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ABSTRACT
Landform mapping is the initial step of many geomorphological analyses (e.g. assessment of 
natural hazards and natural resources) and requires vast resources to be applied to wide areas 
at high-resolution. Among geomorphological objects, we focus on glacial moraine mapping, 
since it is a task relevant to many fields (e.g. paleoclimate and glacial geomorphology). Here we 
proposed to exploit the potential of Deep Learning-based approaches to map moraine land-
forms by exploiting multi-source remote sensing imagery. To this end, we propose the first 
Deep Learning model to map glacial moraines, namely MorNet. As multi-source remote 
sensing information, we combine together three different sources: Topographic (Pleiades- 
derived DSM), Multispectral (Sentinel-2), and SAR (Sentinel-1) data. To cope with such hetero-
geneous information, the proposed model has a dedicated branch for each input source and, 
a late fusion mechanism is leveraged to combine them with the aim to provide the final 
mapping. The performance of the MorNet model is evaluated on several glacier valleys in China 
in the Himalayan range. This area contains minimally eroded moraines, so they are well-defined 
and of varied morphology. The behavior of the proposed method is compared to models using 
individual mono-source models in order to highlight the benefit to simultaneously leverage 
multi-source information. The use of multi-source data allows MorNet to exploit the comple-
mentarity of the three input sources and improve its performance from an f1-score of about 
41.6 using a single source to 52.8 using three sources. MorNet provides a first-order moraine 
map through its ability to identify well-defined moraines. Consequently, MorNet can identify 
areas likely to contain moraines and intends to be used as a tool by experts to facilitate and 
support large-scale mapping.
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1. Introduction

Geomorphology is the field of geosciences that 
investigates landforms and their associated forma-
tional and evolutional processes, such as erosion 
and deposition (Evans 2012; Keller et al. 2020; 
Smith, Paron, and Griffiths 2011). Landforms are 
geomorphological objects that discontinuously 
cover the earth’s surface and are characterized by 
their topography. In other words, by their shape 
(conical, elongated, ridged, etc.), dimensions 
(height, width, and length), and geomorphometric 
characteristics such as slope, curvature, roughness, 
position, and orientation in the landscape (Evans  
2012). Geomorphological analyses have both soci-
etal and scientific applications, such as the char-
acterization of natural hazards and natural 
resources or a better understanding of the func-
tioning of natural systems (Bishop et al. 2012; 
Evans 2012; Keller et al. 2020; Smith, Paron, and 
Griffiths 2011; Sun et al. 2022). Moreover, these 
issues are becoming increasingly important with 

global warming (e.g. Bull 2013; Scherler, 
Bookhagen, and Strecker 2011; Wobus, Tucker, 
and Anderson 2010). However, it is necessary 
before these studies to carry out geomorphological 
mapping of the objects of interest. These maps are 
usually drawn manually on the basis of remote 
sensing images (mostly satellite), then checked 
and completed by field observations (Chandler 
et al. 2018; Smith, Paron, and Griffiths 2011). 
Creating these maps is a complex task that 
depends on the expertise and skills of the operator 
and requires a detailed analysis of the landscape 
and geomorphometric features for accurate deli-
neation of geomorphological objects. As a result, 
this task is time-consuming, especially when work-
ing over large areas. Nowadays, the availability of 
high (, 10 m) and very high-resolution images 
( < 1 m) permits us to characterize with great 
precision the shape and nature of geomorphologi-
cal objects. In addition, the short revisit periods 
provided by most recent satellite missions make it 
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possible to monitor dynamic phenomena such as 
bank erosion, landslides, and destabilization of 
melt lakes. However, due to the time-consuming 
nature of map production and the limitations of 
human operators in handling and organizing vast 
amounts of information, the full potential of this 
extensive data remains untapped. In response to 
these problems, many automated mapping systems 
have been developed using satellite imagery (e.g. 
Bishop et al. 2012; Han et al. 2022; Smith, Paron, 
and Griffiths 2011) to generate large-scale maps. 
These systems primarily rely on user-defined clas-
sification rules and thresholds, such as Object- 
Based Image Analysis (e.g. Anders, 
Seijmonsbergen, and Bouten 2011; Drăguţ and 
Blaschke 2006; Rastner et al. 2014), band ratio 
techniques (e.g. Alifu, Ryutaro, and Johnson  
2015) and morphometric analysis technique 
based on pixel (e.g. Alvioli et al. 2016; Wernette, 
Houser, and Bishop 2016). To a lesser extent, 
Drăguţ and Blaschke (2006) have succeeded in 
reducing reliance on threshold definitions with 
fuzzy boundaries, although expert knowledge is 
still necessary for defining different morphological 
classes. In comparison, Machine Learning (ML) 
and Deep Learning (DL) models are entirely data- 
driven and autonomously acquire knowledge 
about object characteristics (LeCun, Bengio, and 
Hinton 2015; Zhang, Zhang, and Du 2016), elim-
inating the need to develop manual classification 
rules and threshold.

ML and DL models have been used in various 
fields, including computer vision, where they were 
initially employed for classifying natural images 
(images of ordinary life) and later applied to automate 
mapping tasks (LeCun, Bengio, and Hinton 2015; 
Reichstein et al. 2019; Zhang, Zhang, and Du 2016). 
DL models have demonstrated superior performance 
compared to ML models, mainly as a result of their 
capability to handle complex datasets with a large 
number of variables. Among DL models, 
Convolutional Neural Networks (CNNs) have 
emerged as the state-of-the-art technique in computer 
vision. This strong performance is due to their con-
volutional filters, which enable them to extract and 
learn spatial patterns in images, allowing for object 
identification at various scales (LeCun, Bengio, and 
Hinton 2015; Zhang, Zhang, and Du 2016). These 
capabilities make CNNs well-suited for mapping geo-
morphological objects, particularly given their suc-
cessful application in automatic mapping for land 
use and land cover. Additionally, CNNs offer the 
advantage of combining data acquired from different 
sensors, and several model architectures and a wide 
variety of data (multi-spectral, optical, radar, topo-
graphic) have been tested in the field of land cover 
mapping (Chen and Bruzzone 2022; Gbodjo et al.  

2021; Hong et al. 2021; Li et al. 2022, 2021; Sainte 
Fare Garnot, Landrieu, and Chehata 2022). These 
studies have highlighted that the use of multi-source 
models (i.e. using several data sources) has often out-
performed mono-source ones (i.e. using a unique data 
type) (Dalla Mura et al. 2015; Gbodjo et al. 2021; 
Sainte Fare Garnot, Landrieu, and Chehata 2022). 
These studies mainly use 2D images such as radar 
and multispectral data which are widely available but 
do not capture essential characteristics of true 3D 
landforms (Li et al. 2022). However, in the case of 
geomorphological mapping, topographic data are of 
paramount importance for characterizing geomor-
phological objects from an expert point of view. 
Recently, several studies have started to use topo-
graphic data via a Digital Terrain Model (DTM) or 
with derived morphometric indices (e.g. slope) for 
mapping geomorphological objects. These studies 
focus on particular objects such as landslides 
(Ghorbanzadeh et al. 2019), mountain summits 
(Torres et al. 2020), lunar craters (Silburt et al. 2019), 
sand dunes (Shumack, Hesse, and Farebrother 2020), 
and debris-covered glaciers (Xie et al. 2020). Other 
studies work on mapping several geomorphological 
units within an area (Du et al. 2019; van der Meij 
et al. 2022). Few studies use only spectral information 
to map small-scale objects like Martian volcanic and 
eolian bedforms (Palafox et al. 2017) and rock glaciers 
(Marcer 2020). Except for Palafox et al. (2017), Marcer 
(2020) and Ghorbanzadeh et al. (2019), all other stu-
dies focus on large-scale shape mapping.

In this study, we focus our efforts on smaller indi-
vidual objects of the order of kilometers. Our choice is 
set on glacial moraines because they exhibit a specific 
geometry resulting from relatively simple formational 
processes, i.e. cordons with a triangular section 
formed by the advance of glaciers (Menzies and Ross  
2022). Furthermore, precise moraine identification 
and characterization are relevant to many disciplines. 
For example, the position and elevation of frontal 
moraines is used to quantify the equilibrium-line alti-
tude for paleoclimate reconstruction (Hornsey et al.  
2022; Saha et al. 2019). Similarly, moraine character-
istics, such as width, height, and slope are useful for 
estimating the ability of a dam moraine to withstand 
the hydrostatic pressure of the associated meltwater 
lake in glacial lake outburst flood hazard studies 
(Prakash and Nagarajan 2017). To the best of our 
literature review, there are no specific studies on gla-
cial moraines. One of the seven classes defined in the 
study proposed in van der Meij et al. (2022) corre-
sponds to push moraines. But it is a large object 
compared to the moraines in our scenario. Indeed, 
the moraine is almost 2 km wide and several dozen 
kilometers long. Similarly, several dozen kilometers 
long. Similarly use ML algorithms to automate geo-
morphological mapping in the Alps and one of the 
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classes of their study includes all objects associated 
with glaciers (moraines, debris-covered glaciers and 
rock glaciers).

Another objective is to use DL to take advantage of 
the complementarity of different remote sensing data 
sources. DL and ML models combining optical or 
multi-spectral data with radar or DTM data for land 
cover and geomorphological mapping, have already 
been used. These studies have shown that multi- 
source models have better performance than models 
using only one source of data (Chen and Bruzzone  
2022; Du et al. 2019; Gbodjo et al. 2021; Hong et al.  
2021; Li et al. 2022, 2020; Sainte Fare Garnot, 
Landrieu, and Chehata 2022). The specificity of our 
approach is that we aim to integrate topographic 
information and evaluate its contribution to the accu-
rate identification of landforms. In this study, we 
propose a model called MorNet, to automate moraine 
mapping at the scale of half a dozen glacial valleys and 
produce a binary map by classifying each pixel. To 
assess whether topographic information is sufficient to 
characterize the moraines or needs supplementary 
information, our model uses three data sources 
(DTM, multispectral, and radar images) with a three- 
branch structure to extract complementary informa-
tion between these sources.

2. Study site and datasets

The study area is located in the Yadong half-graben 
in China, which intersects the Himalayan range in 
an N-S orientation at an average elevation of 4500  
m. The Yadong normal fault runs along the pied-
mont of the Jomolhari range and forms spectacular 
triangular facets whose dip is ,30. Glaciers define 
accumulation zones at summits of the range and 
flow westward down very steep slopes to the 
Yadong basin. The basin fill is mainly composed of 
Quaternary glacial and fluvio-glacial deposits 
derived from local granite and metamorphic rocks 
(Wang et al. 2022; Zuo et al. 2021). Our site com-
prises two zones of similar size (,55 km2) separated 
by 23 km (Figure 1(a)). We use 7.5 km2 of the study 
site to train the model and 54.5 km2 to test the 
effectiveness of the model. The details of the distri-
bution of the area in these two categories are 
explained in section 3.3.

We carried out a cartography of the moraines that 
will be used as ground truth to train the model and test 
its effectiveness. Moraine mapping was based on 
a photogrammetric Digital Surface Model (DSM), 
with a spatial resolution of 1 m, derived by tri-stereo 
photogrammetry from Pleiades satellites imagery 
acquired on 20 November 2016. The absence of visible 
vegetation on the study site allows the DSM to be 
considered equivalent to a DTM. Pleiades images are 
composed of five bands, three in the visible spectrum, 

one in the near-infrared spectrum (RGB and NIR at 
a spatial resolution of 2 m), and one panchromatic 
band on the entire visible spectrum (spatial resolution 
of 0.5 m). We use the triplet of panchromatic images 
acquired with different incidence angles to produce 
the DSM using MicMac software (Rupnik, Daakir, and 
Pierrot Deseilligny 2017). RGB composite images 
from Sentinel-2 satellite complement the data used to 
map the moraines.

We focus on latero-frontal moraines which are 
triangular-shaped mounds formed by the advance of 
glaciers. They are located near the outlet of a glacial 
valley and are identified by a prominent crest and two 
steep flanks (local slope of 20°-30°). Moraines are 
mapped according to the context of their formation, 
i.e. their position relative to the paleo-glacier, as well 
as their morphology. We rely on a DTM and derived 
morphometric indices such as horizontal curvature 
and slope to perform the mapping by first locating 
the glacial valleys and then focusing on the location of 
moraines near outlets of glacial valleys. DTM, curva-
ture, and slope allow to detect the crests and flanks of 
the moraines. The slope break at the base of the flanks 
marks the delineation of the moraine (curvature local 
extremum).

There are 59 polygons representing the moraines 
mapped in both zones. The moraines in the northern 
zone are well-expressed, relatively large, and represent 
44% of the mapped moraine surface in the two zones. 
On the contrary, the moraines in the southern zone 
are smaller but more numerous; they represent 71% of 
the 59 polygons localized in the two zones 
(Figure 1(b)). The morphology of the moraines 
changes with age, thus old moraines have lower slopes 
than recent moraines due to erosion. In addition, 
some moraines can also be very degraded if they 
have been crossed by drainage networks or covered 
by debris flows. Some characteristics of the 59 mapped 
polygons are presented in Figure 2. The length of the 
moraines varies from 50 m to 4 km, but half are less 
than 1 km, and a third are less than 500 m long. The 
median slope ranges from 7° to 33° with a maximum 
of around 20°, and 70% of the polygons have a median 
slope between 12° and 25°. The median width varies 
from 20 m to 270 m, and we observe three peaks, one 
around 30 m, which corresponds to a quarter of the 
moraines, a second around 70 m, and a last one 
around 150 m. The distribution of the area follows 
a decreasing tendency, with a third of the area less 
than 0.05 km2, then almost half of it between 0.05 and 
0.2 km2, and the extremes are between 1000 m2 and 
1.05 km2. Finally, the median height evolves between 
2 m and 69 m with a maximum of around 25 m and 
a quarter of moraines with a height lower than 11 m.

In our study, we train the DL model by exploiting 
multi-source remote sensing imagery in order to 
describe the study area. More in detail, we consider: 

GEO-SPATIAL INFORMATION SCIENCE 3



Figure 1. (a) study area in the Yadong half-graben (China) and location of the two zones on RGB composite images provided by 
Sentinel-2. (b) localization of moraines in the northern and southern zones displayed on the photogrammetric DTM. The numbers 
1 to 6 indicate the positions of the glacial valleys. Numbers 25 and 43 correspond to particular moraines whose characteristics are 
discussed in the results section. Black boxes in solid line correspond to location of the samples of different sources presented in (c).

Figure 2. Distribution of length, median width, median slope, area, textcolor black and median height, of the 59 moraines present 
in the two zones of our study site.
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DTM: DTM at a spatial resolution of 10 m, resampled 
with SAGA-GIS (Conrad et al. 2015) resampling tool 
from the 1-m-photogrammetric DTM. The bicubic 
spline parameter is used for downscaling.

Sentinel-1 (S1): Four radar images with a spatial reso-
lution of 10 m from the Sentinel-1 satellite were down-
loaded via the PEPS platform in the Ground Range 
Detected format. Images are acquired with the 
Interferometric Wide acquisition mode, in ascending 
and descending orbit, and with co- and cross- 
polarization (VH and VV). The ascending images 
were collected on 28 December 2020, and the descend-
ing images on 24 December 2020. The radar indicates 
the ground roughness in the direction of incidence. 
The images are orthorectified and calibrated, and 
a speckle filter is applied.

Sentinel-2 (S2): Ten images from the Sentinel-2 satel-
lite resampled to a spatial resolution of 10 m. Three 
bands capture information from the visible spectrum 
(bands B2, B3, and B4), five in the near-infrared (B5, 
B6, B7, B8, and B8A), and two images in the short- 
wave infrared (B11 and B12) and provide information 
on soil texture, vegetation, and lithology. Images were 
acquired on 30 December 2020 and downloaded via 
the PEPS platform.

Sentinel-1 and Sentinel-2 satellites are provided by 
the Copernicus Programme developed by the 
European Space Agency (ESA). This programme pro-
vides open-source imagery all over the globe with high 
temporal revisit time. Figure 1(c) shows the different 
sources on some extracts of the study site.

3. Methodology

In this section, we first present the structure of our 
three-branch model. Then, we detail the post- 
processing framework used for filtering MorNet’s pre-
dictions. Afterward, we introduce the method for the 
dataset’s construction and evaluating the perfor-
mances of our model. We describe the framework 
associated with our model in Figure 3(a)). We also 
describe the sub-models created by removing 
branches from the three-branch structure of MorNet 
to compare mono-source and multi-source perfor-
mances. Finally, we present experimental settings 
and we report the hyper-parameters of all models.

3.1. Model architecture

3.1.1. Main architecture
The use of multi-source data is getting more and 
more attention with the unprecedented possibility 
to access remote sensing data acquired via multiple 
acquisition modes over a given study area (Chen 
and Bruzzone 2022; Du et al. 2019; Gbodjo et al.  
2021; Hong et al. 2021; Li et al. 2022, 2021, 2021). 
The two most common ways to combine distinct 
data sets are: i) Early Fusion and ii) Late Fusion. 
The former consists in merging the sources before 
their analysis while the latter involves processing the 
sources separately and, subsequently, combining 
them in the middle of the analysis process (Hong 
et al. 2021; Sebastianelli et al. 2021). For example, 
Ghorbanzadeh et al. (2019) apply an early merging 
strategy to optical and topographic data by stacking 

Figure 3. (a) Flowchart of our framework. (b) MorNet’s architecture.
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the various layers that will serve as input data for its 
mono-branch model. In contrast, Sainte Fare 
Garnot, Landrieu, and Chehata (2022) employ 
both optical and radar data in their study, utilizing 
a two-branch model that individually processes each 
data source to extract relevant features. These 
extracted features are subsequently merged and 
further processed to generate the final classification. 
Recent studies suggest that the Late Fusion strategy 
achieves better performance thanks to the use of 
recent deep learning methodological developments 
(Hong et al. 2021; Sainte Fare Garnot, Landrieu, and 
Chehata 2022; Sebastianelli et al. 2021). Here we 
adopt a Late Fusion strategy to build a model that 
takes, as input, a patch of data and predicts the class 
of the central pixel. To this end, we propose to 
exploit a model with three branches, one for each 
of the considered sources (DTM, S1, and S2). More 
in detail, we adapt the neural network architecture 
previously introduced in Gbodjo et al. (2021) for 
land cover mapping from multi-temporal and 
multi-scale imagery to our task. In this model, 
each of the three branches is composed of an enco-
der whose purpose is to extract per-source features. 
Successively, the per-source features are aggregated 
together by means of a fusion module and, at the 
end, the decision is made by a classifier. We call this 
model MorNet (Figure 3(b)).

3.1.2. Encoder description
Encoders of each branch are identical, but they differ 
by the number of input bands, the number of filters 
used, and the dropout rate. Encoders are composed of 
three 2D convolutional layers and one pooling 
(Zhang, Zhang, and Du 2016) or one flattened layer 
at the end. After each convolutional layer, we add 
a ReLU (Rectified Linear Unit) activation function 
(Nair and Hinton 2010), batch normalization (Ioffe 
and Szegedy 2015), and a dropout layer (Srivastava 
et al. 2014). Batch normalization and dropout layers 
have been introduced to regularize and stabilize the 
training of the internal model parameters. The three 
convolutional layers have a kernel size of 3 � 3. The 

first two convolutional layers have a stride value equal 
to 2. Table 1 supplies information about the difference 
in the previously mentioned hyper-parameters for 
each encoder of the multi-branch model.

3.1.3. Training procedure
The model extracts the per-source features through 
each encoder, whose structure we described in the 
previous section. Then, the per-source features are 
fused together via concatenation and, finally, the 
classifier composed only of fully connected layers 
can make the decision about the category of the 
inputs multi-source patch. To train the deep learning 
multi-source model, the categorical cross-entropy 
loss function is employed in order to guide the learn-
ing process associated to the internal model para-
meters. Additionally, according to recent literature 
related to multi-source remote sensing data classifi-
cation Gbodjo et al. (2021), we adopt a per-source 
secondary classifier commonly named auxiliary 
classifier.

The final loss function associated to the training 
stage of the MorNet model is defined as follows: 

LossTot ¼ LossFusion þ
X

i2fS1;S2;DTMg

αi � Lossencoderi (1) 

where i is the per-source branch spanning the set of 
sources fS1; S2;DTMg and Loss is the loss function 
for each classifier (i.e. Cross-Entropy loss) 
(Figure 3(b)). The α parameter weights the influence 
of the auxiliary classifiers. The technique of auxiliary 
classifiers improves the learning ability of the model 
as underlined by recent studies (Gbodjo et al. 2021; 
Sainte Fare Garnot, Landrieu, and Chehata 2022). All 
the classifiers have the same structure and para-
meters. They are composed of three fully connected 
layers with a dropout rate of 0:3, two first layers with 
32 neurons, and a ReLU activation function. The last 
layer is a fully connected layer with two outputs and 
a softmax activation function (Table 1). Thus, this 
layer produces a probability of belonging to the mor-
aine class or not.

Table 1. Details of the model architecture. Numbers (32) and (2) in brackets correspond to the 
number of neurons.

Encoder’s structure Parameters specific to each branches

3×3 Conv2D + strides = 2 + * DTM S1 S2

3×3 Conv2D + strides = 2 + * number of input bands 1 4 10

3×3 Conv2D + strides = 1 + * number of filters 8 32 32

GMP or Flatten layer dropout rate 0 0,3 0,3

* ReLU + Batch Normalization + Dropout

GMP = GlobalMaxPooling2D

Classifier’s structure

Fully connected layer (32) + ReLU + dropout (rate = 0,3)

Fully connected layer (32) + ReLU + dropout (rate = 0,3)

Fully connected layer (2) + Softmax

6 I. ROCAMORA ET AL.



3.2. Post-processing framework

The objective of the filtering stage is to enhance the 
prediction map by removing as many false positives 
(FP) as possible. The first step is to remove aberrant 
FPs, such as edge artifacts and predictions whose areas 
are too small. Since we observe that 98% of moraine 
polygons exhibit areas larger than 20 pixels, we dis-
regard any prediction (positive or negative) smaller 
than that threshold. The second step is to eliminate 
predictions that do not fit the context of moraine 
formation, i.e. located more than 1 km away from 
a glacial valley. We use the current glacial valleys as 
indications because the present-day trajectories of 
main drainages, that usually drain glaciers meltwaters, 
are strongly similar to the trajectories of the paleo- 
glaciers that formed the valleys. Each drainage is 
initiated from the lowest point of the local glacier 
identified from the Randolph Glacier Inventory 6.0 
database (RGI Consortium 2017) and propagated 
downstream using SAGA-GIS channel networks algo-
rithm (Conrad et al. 2015). The third step consists of 
reducing FPs along the drainage network by removing 
the predictions located on the drainage network (1 
pixel wide) and taking a 1-pixel buffer on either side. 
For small drainages, we use the topographic position 
index (TPI) module of SAGA-GIS (Wilson and 
Gallant 2000) to provide information on the presence 
of valleys or crests. This index is calculated based on 
the DTM with a radius of 100 m which corresponds to 
the average median width of the moraines. If a pixel 
has a negative (positive) TPI value then this pixel is 
located in a valley (crest). The more negative the TPI 
value is, the more incised the valley is, and conversely, 
the more positive the value is, the more marked the 
crest is (De Reu et al. 2013). We, therefore, remove 
predictions in areas with a TPI between −14 and −30 
which corresponds to the talwegs of the small valleys. 
The fourth and final step aims to smooth the edges of 
the predictions and remove the small residual ele-
ments with the opening operator of mathematical 
morphology. The MorNet’s prediction map obtained 
after post-processing filtering is hereafter referenced 
to MorNetfilt.

3.3. Assessment

Expert mapping of lateral and frontal moraines along 
six glacial valleys as well as their associated piedmonts 
was performed based on the DTM with a spatial reso-
lution of 1 m (Pleiades-derived photogrammetry) and 
panchromatic images with a spatial resolution of 0.5 m 
(Pleiades). We observe that moraines are generally 
well defined and dissected near their lowest point by 
overflowing melt water and subsequent stream inci-
sion. This provides a natural separation between right 
and left bank moraines (mapped polygons) used 

hereafter. To account for spatial variability in moraine 
geomorphology (e.g. width, slope, elevation), the 
training set is composed of either right or left bank 
moraines from all valleys, excluding valley #4, where 
moraines on either side of the banks do not corre-
spond and are too small due to erosion processes to be 
separated with an acceptable degree of confidence. An 
additional subset from the training set is reserved for 
the validation step, while the remaining moraines 
from opposite banks and both banks of valley #4 con-
stitute the test subset. Furthermore, we decide to take 
different moraines for training and testing to limit 
possible spatial autocorrelation issues (Kattenborn 
et al. 2022). The spatial distribution of the train, vali-
dation, and test moraines is presented in Figure 1. 
From these moraines, we extract remote sensing 
image patches to constitute three data sets: training, 
validation and test set. Each set of data is composed of 
collections of patches extracted from moraines and 
patches randomly extracted from the rest of the area 
(areas mapped as non-moraine). Since the maximum 
median width of moraines observed over the study 
area is 250 m and our image set is at spatial resolution 
of 10 m, we decide to set patch size at 25 × 25pixels.

The label assigned to a given patch corresponds to 
the class of its central pixel. Train and validation sets 
are balanced, while the test set is unbalanced to reflect 
the distribution observed over the entire area between 
moraine and non-moraine pixels. Details of data sets 
characteristics (number of patches, number of mor-
aines, etc.) are presented in Table 2. The data is nor-
malized between 0 and 1 by taking the minimum and 
maximum values over the entire study site. Following 
recommendations by Filipponi (2019)), a logarithmic 
transformation is also applied to the SAR images 
before normalization. To evaluate the performance of 
the model we use two standard evaluation metrics: the 
f1-score and the Intersection over Union (IoU) 
(Garcia-Garcia et al. 2018; Hossin and Sulaiman  
2015). F1-score is particularly adapted to our specific 
data set due to its ability to cope with scenario in 
which the classes distribution is highly unbalanced. 
The model is trained over many iterations, called 
epochs, and we keep the model obtained at the 
epoch achieving the best f1-score performance on 
the validation set, then this model is used to provide 
the final classification on the test set. This strategy is 
employed to avoid model overfitting if only training 
data was considered. F1-score is defined as follows: 

Table 2. Datasets characteristics.
Train set Validation set Test set

Number of positives patches 27 989 6 021 49 383
Number of negatives patches 27 989 6 021 538 509
Total number of patches 55 978 12 042 587 892
Number of moraines used for 

patches extraction
19 5 35

Area used for positives 
patches extraction (km2)

3.1 0.7 5.4
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f 1 score ¼
TP

TP þ 0:5ðFP þ FNÞ
� 100 (2) 

with TP ¼ True positive, FP ¼ False Positive and 
FN ¼ False Negative. In parallel, the IoU compares 
the overlapping between ground truth and prediction 
and is defined by Equation 3. This metric is increas-
ingly used in the field and can handle unbalanced 
datasets; we use it here to facilitate future comparisons 
with other methods. The values of the f1-score and 
IoU range from 0 to 100. The closer the value is to 100, 
the better model performs. 

IoU ¼
Area of Overlap
Area of Union

� 100 (3) 

In addition to the full multi-source model called 
MorNet, we also produced mono-source models (i.e. 
trained on a single data source) hereafter called 
MorNetDTM, MorNetS1, and MorNetS2, as well as bi- 
source models (i.e. trained on two data sources) called 
MorNetDTMS1, MorNetDTMS2 and MorNetS1S2 (Table 3).

3.4. Experimental settings

There are some variations between the parameters of the 
mono-source and multi-source models. The last encoder 
layer of MorNet is a flattened layer (Flatten), and the 
fusion of the branches is achieved by concatenation. The 
constant α of the loss function is equal to 0:3. Models 
involving two input sources (see above), have the same 
settings as MorNet (flatten layer and fusion by feature 
concatenation) except for the hyper-parameter α which 
is equal to 0:5. We choose different α values between bi- 
source and multi-source so that the contributions of the 
per-source classifiers are almost equivalent to that of the 
final multi-source classifier. Mono-source models use 

a pooling function (GlobalMaxPooling2D) as last opera-
tion in the encoder component instead of a flattened 
layer (Table 1) because, experimentally, mono-source 
models have exhibited better performance with 
a pooling layer. This is probably because the 
GlobalMaxPooling2D layer provides more robust and 
translation-invariant representations. Table 3 sum-
marizes the characteristics of each model.

All the models were trained for 500 epochs with 
a batch size of 128. To learn the neural networks 
parameters we use the Adam optimizer (Kingma and 
Ba 2017) with a learning rate equal to 10� 4. Models 
were trained on a workstation with Nvidia GeForce 
RTX 3090 graphic card, an Intel Xeon Gold 6226 R 
CPU and 24 GB of RAM. All the models were imple-
mented via the Python Keras/Tensorflow library.

4. Results

In this section, we provide both a quantitative and 
a qualitative assessment of our deep learning model. 
To this end, we first present the quantitative results of 
our model as well as all the per-source ablations. Then, 
we inspect how the training data homogeneity impacts 
the behavior of MorNet. Successively, we qualitatively 
analyze the output of the deep learning framework in 
order to get additional insight about the characteristics 
of its predictions and the confidence of the model in 
its predictions. Finally, we present the improvements 
made by the filtering process.

4.1. Quantitative results

4.1.1. Models performances
The performance metrics on the test moraine predic-
tions and training time are presented in Table 4. 

Table 3. Detailed characteristics of each model.
Last encoder layer Fusion layer Constant α Sources

MorNet Flatten Concatenate 0.3 DTM, S1 and S2
MorNetDTMS2 Flatten Concatenate 0.5 DTM and S2
MorNetDTMS1 Flatten Concatenate 0.5 DTM and S1
MorNetS2S1 Flatten Concatenate 0.5 S1 and S2
MorNetDTM GlobalMaxPooling2D / / DTM
MorNetS2 GlobalMaxPooling2D / / S2
MorNetS1 GlobalMaxPooling2D / / S1

Table 4. Performances on positive test set for each model (f1-score and IoU) and percentage of false 
positives (FP) and false negatives (FN) on test set. Time to produce the datasets, train and test the 
model, and create the prediction map for both areas. MorNetfilt corresponds to MorNet’s prediction after 
post-processing.

Model F1-score on moraine class IoU Time % FP % FN

MorNetDTM 41.6 26.3 , 1h30 4.3 5.1
MorNetS2 40.4 25.3 , 7h30 8.7 4.1
MorNetS1 37.7 23.2 , 5 h 4.8 5.4
MorNetDTMS2 50,8 34.1 , 12 h 6.5 3.3
MorNetDTMS1 48,4 31.9 , 10 h 7.8 3.2
MorNetS1S2 46,1 30.0 , 14 h 4.5 4.6
MorNet 52,8 35.9 , 18 h 4.8 3.7
MorNetfilt 54.2 37.3 / 3.4 4.0
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Among the mono-source models, MorNetDTM per-
forms the best, with the highest f1-score and IoU. 
MorNetDTM has also fewer false positives than 
MorNetS2 and MorNetS1 (4.3% versus 8.7% and 4.8% 
for MorNetS2 and MorNetS1). Moraines being essen-
tially characterized by their morphology, the DTM 
source allows better performance than the other 
mono-source models. Then, we can observe that bi- 
source models exhibit a better behavior, in terms of 
performance results, than their mono-source counter-
parts. MorNetS1S2 achieves the lowest performance 
among all the models exploiting only two input 
sources. This confirms that the DTM source provides 
the most relevant information for moraine character-
ization among all the considered data sources. 
MorNetDTMS2 has a better f1-score and IoU, despite 
a high percentage of FP, than MorNetS1S2. However, 
MorNetDTMS2 makes less FN than the latter (3.3% 
versus 4.6%). The better performance of 
MorNetDTMS2 compared to MorNetDTMS1 can be 
explained by the results of the mono-source model. 
MorNetS2 achieves better performances than 
MorNetS1, showing that the S2 source is more discri-
minative than S1. Finally, with an f1-score of 52.8 and 
an IoU of 36.9, the three-source model, MorNet, 
slightly outperforms the bi-source models. In addi-
tion, with the exception of MorNetS1S2, MorNet has 
a lower percentage of FP than the bi-source models. In 

conclusion, the multi-source models generalize better 
than the mono-source models. Thus, the addition of 
new sources seems to improve the model perfor-
mance. We can note that the absolute value of the 
different metrics is not generally high, but this is partly 
due to the structure of the test set. The test set is highly 
unbalanced and pulls some of the results down.

4.1.2. Bootstrap analysis on training moraines
To assess whether morphological variability of the 
moraine stock influences our model, we perform 
a bootstrap analysis (Boos 2003). Thus, 19 sub- 
datasets are built from the complete dataset by remov-
ing each time one moraine (i.e. all associated poly-
gons) among the total of 19 training moraines. These 
sub-datasets are used to train all variations of our 
model with one, two or three sources. Then, for each 
bootstrap step, we compare the performance of each 
sub-model to with the complete dataset. If the f1-score 
obtained with a sub-dataset is better than that 
obtained with the complete dataset, it indicates that 

the removed moraine negatively affects the general 
learning process.

First, in the case of MorNetDTM, out of the 19 sub- 
datasets, 17 outperform the complete dataset 
(Figure 4), suggesting that the complete dataset con-
tains moraines with highly heterogeneous character-
istics. The best f1-score is obtained by removing the 
lowest and flattest moraine of the training set (mor-
aine #43, indicated in Figure 1). This moraine has 
a median slope of about 10° and a median height of 
8 m and is, therefore, one of the outliers of the training 
set (Figures 2 and 4). Similarly, the second best result 
is obtained by removing the steepest moraine with 
a median slope of 33° (moraine #25, indicated in 
Figure 1) from the training set. The bootstrap per-
formed on the training moraines causes a variation 
of the f1-score of 8.2 (from 41,4 to 49,6) (Figure 4).

MorNetS2 behavior is similar to MorNetDTM, with 
17 sub-datasets outperforming the complete dataset. 
To summarize the characteristics of the ten bands used 
in the S2 source, we calculated the NDVI (Normalized 
Difference Vegetation Index) and NDMI (Normalized 
Difference Moisture Index) as follows: 

NDVI ¼
Near Infrared ðBand 08Þ � Red ðBand 04Þ

Near Infrared þ Red
(4) 

These two indices are classically used in land cover 
studies and incorporate information in the visible, 
near-infrared and mid-infrared ranges, covering the 
entire spectral range of the ten sentinel-2 bands 
(Huang et al. 2021; Sahu 2014). NDVI, on the 
other hand, should enable us to differentiate 
between snow and water (negative value), rock and 
bare soil (zero value), and vegetation (positive 
value). NDMI reflects moisture levels in vegetation, 
so very negative values correspond to bare soil and 
very positive values to healthy vegetation. We calcu-
lated the median of these indices for each moraine. 
Similarly, performance is improved when discarding 
moraines with extreme characteristics such as the 
highest and lowest median NDVI (moraines #27 
and #25, respectively). Overall, the moraines 
between the first and last decile of the NDVI or 
NDMI indices are the ones that show the most 
improvement, with two exceptions. Moraine #30 is 
outside these deciles but has the 2nd highest reflec-
tance value in band 12, whose spectral values are not 

NDMI ¼
Near Infrared ðBand 8AÞ � Short wavelength infrared ðBand 11Þ

Near Infrared þ Short wavelength infrared
(5) 
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covered by the NDVI and NDMI indices and gives 
information on lithology (Figure 4). Therefore, elim-
inating outliers, such as the most vegetated moraines 
and those with the driest or snowiest soils, improves 
performance.

Conversely, of the 19 MorNetS1 sub-datasets, only 6 
exceed the f1-score of the complete dataset, of which 4 
are minor improvements (� 1.0 variations). The two 
moraines that were removed, resulting in a significant 
improvement in the results, are moraines #1 and #18. 
These moraines have a median descending ratio VH/ 
VV bands between the 1st and 3rd quartile (Figure 4). 

It appears that removing moraines with a VH/VV 
ratio between the two quartiles leads to better perfor-
mance for this particular data source. Presumably, this 
is because there is a considerable amount of redundant 
information within the S1 source, and eliminating 
some of the”classic” moraines allows the model to 
focus on the more distinct moraine features.

The bootstrap performed on the MorNetDTMS1 and 
MorNetDTMS2 bi-source models showed a deteriora-
tion in results in almost all cases, which may mean that 
the information learned from the two sources is con-
tradictory and that the models have difficulty 

Figure 4. Predictions variations on the 19 modified train sets (sub-datasets) compared to initial train set (complete dataset), whose 
f1-score value is noted above the graph, and boxplot distributions of moraine features. Outliers are not shown on the boxplot, so 
the lower and upper whiskers correspond to the minimum and maximum values, and deciles are displayed with dashed lines.
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generalizing. In the case of MorNetDTMS2, the mor-
aines that caused little variations (between +1.0 and 
−1.0) that could be caused by variability intrinsic to 
the model are moraines with a median NDMI below 
the 4th decile. Only moraine #27 and #30 corresponds 
to these characteristics but generates a significant 
degradation, but they are moraines with extreme fea-
tures as discussed in the case of MorNetS2. The other 
moraines show significant degradation, except for 
moraine #24, whose degradation is minor (Figure 4). 
In the case of MorNetDTMS1, the moraines that pro-
duce the most degradation are outlier moraines such 
as #29 (lowest VH/VV descending ratio) and #44 (2nd 
lowest median slope). Overall, the removal of mor-
aines in the 8th decile and under the 3rd decile of the 
VH/VV descending ratio caused the highest degrada-
tion (Figure 4). Therefore, it seems that, unlike the 
mono-source models, outlier moraines need to be 
retained in the dataset for good feature learning in 
these two bi-source models.

In the case of MorNetS1S2, the removal of moraines 
with VH/VV ascending ratio between the 6th and 9th 
deciles improve significantly the results (variations 
�1.0). Some moraines lead to better performance 
than the complete dataset when their NDMI and 
slope characteristics are the highest, without being in 
the 5% most extreme, like moraine #43 and #46 
(Figure 4). Thus, in the case of MorNetS1S2, the same 
phenomenon as in the other bi-source models is 
observed, although to a lesser degree: having more 
heterogeneous moraines is preferable. Overall, we 
note that the relationships between mono-source and 
multi-source bootstrapping are not linear (removing 
a moraine that causes an improvement in two mono- 
source models will not necessarily lead to an improve-
ment when the sources are merged, and vice versa).

In the case of the MorNet model, removing mor-
aine #17 is the only case that leads to a significant 
improvement. It is the 3rd moraine that brings the 
most enhancement on MorNetS2, and on all the other 
models it causes little variations (between −1.5 and +  
1.5). The highest degradation is caused by removing 
moraines #2, 29, 44, and 48. Moraine #2 is a moraine 
with near median characteristics except for VH/VV 
descending ratio since it is the 4th weakest. Moraines 
#29, 44, and 48 are moraines with outliers features on 
at least two sources. Moraine #29 has the lowest NDVI 
and highest median VH/VV ratio, while moraine #44 
has the highest NDMI and 2nd lowest median slope, 
and moraine #48 has the highest aspect, lowest VH/ 
VV ratio, and second highest NDVI. We note that the 
degradation caused by removing moraine #2 is present 
in all models using source S1 (Figure 4). However, 
there is no such clear relationship for the other mor-
aines. It seems that the removal of moraines with 
specific extreme characteristics is necessary for the 
model to generalize well, while other features lead to 

a loss of model learning. Merging sources and proces-
sing them in a non-linear manner makes it difficult to 
determine the exact characteristics that lead to better 
performance.

Although the improvements of mono-source mod-
els are superior to those of multi-source models, the 
median variations caused by bootstrapping are lower 
in the case of the complete MorNet model, which 
suggests our approach is robust with respect to an 
heterogeneous training set. In that regard, the end 
user may consider the effort necessary to build 
a perfect data set to train the faster MorNetDTM 
model versus using a readily available unrefined data 
set to train the slower MorNet. However, these per-
formance variations are not only due to the choice of 
the training moraines. The non-moraine training 
patches are randomly selected from the negative class 
at each new training. It is, therefore, possible that the 
negative patches were contributing more than the 
moraine patches to the effective training of the deep 
learning model. However, these results underline the 
importance of a good selection of moraines to be 
included in the training set and ascertain that dis-
carded moraines are not sampled to build the negative 
class. This also shows that potential errors in ground 
truth mapping (unidentified or incorrectly delineated 
moraines) can significantly affect model learning and 
performance.

4.2. Qualitative results

4.2.1. Mono-source results
First, we focus on the location of the predictions 
of MorNetDTM shown in Figure 5. MorNetDTM 
mainly identifies well-defined crests (e.g. moraines 
#22 and #23), and its predictions describe rela-
tively elongated shapes that resemble moraines. 
False positives (FPs) cluster into small groups 
(average area of 750 m2), and are mostly located 
around the large debris flow in the northern zone 
that is at the same elevation as the moraines. The 
debris flows downstream of the drainages in the 
southern zone do not show any FPs because they 
are located at different altitudes compared to the 
moraines. This is not the case for the debris flow 
in the northern zone which, in addition to being at 
the same altitude as the moraines, is located at the 
outlet of a valley, thus inducing the model to make 
errors. The rest of the FPs are mainly on crests or 
areas with textures similar to the debris flow 
(Figure 5).

MorNetS2 identifies almost all the test moraines in 
the northern area but also makes many false predic-
tions there. A portion of these FPs is located around 
the training and validation moraines, suggesting that 
the model has difficulty delineating moraines. 
However, some of these FPs may be moraines, in 
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reality. MorNetS2 identifies crests less well than 
MorNetDTM, therefore, the predictions of MorNetS2 
have a less linear shape than MorNetDTM. FPs are 
primarily around drainages and spread over a greater 
elevation range than moraines, in contrast to 
MorNetDTM predictions which extend over the same 
elevation range as moraines (Figure 6(a)). However, 
the easternmost valley in the southern zone has very 
few ”moraine” predictions (whether right or wrong). 
In the Sentinel-2 near- and mid-infrared image, this 
valley has particularly low reflectance. Since the model 
was trained on this geographical area with only 
patches depicting non-moraine class, it probably 
associates all the information from this area to the 
negative class, resulting in several FNs results. The 
large areas of FP are rather located in bright areas 
(Figure 6(b)).

MorNetS1 identifies only a part of the crests of the 
same moraine, such as for moraines #14 and #22. 
Smaller moraines are better identified especially in 
the easternmost valley of the southern zone. FPs are 

located as in MorNetDTM at the large debris flow and 
glacier edge, as well as along the drainage network 
(Figure 6(c)). Moreover, east of moraine #23, the pre-
diction follows a small landform with a gradient pro-
file similar to moraines near the drainage network 
rather than the true moraine (Figure 6(d)).

4.2.2. Multi-source results
We compare the differences between the FPs of 
multi-source models and the mono-source models 
from which they are derived. We observe that, in 
the case of MorNetDTMS2, there are fewer FPs near 
the large debris flow and the glaciers than in the 
case of MorNetDTMS2. We also note that 
MorNetDTMS2 has fewer FPs near the drainage net-
work and moraine boundaries than MorNetS2. 
Similarly, MorNetS1S2 predictions have fewer FPs 
at the drainage network and debris flow than 
MorNetS1 predictions. Thus, it seems that the FPs 
located at different areas by two mono-source mod-
els will be less present in the multi-source model 

Figure 5. MorNetDTM model predictions at the study site with DTM with a spatial resolution of 10 m in background. The black box is 
the location of the zoom on the large debris flow with DTM with a spatial resolution of 10 m in the background.
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using these two sources. On the contrary, we note 
that MorNetDTMS1 has more FPs near the large 
debris flow and glaciers than MorNetDTM and 
MorNetS1. These FPs, initially present in the two 
sources, are more extensive in this case. 

Furthermore, the same FP is found east of moraine 
#23 between MorNetS1 and MorNetS1S2. Therefore, 
mono-source models with FPs in the same areas 
exhibit many FPs after the fusion of these sources 
(Figure 7).

Figure 6. (a) MorNetS2 predictions. (b) Zooms in near and mid-infrared Sentinel-2 image. Positions of these zooms are presented in 
black dashes in Figure 6A. (c) MorNetS1 predictions. (d) Zooming in on a false positive and its gradient profile. The location of the 
zoom is given in Figure 6C. DTM with a spatial resolution of 10 m in background.
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This phenomenon also works for correct predictions. 
Globally, moraines identified by two sources separately 
will be better identified by the fusion of these two sources 
(e.g. moraine #36). Multi-source models with DTM 
source correctly identify the crests and allow to find the 
large-sized moraines. S2 and S1 sources are the most 
effective to find the moraines flanks. Finally, the predic-
tions from the fusion of the three sources (MorNet) are 
a combination of the previous observations. FPs at the 
debris flow, glacier and drainage network level are pre-
sent but less frequent, while in some two-source combi-
nations they were absent. However, the model has 
a good trade-off between errors and correct predictions, 
as it identifies both the flanks and crests of the most 
prominent moraines.

4.2.3. Confidence of MorNet
Beyond the traditional boolean representation, we 
explore the correlation between high probabilities 

and accurate predictions in detail. We display the 
probability that a pixel belongs to the moraine class 
in Figure 8 and observe that most moraine predictions 
have a probability of belonging to this class higher 
than 0.9. Particularly, moraine crests exhibit higher 
probabilities than their flanks, which shows that the 
model is more confident in identifying a specific 
shape. FPs do not necessarily exhibit low probability; 
FPs located near zone boundaries (e.g. surrounding 
the lakes and borders of the zones) and around mor-
aine boundaries in the northern zone have a high 
probability of being moraines. There are FPs with 
a lower probability than 0.8, such as those located on 
the large debris flow of the northern zone or in the 
drainage network of the southern zone. However, the 
correct predictions in the eastern valley of the south-
ern zone have the same probability as the FPs. The 
high confidence in the other valleys suggests that there 
may be some autocorrelation effect due to the 

Figure 7. (a) MorNetDTMS2 predictions. (b) MorNetDTMS1 predictions. (c) MorNetS1S2 predictions. predictions. (d) MorNet predictions 
(three-source fusion). DTM with a spatial resolution of 10 m in background.
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proximity of the test and train moraines in these 
valleys. Thus, using the raw model confidence to filter 
the predictions does not seem suitable since FPs have 
the same confidence as true moraines. This also high-
lights the overconfidence of MorNet in its predictions, 
whether they are right or wrong. It seems necessary to 
use another indicator than the model confidence of 
belonging to the moraine class to remove these incor-
rect predictions and improve the model’s 
performance.

4.3. Post-processing of MorNet predictions

A comparison of the prediction maps before and after 
the post-process framework described in section 3.2 
shows a significant decrease in the number of FPs, 
especially at the large debris flow in the northern 
zone where they are reduced by 40% (Figure 9). To 
a lesser extent, FPs located near glacial valley drainage 
networks are reduced by about 19%. In general, the 
contours of the predictions are more homogeneous 
and easier to distinguish. Indeed, the filtering method 
removes the FPs in the valleys, some of which connect 
two moraines. However, this method does not allow 
for a better delineation of certain moraines, notably 
around the training moraines to the east of the north-
ern zone, because they are not adjacent to highly 
incised valleys. Thus, it is not possible to perfectly 
distinguish each moraine, but moraines separated 
from others by deep valleys are well delineated. In 
conclusion, the post-process framework enables 
a reduction of FPs and allows a better delineation of 
the moraines near the drainage network.

Overall, MorNet yields a 11.2 increase (26.9%) in 
f1-score with respect to the best mono-source model 
MorNetDTM (Table 4). Specifically, the former gener-
ates less FNs and more FPs, which are efficiently 
filtered out by our post-processing framework. 

Compared to MorNet, MorNetfilt (MorNet after filter-
ing) reduces the percentage of FPs by one-third while 
increasing the number of FNs very slightly (Table 4). 
Generally, a model that exhibits a high frequency of 
FPs can be considered as over-predictive, and its per-
formance can be optimized through the implementa-
tion of filtering strategies. Conversely, a model with 
a high incidence of FNs demonstrates under- 
predictive characteristics and it will be more challen-
ging to enhance its product no matter the post- 
processing step we will use. Hence, it is more prefer-
able to maintain an over-predictive model.

5. Discussion

To summarize, our study proposes a model to aid in 
lateral and frontal moraine mapping using multi- 
source satellite data (DTM, multispectral and radar 
data).

Firstly, we focused on the contribution of multi- 
source data to improve the model’s ability to identify 
moraines. In the literature, only a few models applied 
to the mapping of geomorphological objects exploit 
multi-source data (e.g. Du et al. 2019; Ghorbanzadeh 
et al. 2019; Giaccone et al. 2021; Li et al. 2020; Xie et al.  
2020), and none of them provide an in-depth study 
related to the interplay between the different remote 
sensing information and their impact on the final 
mapping procedure. Our study highlights the ability 
of MorNet to exploit the complementarity of remote 
sensing data from different sources, which increases 
performance compared to mono-source models. 
Indeed, DTM data best describes large-dimension 
moraine crests, Sentinel-2 multi-spectral data high-
lights moraine flanks, and Sentinel-1 radar data 
detects small reliefs. Hence, multi-source models 
detect all moraine parts (crests and flanks) while limit-
ing overestimation. In addition, using open data such 

Figure 8. Probabilities that MorNet predictions belong to the”moraine” class.
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as Sentinel-1 and Sentinel-2 data can effectively com-
plement other available information (i.e. topographic 
data). The use of open data allows to limit the financial 
effort, and their global spatial coverage makes them 
actionable to support the mapping process of almost 
any study area worldwide.

Secondly, MorNet exhibits promising ability to 
identify well-defined objects associated with pristine 
moraines. However, there is still room for improve-
ment for second-order features (small and strongly 
eroded moraines) and tends to produce false positives 
in debris flow areas and in-between closely grouped 
moraines. This aspect of our model makes it especially 
relevant to identify well-preserved landforms with 
potential to contribute in further studies at more fine- 
grained level. MorNet can assist the process of large- 
scale geomorphological mapping over vast areas that 
would otherwise require extensive resources in terms 
of human-effort and cost.

Thirdly, the ability of the model to learn moraine 
characteristics is highly dependent on the training 
dataset, which should be representative enough to 
cover a wide range of sizes, geometries, and preserva-
tion states. For instance, a selective dataset (i.e, com-
posed of best-defined objects) may permit to identify 

only pristine moraines with a high performance index, 
while a wide dataset would enable to detect most 
moraines but with increased false positives occur-
rence. It is up to the user to find a trade-off between 
these two end-members according to the underlying 
mapping needs.

Finally, we want to point out some limitations 
and make some recommendations. Firstly, multi- 
source models provide better performance than 
mono-source models, but the performance gain 
remains limited in regard to the longer pre- 
processing and computation time. In addition, 
they necessitate dedicated deep learning techniques 
(multi-branch structure and auxiliary classifiers) 
that can be challenging to conceive and implement 
for nonexpert users. Depending on the user’s com-
puting resources, skills, and needs, it may be more 
appropriate to use only the DTM source. However, 
MorNetDTM is more sensitive to data quality and 
will require greater attention when building the 
training dataset, unlike MorNet, which generalizes 
better even with a heterogeneous training dataset. 
Though MorNetDTM fails to detect some moraines, 
the information from the DTM appears to be the 
most relevant as attested by the relatively few false 

Figure 9. MorNet prediction map before (a) and after (b) post-processing.
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positives it produces. Secondly, our model only 
considers local spatial information, whereas experts 
take into account the geomorphological context to 
identify moraines. In the future, it would be inter-
esting to explore the possibility to integrate such 
contextual information similarly to what we have 
done at the post-processing stage (distance to the 
drainage network). Lastly, our study site is located 
in an semi-arid zone with scarce vegetation and 
homogeneous lithology, so that satellite photo-
grammetry may yield a DSM that closely approx-
imates a DTM. However, this also results in rather 
limited information captured by optical satellite 
imagery and, therefore, a limited contribution for 
Sentinel-2 data to multi-source models, which 
would not be the case in different settings. With 
the aim to deploy this approach in regions with 
significant vegetation cover we strongly recom-
mend the use of DTM data (not DSM) in which 
topography truly reflects geomorphology.

6. Conclusion

We propose the first deep learning model, MorNet, 
dedicated to glacial moraine mapping. MorNet relies 
on commonly used SAR and multispectral data com-
bined with topographic information, otherwise 
rarely used in computer vision approaches. 
Respectively, these data come from, Sentinel-1, 
Sentinel-2, and Pleiades (down-sampled photogram-
metric DTM derived from panchromatic images) 
satellite images and are used to build a multi- 
source model. We assess the contribution of multi- 
source data in terms of performance by evaluating 
mono-source and multi-source models. The latter 
shows a better ability to identify the different parts 
of the moraines (moraine crest and flanks) by 
exploiting the complementarity of the data sources 
and improves overall performance. In addition, it is 
more robust to the quality of the training dataset, 
with lower performance variations when applied to 
very heterogeneous datasets. MorNet exhibits first- 
order mapping capability by identifying well- 
preserved moraines, and is destined to be used by 
experts as a tool to facilitate large-scale mapping 
efforts by indicating areas that likely contain 
moraines.

There are several research avenues to explore as 
possible follow-up of our research work. Assessing 
the validity of the MorNet model to other morainic 
landscapes in other parts of the world can provide 
clues about the comprehension on how well the 
proposed model can generalize to unseen context 
and this kind of analysis will also provide some 
room for investigation related to comparative geo-
morphological study involving multiple study areas. 
Contextual information from expert knowledge 

(such as distance to the drainage network) may be 
introduced as a data source for the training stage. 
Furthermore, moraines generally show small-scale 
spatial variability that would be better characterized 
by very-high-resolution data (e.g. full-resolution 
Pleiades images and derived DTM). In that regard, 
such images generally sample a narrow spectrum 
(visible and near-infrared), and it would be interest-
ing to assess the evolution of MorNet’s behavior 
considering a trade-off between spatial and spectral 
resolution.
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