≤ ρeℓ with ρ =
√
1− 1/β2.

In order to establish (14), it is convenient to assume the local lower bound

ηK ≤ c∥uℓ+1 − uℓ∥K (15)

for all cells K from the set of refined cells Rℓ ⊂ Kℓ and to ensure that, for some
θ > 0, the estimator linked to the cells in Rℓ is a least equal to a proportion θ
of the total estimator: ∑

K∈Rℓ

η2K ≥ θ2
∑

K∈Kℓ

η2K . (16)

Indeed, using (6) and (13), then (16) and finally (15), we get

e2ℓ ≤ C2
∑

K∈Kℓ

η2K ≤ C2

θ2

∑
K∈Rℓ

η2K ≤ C2c2

θ2

∑
K∈Rℓ

∥uℓ+1 − uℓ∥2K ,

which implies (14) with β = Cc/θ.
The assumed bound (15) looks similar to what is called local efficiency : there

exists a constant c > 0 independent of N , uN and K such that, for every mesh
cell K, there holds:

ηK ≤ c∥u− uN∥ωK
, (17)

where ωK is a collection of neighbouring cells ofK (patch) and ∥·∥ωK
is an appro-

priate norm on ωK , see, e.g., Verfürth (2013). This property strictly translates
the fact that if the local discretization error is small, then the local estimator
must also be small. However, (17) does not imply (15) (the difficulty is not the
presence of ωK instead of K), and even (17) might not always hold. It might be
thought that if an estimator does not satisfy this local efficiency property, mesh
refinement could be misled. Indeed, regions where the discretization error is low
could nevertheless be refined, as the local ηK would be free to overestimate the
actual discretization error. However, it turns out in practice that an estimator
with poor efficiency can still be useful to drive the mesh refinement algorithm
(see the discussion in Carstensen and Merdon (2010)), and can even lead to
optimal meshes.

Condition (16) states that a minimum percentage of the estimator contri-
butions should give rise to refinement. It is usually called Dörfler marking or
bulk chasing. Clearly, (16) allows for a large number of possibilities for select-
ing Rℓ and one naturally tends to refine the cells with the largest contributions.
This choice is related to our second question about the speed of convergence.
Choosing the cells to be refined as the largest contributors allows to bound the
number of additional cells by the difference in estimators. This idea basically
leads to an estimate of the number of cells needed to produce a given accuracy,
see Stevenson (2007) for the first proof.

The unavailability of lower bounds has led to the development of several
more involved techniques, see section 3.
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2.5 The goal-oriented paradigm

Many practical situations are focused on the approximation of a single quantity
J , such as the drag- and lift-coefficients, average of heat transfer along a part
of the boundary, stress intensity factors, a local stress or strain in elasticity,
etc. However, we observe that the aforementioned theory heavily relies on the
functional analytic setting and the corresponding norms are used to measure
the error u− uN . Instead one is interested in

|J(u)− J(uN )|

and the objective of goal-oriented error estimation is to provide estimators for
this quantity. The main idea is to compute an approximation to the solution z
to a dual problem that involves J in its right-hand side. This dual solution then
allows to evaluate locally the sensitivity of J with respect to the discretiza-
tion error leading to an error estimator in the usual form, see for instance
Becker and Rannacher (2001), and also Becker and Rannacher (1996); Giles
and Süli (2002); González-Estrada et al. (2014); Han (2005); Prudhomme and
Oden (1999); Rognes and Logg (2013).

3 Theory of adaptive finite element methods

The mathematical theory of adaptive finite elements started with the work of
Ivo Babuška in the 1970s (see Babuška and Rheinboldt (1978)), and found in-
creasing interest with the works of Claes Johnson (see Eriksson and Johnson
(1985)), Mark Ainsworth and John Tinsley Oden (see Ainsworth and Oden
(1993, 2000)), Pedro Morin, Ricardo Nochetto and Kunibert G. Siebert (see
Morin et al. (2000)), and Rüdiger Verfürth (see Verfürth (1999)) in the 1990s.
Since then, it has made important theoretical progress, that we summarise be-
low.

3.1 Optimality of adaptive algorithms

New insights have been brought to the theory of adaptive algorithms. We first
define what is meant by the notion of optimality. We assume a given procedure
that, for any mesh K, computes an approximation uK to the solution u of a
given partial differential equation, usually by a finite element method based
on approximation spaces VK whose dimensions are denoted N(K). We further
assume possible to approximate the solution u by elements of VK at a certain
convergence rate s > 0, which mathematically translates into: there exists an
absolute constant C > 0 such that

inf
vK∈VK,N(K)≤N

∥u− vK∥ ≤ CN−s ∀N ∈ N,

in an appropriate norm. Then, an adaptive algorithm constructing a (in princi-
ple infinite) sequence of meshes (Kℓ)ℓ=1,2,··· and consequent solutions (uℓ)ℓ=1,2,···
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is said to be (quasi-)optimal, if the sequence (uℓ)ℓ=1,2,··· has a similar error de-
cay:

∥u− uℓ∥ ≤ C (N(Kℓ))
−s ∀ℓ ∈ N,

(with possibly a different constant C). One should mention that such an opti-
mality result is much stronger than the classical a priori finite element theory,
since no direct assumption on the regularity of the solution is made.

This theory brings the adaptive finite element technology close to the nonlin-
ear approximation theory of multi-resolution wavelet methods, see, e.g., Cohen
et al. (2001) and Karaivanov and Petrushev (2003). It has been a very active
research field, starting with the works of Dörfler (1996); Morin et al. (2000). The
combination with nonlinear approximation theory has been achieved in Binev
et al. (2004); Stevenson (2007), which lead to many further results for different
methods/equations/algorithms, see for example Cascon et al. (2008); Becker and
Mao (2008); Bonito and Nochetto (2010); Ferraz-Leite et al. (2010); Kreuzer and
Georgoulis (2018); Buffa et al. (2022). Now it has attained a state of maturity
in the context of second-order linear elliptic partial differential equations, cer-
tain finite element methods and mesh refinement algorithms. The appearance
of an underlying structure of the available results has lead to the Axiom-paper
of Carstensen et al. (2014). Despite the large number of articles about applica-
tion of goal-oriented adaptivity, theoretical results concerning their optimality
are still sparse. Mommer and Stevenson (2009) provides the first optimality
result, using the product of primal and dual estimators as an upper bound to
the functional error; see also Becker et al. (2011); Feischl et al. (2016).

3.2 Other recent achievements

Let us mention first that the described theory of adaptive finite elements has
been generalised to nonlinear monotone equations by Feischl et al. (2014) and
saddle-point systems as the Stokes equations, see Becker and Mao (2011); Bring-
mann and Carstensen (2017); Feischl (2019, 2022). Also progress has been made
in the understanding of parabolic problems, see Ern et al. (2017).

Moreover, the theory has been generalised to control the overall work of
the adaptive algorithm, and not just the dimension of the discrete spaces, see,
e.g., Haberl et al. (2021); Becker et al. (2023); Févotte et al. (2024). This is
particularly important from a practical viewpoint, since the various stopping
criteria in the different nested loops can then be harmonised.

4 Current engineering practice(s)

Now let us turn to the practical side of numerical methods, when they are used in
practical computations in physics, applied sciences and industrial applications.
In this context, there have already been some initiatives to incorporate error
control based on a posteriori error estimators as well as adaptive discretization
techniques, see for instance the special volume Plewa et al. (2005) published
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earlier. Nevertheless, the true potential of all these techniques seems to remain
largely untapped.

4.1 Accuracy vs. computational cost vs. complexity

For numerical simulation oriented towards real applications, such as in the tech-
nological and industrial sector, the challenges are, at least, threefold:

1. Simulation of complex systems, that may encompass, for instance, complex
three-dimensional geometries, nonlinear partial differential equations with
nonlinear boundary conditions, multi-physics or multi-scale phenomena,
complex materials, etc.

2. Simulation with reduced computation time and/or limited computational
resources may be of major importance for certain applications, with the
possible goal to even provide predictions in real-time.

3. Certified numerical simulation, with trustworthy and accurate predictions.

It is clear that the third point is related to error control and adaptive dis-
cretizations. In fact, the notions of verification and validation of finite element
simulations have always been of importance within the numerical simulation
community, see, e.g., Babuska and Oden (2004); Babuška and Oden (2006);
Babuška et al. (2007); Stein (2014); Szabó and Babuška (2021). However this
may be balanced or even be in conflict with the first two points, and this partly
explains why error control is sometimes an undertaken issue, because it is not
the top one priority for some practitioners devoted to a specific goal. Our per-
sonal experience is that precision is often sacrificed for speed. One of our goals
in these volumes is to show that these two requirements can be reconciled by
the adaptivity and optimality provided by a posteriori error estimation.

4.2 Some initiatives

Let us however mention a few examples in which a posteriori error estimations
or control have been considered in an industrial context:

1. For the neutron diffusion equation in nuclear reactor cores, see Ciarlet
et al. (2023) (and see also Conjungo Taumhas, Y. et al. (2023) for an
evaluation of the modelling error).

2. For turbulent hydraulic and thermal-hydraulic simulations with a perspec-
tive of subsequent applications to the nuclear energy sector, see Nassred-
dine et al. (2022, 2023) and Dakroub et al. (2023).

3. Still with applications inspired by the nuclear industry, Liu et al. (2017)
address contact problems in elastostatics.

4. For real-time surgical simulation, see Bui et al. (2018b). as well as more
details in section 5.1 below.
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5. Still for perspectives in surgical simulation and modelling of soft tissue,
see Duprez et al. (2020) and Bui et al. (2023).

6. In the aeronautical sector, viscous compressible flows around airfoils were
investigated in Basile et al. (2022)

Remark that these works are a step toward certified numerical simulation and
have been highly motivated by a context where safety issues are fundamental. Of
course, while there are not many existing works, the above list is not exhaustive,
and other illustrations are highlighted in some of the contributions to these
volumes.

4.3 Some bottlenecks

According to our own experience, we can point out the following bottlenecks
relative to error control and adaptive discretization in routine industrial com-
putations:

1. For trustworthy certified numerical simulation, not only the discretization
errors need to be controlled, but also modelling errors and uncertainties
in parameter calibration. These latter can be of larger magnitude and it
can be more involved to evaluate and reduce them.

2. The design of a posteriori error estimators is, to a large extent, specific to
the model under consideration, and it is challenging and time-consuming
to design a posteriori error estimators well-suited for a complex model
related to an industrial application.

3. The efficient implementation of some error estimation techniques is not
always straightforward in industrial or commercial codes.

4. Error control and adaptive techniques are not always part of training
related to numerical simulation, and a large part of the literature on the
topic is not easily accessible to outsiders.

Note finally that part of the current activity in the field is inspired from
these bottlenecks. Just to mention an example, various recent works have been
dedicated to explore the interplay between adaptive finite element meshing and
uncertainty quantification technologies, see Bespalov et al. (2022); Bespalov and
Silvester (2023); Eigel and Merdon (2016); Eigel et al. (2016); Guignard et al.
(2016); Guignard and Nobile (2018); Oden et al. (2005).

5 Special topics and industrial applications

Error estimation for numerical methods plays an important role in quality assur-
ance. It enables users to better control the quality of their simulations. So-called
non-standard numerical methods have also seen some advances in terms of error
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estimation. We will mention here a few numerical methods which offer alter-
natives to the standard finite element method based on Lagrange polynomials
(see 2.2). We also discuss some of the most novel practical applications where
a posteriori error estimates have been introduced, including surgical simulation
and industrial scale fracture mechanics.

5.1 Real-time/interactive simulations

Because of the increasing need for interactive simulations, both for medical
applications and robotic control and computer animations, but also in order to
build digital twins of actual systems, the last 10 years or so have seen major
progress towards real-time quality control of simulated solutions.

This poses a number of problems which will be discussed in forthcoming
special issues of Advances in Applied Mechanics. The first difficulty lies in
computing the error estimate fast enough for the solution to be usable within
the constraints of the practical application. For example, in surgical simulation,
surgical guidance and surgical training, a range from 50 (for visual feedback)
to 500 (for haptic feedback) solutions per second are necessary. Moreover, it is
necessary to refine the mesh locally, based on the error estimate, within the time
constraints posed by the application at hand. The interested reader can refer
to the work of Bui et al. (2018a,b, 2019), which show the first real-time error
estimation techniques for interactive mechanics simulations of bodies undergoing
large deformations.

Real-time error estimation for interactive deformable bodies still poses sev-
eral challenges, especially as the demand for more realistic simulations in appli-
cations such as virtual surgery, computer animation, and virtual reality contin-
ues to grow. Here are some key challenges:

Computational Efficiency Developing error estimation techniques that can
operate within the constraints of real-time simulation environments is cru-
cial. These methods need to be computationally efficient to provide ac-
curate estimates without significantly impacting the overall simulation
performance.

Integration with Simulation Frameworks Integrating error estimation tech-
niques seamlessly into existing simulation frameworks poses a challenge.
These techniques need to be compatible with various simulation algo-
rithms, such as finite element, meshfree, or position-based methods, to
ensure widespread adoption across different applications.

Sensitivity to Simulation Parameters Error estimation methods should be
robust and reliable across different simulation scenarios and parameter
settings. They should account for uncertainties and variations in material
properties, boundary conditions, and external forces to provide accurate
estimates in diverse environments. In the context of biomechanics, recent
progress was made in a series of papers which attempt to disentangle
model error from discretization error Hauseux et al. (2017a,b, 2018). In

15



general, this connection between model and discretization error seems one
of the richest direction of investigation, in particular when real-time data
acquisition is possible and in the context of machine learning and artificial
intelligence surrogate acceleration methods, e.g. Deshpande et al. (2022,
2023).

User Interaction and Control Providing intuitive interfaces for users to in-
teractively control error estimation and refinement processes is essential.
Users should have the flexibility to adjust parameters, set error tolerances,
and guide adaptive refinement strategies in real time to achieve desired
simulation outcomes. A closer interaction between the human user and
the computer could allow to switch between total computer control and
total human control depending on the error level.

Guaranteed upper bounds In real-time simulations of surgery, guaranteed
upper bounds are crucial for ensuring the safety and effectiveness of the
procedures. These bounds provide maximum limits on various parameters
such as response time, computational complexity, and error rates. For
instance, in robotic surgery, having guaranteed upper bounds on latency
ensures that movements are executed within acceptable time frames to
prevent accidents or errors. Similarly, computational complexity bounds
ensure that simulations run efficiently without overwhelming hardware
resources, allowing for smooth and accurate real-time feedback during
surgical procedures. Overall, these guaranteed upper bounds are essential
for maintaining reliability, accuracy, and safety in real-life applications like
surgery simulations.

In short, one of the key remaining questions could be stated as: “Given multi-
modal experimental observations obtained, in the best case, in real-time, and an
underlying model, how sufficient is the data acquired to simulate the system ?
How important and uncertain is the form of the model ? How important are
the parameters used ? Are we better off simulating more scenarios (offline or
online) or should we make more measurements ?”. This direction seems ripe for
fruitful investigations, as summarised in a recent review Eftimie et al. (2023).

5.2 Strain smoothing

Smoothed finite element methods see e.g. a review Nguyen-Xuan et al. (2008a)
are based on the idea of transforming derivatives of shape functions into prod-
ucts with outward normals of smoothing cells. This suppresses the need to use
Jacobian transformations, enables polytopal meshes, makes it possible to com-
pute on extremely distorted meshes, alleviates numerical locking and can, in
certain conditions provide upper bounds for the system’s energy. Several ap-
proaches were developed, mostly based on the methods shown in Nguyen-Xuan
et al. (2008a).

Little work has been done in the area of error estimates for strain smoothing
stabilized finite elements. The main question lies in the choice of the number
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of subcells. One subcell may provide equivalent methods to stress-based finite
elements (dual), giving an upper bound to the energy. In the infinite limit, as the
number of subcells goes to infinity, the standard displacement based (primal)
finite element method is recovered. González-Estrada et al. (2013) presents
ideas on how to obtain error indicators for smoothed finite element methods.

5.3 Partition of unity enrichment

Extended finite element methods are partition of unity methods, similar to the
generalized finite element method and a few others, including hp-clouds. The
idea of the method Bordas and Menk (2023)) is to enrich the approximation
by special functions which introduce known features of the exact solution. The
idea is to improve the approximation property of the finite element (or meshfree)
space by making it possible to reproduce the known features of the solution. See
the book Bordas and Menk (2023) and the recent review on error estimates for
enriched approximations in González-Estrada et al. (2023).

For example, to model a crack, a discontinuous function is introduced to
take into account the jump across the crack surface. Asymptotic functions can
be introduced to improve the accuracy of the solution close to the crack front.
These methods were used in a wide variety of contexts, and called for specific
treatments in terms of error estimation. Those are summarized in Bordas and
Menk (2023). They were also implemented in a commercial code MorfeoCrack,
based on the developments in the following seminal paper Jin et al. (2017).

In short, standard recovery based methods fail because they are based on
smoothing (projection on a polynomial space), whilst the enrichment functions
are usually non-polynomial, see, e.g., Bordas and Duflot (2007). This leads to
smearing of the recovered solution, defeating its purpose to provide a higher
quality solution to compare the raw finite element counterpart. Residual based
methods have also to be adapted because of the extra terms present in the
approximations, see Gerasimov et al. (2012); Hild et al. (2009); Rüter et al.
(2013).

Several approaches exist for this, including subtracting the enrichment, see
Ródenas et al. (2008), or projecting on enriched spaces which are able to take
into account the special features present in the solution space, see Bordas et al.
(2008); Bordas and Duflot (2007); Duflot and Bordas (2008). Other approaches
were shown in the literature, such as Panetier et al. (2010); Prange et al. (2012);
Rüter et al. (2013) and, recently, in Bento et al. (2023), higher-order methods
were investigated.

The goal-oriented techniques mentioned in 2.5 can be extended, and a num-
ber of contributions exist in the field of goal-oriented error estimation for en-
riched approximations. The interested reader can refer to González-Estrada
et al. (2013, 2014, 2021, 2023).

The above papers introduce goal-oriented error estimates (GOEE), which
quantify and control local errors in quantities of interest (QoI) for advanced
engineering applications, such as aerospace, see also Section 2.5. This includes
a recovery-based error estimation technique for QoIs is presented, using an en-
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hanced version of the Superconvergent Patch Recovery (SPR) technique, see
Zienkiewicz and Zhu (1987). This approach provides nearly statically admis-
sible stress fields, resulting in accurate estimations of local discretization error
contributions to QoI. The technique requires reasonable computational cost and
could be easily implemented into finite element codes or used as an independent
postprocessing tool.

The error estimation in QoI relies on evaluating QoI through solving auxil-
iary problems. Energy estimates are used to relate errors in QoI to the initial
problem and auxiliary problem solutions. Explicit and implicit residual-based
approaches and smoothing techniques for energy estimates can be used, as well
as the Zienkiewicz-Zhu estimate and SPR techniques. Bridging these approaches
aims to obtain guaranteed upper bounds while retaining ease of implementation.
The SPR-CX approach is an efficient and simple goal-oriented adaptivity proce-
dure for linear QoI in elasticity problems, extended to handle singular elasticity
problems.

5.4 How important is it that the recovered (smoothed)
solution satisfy the boundary conditions and the gov-
erning equations?

We discuss here briefly the question of statical admissibility of recovered solu-
tions, presented in the following: González-Estrada et al. (2012); Bordas and
Menk (2023); González-Estrada et al. (2023). These contributions assesses the
effect of statical admissibility and the ability of recovered solutions to repre-
sent singular solutions, along with the accuracy, local, and global effectivity of
recovery-based error estimators for enriched finite element methods, such as the
extended finite element method (XFEM). Two recovery techniques are studied:
the superconvergent patch recovery procedure with equilibration and enrich-
ment (SPR-CX) and the extended moving least squares recovery (XMLS). Both
techniques enrich the recovered solutions, with SPR-CX enforcing equilibrium
constraints.

Numerical results highlight the necessity of extended recovery techniques in
error estimators for this class of problems, with statically admissible recovered
solutions yielding significant improvements in effectivities. This emphasizes the
importance of both extended recovery procedures and statical admissibility for
accurate assessment of the quality of enriched finite element approximations.

5.5 Meshfree/meshless methods

Meshfree methods are numerical techniques used for solving partial differential
equations without relying on a predefined mesh. Unlike traditional methods
like finite element analysis, meshfree methods operate directly on scattered data
points, making them particularly useful for problems with complex geometries
or evolving domains. One notable advantage is their flexibility in handling
irregular geometries and dynamic problems, which often pose challenges for
mesh-based approaches.
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A significant strength of meshfree methods lies in their ability to reproduce
complex phenomena with high fidelity, especially in situations where traditional
mesh-based methods struggle due to mesh distortion or excessive refinement
requirements. Additionally, meshfree methods often exhibit good scalability
and efficiency, particularly for problems involving large deformations or adaptive
refinement.

However, these methods also have their limitations. Reproducibility can be
challenging since the results depend on the distribution of nodes or data points,
which may vary between different simulations. Furthermore, achieving smooth
solutions can be difficult, especially in regions with sparse data or irregular
distributions of nodes.

For a comprehensive understanding of meshfree methods, one can refer to
review papers such as Nguyen et al. (2008), which provide an in-depth anal-
ysis of various aspects, including the theoretical foundations, implementation
strategies, and applications of meshfree methods.

When it comes to error estimation in meshfree methods, several factors need
to be taken into account. These include the choice of basis functions or shape
functions, the accuracy of the numerical integration scheme, and the interpola-
tion error associated with the scattered data points. Proper error estimation is
crucial for assessing the reliability and accuracy of the computed solutions and
guiding the refinement or adaptation strategies. Importantly, certain meshfree
methods suffer from conditioning issues which may lead to algebraic errors, as
discussed in this volume of Advances in Applied Mechanics, see Papež (2024).
In particular this can apply to methods based on collocation, i.e., methods
that, conversely to Galerkin techniques presented in 2.2, consist in writing the
strong form directly at “quasi-arbitrary” sets of nodes within the domain, see
Jacquemin et al. (2023) for a review of adaptive schemes in meshless collocation,
also known as the smart cloud method.

It is important to note that in meshfree methods, Galerkin orthogonality,
a property commonly satisfied in traditional finite element methods, may not
hold on the boundary. This is because the test functions employed in meshfree
formulations typically do not vanish on the boundary, leading to deviations
from orthogonality. Understanding and managing such deviations are essential
for ensuring the accuracy and stability of the numerical solutions, particularly
near domain boundaries.

Additionally, meshless methods do not employ polynomial approximations,
which makes Gauss quadrature inexact. It is therefore critical to contain integra-
tion errors. This can be done by an interplay between using more background
subcells in regions of interest as well as increasing the number of integration
points per subcell, see Racz and Bui (2012).

The interested reader can refer to the following papers for additional ref-
erences on error analysis for meshfree methods: Arnold and Wendland (1983);
Davydov and Oanh (2011); Dolbow and Belytschko (1998); Li et al. (2020); Ork-
isz and Milewski (2008); Park et al. (2003); Perazzo et al. (2008); Rabczuk and
Belytschko (2005), which includes applications to shell elements, optimal point
placement in collocation methods, a posteriori error estimation driving point
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cloud adaptation, and applications to localized phenomena and large gradients.

5.6 Isogeometric analysis

Isogeometric analysis (IGA) is a computational technique that integrates the
geometric design and analysis of structures or materials. Unlike traditional
finite element methods, IGA employs the same basis functions to represent
both the geometry and the solution field, typically using Non-Uniform Ratio-
nal B-Splines (NURBS) or other spline-based representations. This seamless
integration of geometric and simulation aspects offers several advantages over
traditional methods.

One of the key strengths of IGA lies in its ability to precisely represent
complex geometries using the same basis functions employed for the analysis,
thereby eliminating the need for mesh generation and simplifying the workflow.
This leads to significant reductions in pre-processing time and enables more
accurate representations of geometric features.

Moreover, IGA facilitates the use of higher-order basis functions, which can
lead to more accurate solutions, particularly for problems involving curved or
irregular boundaries. By leveraging the smoothness properties of spline func-
tions, IGA often produces smoother and more realistic solutions compared to
traditional finite element methods.

However, despite these advantages, IGA also has its challenges. One notable
limitation is the computational cost associated with the construction and ma-
nipulation of spline representations, especially for problems involving large-scale
simulations or dynamic analyses. Additionally, the coupling between the geome-
try and analysis introduces complexities in the formulation and implementation
of boundary conditions and geometric modifications, see, e.g., Hu et al. (2018);
Nguyen et al. (2014).

For a deeper understanding of IGA, interested individuals can refer to review
papers such as Nguyen et al. (2015), which provide comprehensive insights into
the theoretical foundations, computational aspects, and applications of isogeo-
metric analysis.

When it comes to error estimation in IGA, similar considerations apply as
in traditional finite element methods, including the choice of basis functions, in-
tegration schemes, and interpolation errors. Proper error estimation is essential
for assessing the accuracy and reliability of the computed solutions and guiding
refinement strategies.

Isogeometric analysis offers a powerful framework for integrating geomet-
ric design and analysis, with advantages in accuracy, efficiency, and geometric
flexibility. However, challenges remain in terms of computational cost and the
formulation of boundary conditions, highlighting the ongoing research efforts in
this field.

The key difficulties in adaptive isogeometric simulations lie in the tensor-
product nature of the underlying shape functions (NURBS), which, if nothing
is done, leads to spurious propagation of refinements throughout the domain.
Alternatives such as the geometry independent field approximation techniques
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avoid such issues by enabling the use of local refinement (through splines such
as PHT splines, for example), whilst keeping the geometrical representation of
the domain identical, and approximated by NURBS, see Atroshchenko et al.
(2018); Jansari et al. (2022a); Videla et al. (2019, 2024).

Other exciting directions of research are provided in the following recent
contributions including space-time analysis, as well as functional-type error es-
timates for isogeometric analysis, see Langer et al. (2016); Matculevich (2018);
Langer et al. (2019).

6 Perspectives

In Advances in Applied Mechanics (AAMS) Vol 58: Error control, adaptive
discretizations, and applications, Part 1, world-leading authors present cutting-
edge research at the intersection of computational mechanics and applied mathe-
matics, exploring innovative approaches to error control and adaptive discretiza-
tions across various fields.

Chapters

1. hp adaptive Discontinuous Galerkin strategies driven by a poste-
riori error estimation with application to aeronautical flow prob-
lems (Chapelier et al., 2024) presents recent developments about h, p, and
hp-adaptive strategies driven by a posteriori error estimators using a high-
order Discontinuous Galerkin finite element numerical framework, where
h stands for the mesh size and p for the polynomial degree of the finite
element approximation. A combination of error estimators tailored for the
numerical method considered is presented along with smoothness indica-
tors driving the decision to refine in h or p. The h, p, and hp-adaptation
strategies are described and applied to flow problems of aeronautical in-
terest, including scale-resolving simulations of the transitional flow past a
NACA0012 airfoil, scale-resolving simulations of the turbulent jet issued
by a realistic nozzle geometry, and inviscid simulations of the transonic
flow around a complex CRM aircraft geometry. For all cases considered,
the interest of h, p, and hp-adaptation is demonstrated for easing the
meshing process and increasing the resolution in flow regions of interest,
enabling a significant reduction of the total number of computational de-
grees of freedom compared to manual meshing techniques and classical
lower-order numerical approximations.

2. An anisotropic mesh adaptation method based on gradient re-
covery and optimal shape elements (Fortin, 2024) The authors present
a complete mesh adaptation strategy applicable for controlling the dis-
cretization error on a finite element solution of Lagrange type of any
degree. The method is described in detail, outlining the process of con-
structing a more accurate solution from a finite element solution using a
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gradient recovery method. The error is then estimated as the difference
between the reconstructed and the initial solution. Subsequently, the mesh
is modified using local operations to minimize the error on the gradient.
Additionally, a number of numerical examples are provided to illustrate
the effectiveness of the approach.

3. Model reduction techniques for parametrized nonlinear partial
differential equations (Nguyen, 2024) The authors present model re-
duction techniques for parametrized nonlinear partial differential equa-
tions (PDEs). The main ingredients of their approach include reduced
basis (RB) spaces to provide rapidly convergent approximations to the
parametric manifold, Galerkin projection of the underlying PDEs onto
the RB space to reduce the number of degrees of freedom, and empirical
interpolation schemes to rapidly evaluate the nonlinear terms associated
with the Galerkin projection. They devise a first-order empirical interpo-
lation method to construct an inexpensive and stable interpolation of the
nonlinear terms. Two different hyper-reduction strategies are considered:
hyper-reduction followed by linearization, and linearization followed by
hyper-reduction. The authors extend empirical interpolation to nonintru-
sive model reduction and apply it to compressible flows in both supersonic
and hypersonic regimes. They present numerical results to illustrate the
accuracy, efficiency, and stability of the reduced-order models. The in-
terested reader can refer to Kerfriden et al. (2014); Hoang et al. (2016);
Goury et al. (2016); Agathos et al. (2020); Hoang et al. (2021, 2022); Chen
et al. (2024) for adaptive (certified) model order reduction for non-linear
problems and localised phenomena such as fracture, molecular dynamics
and inverse problems.

4. Adaptive finite elements for obstacle problems (Gustafsson, 2024)
The author summarize three applications of the obstacle problem to mem-
brane contact, elastoplastic torsion, and cavitation modelling, demonstrat-
ing how the resulting models can be solved using mixed finite elements.
He highlights the challenge of constructing fixed computational meshes
for any inequality-constrained problem due to the unknown shape of the
coincidence set. Consequently, he demonstrates how h–adaptivity can be
utilized to resolve the unknown coincidence set. Additionally, the author
discusses practical challenges that must be overcome in the application of
the adaptive methods.

5. A Posteriori Error Identities and Estimates of modelling Errors
(Repin, 2024) This Chapter discusses a posteriori estimation methods for
mathematical models based on partial differential equations. The analysis
is based on functional identities of a special kind, reflecting the most gen-
eral relations that hold for deviations from the exact solution of a bound-
ary value problem. These identities do not depend on special properties of
approximations and contain no mesh-dependent constants, making them
valid for any function in the admissible (energy) class. This universality
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enables the control of accuracy for various numerical approximations and
the comparison of solutions of mathematical models. The capabilities are
demonstrated with the paradigm of modelling errors generated by simpli-
fications of the original problem. Three groups of problems are discussed,
where errors of simplification have different origins: errors arising from
simplifying coefficients of the equation, errors associated with simplify-
ing geometry, and dimension reduction errors. It is shown that in any of
these cases, the desired error estimates follow from the general a posteriori
identity after proper specification of the functional spaces and operators
associated with the boundary value problem.

6. Exact error control for variational problems via convex duality
and explicit flux reconstruction (Bartels and Kaltenbach, 2024) A
posteriori error estimates serve as crucial tools for bounding discretiza-
tion errors in terms of computable quantities, bypassing the need for es-
tablishing often challenging regularity conditions. However, for problems
involving non-linearity, non-differentiability, jumping coefficients, or finite
element methods with anisotropic triangulations, such estimates can often
result in large factors, leading to sub-optimal error estimates. To address
this issue, exact and explicit error representations are derived using convex
duality arguments, effectively avoiding such effects.

7. Algebraic error in numerical PDEs and its estimation (Papež,
2024) The paper discusses error estimation for the Poisson model prob-
lem, focusing on residual-based and flux reconstruction error estimates.
Residual-based estimates, while useful for estimating discretization er-
rors, have limitations due to the lack of exact algebraic solutions. The
paper proposes adjustments to these estimates but highlights drawbacks.
Flux reconstruction offers local error indicators and guaranteed bounds
but is computationally intensive. The paper emphasizes the importance
of reducing algebraic error for accurate discretization error estimation and
suggests further research on adaptive mesh refinement and algebraic solver
stopping criteria. It also advocates for rigorous methods to mitigate alge-
braic errors in various numerical methods. It is worth noting that other
methods including meshfree methods, enriched partition of unity meth-
ods, see Agathos et al. (2016b,a, 2018, 2019b,a, 2020); Bordas and Menk
(2023), isogeometric analysis, see Langer et al. (2016); Yu et al. (2018);
Matculevich (2018); Videla et al. (2019); Langer et al. (2019); Jansari
et al. (2022b) and collocation methods, see Arnold and Wendland (1983);
Jia et al. (2019), smart point clouds, see Perazzo et al. (2008); Jacquemin
et al. (2023), are also concerned by algebraic errors due to ill-conditioning
of the stiffness matrix. The interested reader can refer to the following
papers.
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Durán, R., Muschietti, M.A., Rodŕıguez, R., 1991. On the asymptotic exactness
of error estimators for linear triangular finite elements. Numerische Mathe-
matik 59, 107–127.

29



Eftimie, R., Mavrodin, A., Bordas, S.P., 2023. From digital control to digi-
tal twins in medicine: A brief review and future perspectives. Advances in
Applied Mechanics 56, 323–368.

Eigel, M., Merdon, C., 2016. Local equilibration error estimators for guaran-
teed error control in adaptive stochastic higher-order Galerkin finite element
methods. SIAM/ASA Journal on Uncertainty Quantification 4, 1372–1397.

Eigel, M., Merdon, C., Neumann, J., 2016. An adaptive multilevel Monte Carlo
method with stochastic bounds for quantities of interest with uncertain data.
SIAM/ASA Journal on Uncertainty Quantification 4, 1219–1245.

Eriksson, K., Johnson, C., 1985. Error estimates and automatic time step
control for non-linear parabolic problems. I. Bericht. Universität Jyväskylä.
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das, S.P., 2013. Efficient recovery-based error estimation for the smoothed
finite element method for smooth and singular linear elasticity. Computa-
tional Mechanics 52, 37–52.
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