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Abstract

Seismic hazard analyses in the area of a nuclear installation must account for a large
number of uncertainties, including limited geological knowledge. It is known that
some geological features can create site-effects that considerably amplify ground
motion. Combining the accuracy of physics-based simulations with the expres-
sivity of deep neural networks can help quantifying the influence of geological
heterogeneities on surface ground motion. This work demonstrates the use of a Fac-
torized Fourier Neural Operator (F-FNO) that learns the relationship between 3D
heterogeneous geologies and time-dependent surface wavefields. The F-FNO was
pretrained on the generic HEMEW-3D database made of 30 000 samples. Then,
a smaller database was built specifically for the region of the Le Teil earthquake
(South-Eastern France) and the F-FNO was further trained with only 250 specific
samples. Transfer learning improved the prediction error by 22%. As quantified
by the Goodness-Of-Fit (GOF) criteria, 90% of predictions had excellent phase
GOF (62% for the enveloppe GOF). Although the intensity measures of surface
ground motion were, in average, slightly underestimated by the FNO, considering
a set of heterogeneous geologies always led to ground motion intensities larger
than those obtained from a single homogeneous geology. These results suggest
that neural operators are an efficient tool to quantify the range of ground motions
that a nuclear installation could face in the presence of geological uncertainties.
The HEMEW-3D database and the pretrained F-FNO model are publicly available
to facilitate further developments and applications.

1 Introduction

The Le Teil earthquake (Mw4.9, 2019) is one of the major earthquakes that hit metropolitan France in
the last decade [1]. Its occurrence in the Rhône valley, a dense industrial area with low-to-moderate
seismicity, renewed the interest for seismic hazard analyses in this region, especially for nuclear
installations. Seismic hazard analyses estimate the intensity of surface ground motion, depending
on the regional seismicity and the geological context. However, geological features are generally
poorly characterized, leading to large uncertainties in the range of ground motions that may impact
the nuclear installation [2].
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To quantify the impacts of geological uncertainties, the Monte-Carlo approach consists in running
thousands of analyses with varying geologies. This method becomes unfeasible if the analyses are
computationally demanding, which is the case when trying to reach high frequencies and high vertical
resolution. Of special interest are three-dimensional (3D) simulations that use finite elements, finite
differences, or spectral element methods to solve the wave propagation equation. Those numerical
codes compute the propagation of seismic waves from the earthquake source to the surface where
ground motion is synthetized by virtual sensors.

Representing 3D geological domains is crucial to ensure that site-effects are correctly accounted for
in the seismic hazard analyses. Site-effects include sedimentary basins or topographic effects that can
greatly amplify seismic waves and lead to extreme damage [3, 4]. To model site-effects, 3D numerical
simulations are necessary [5–7] but computationally demanding. In fact, high-frequency (up to 10Hz)
3D simulations commonly amount to several tens of thousands of equivalent CPU (Computational
Processing Unit) hours [8–10].

Therefore, there is a need to elaborate surrogate models that are precise enough to represent 3D
geological domains and whose computational cost allows advanced uncertainty quantification. Several
methods already exist to obtain ground motion features but they remain limited. Ground Motion
Prediction Equations (GMPEs) or Ground Motion Models (GMMs) predict ground motion intensity
measures, such as the Peak Ground Acceleration (PGA), by learning the relationship between
earthquake parameters (e.g. depth, magnitude), geological conditions at the sensor position (e.g.
VS,30, the average velocity of shear waves to a depth of 30 meters), and recorded earthquake intensity
measures [11]. Their applicability depends on the number of earthquakes recorded in contexts similar
to the nuclear site under study. To alleviate this issue, Gaussian process regression models [12],
polynomial chaos expansion [13], or orthogonal decomposition [14], among others, use numerical
simulations to create synthetic databases. However, they generally model 1D or 2D geological
domains [12, 13] and predict only some features of ground motion [12–14], not the entire timeseries.

The recent advances of artificial intelligence (AI) now make time- and space-dependent prediction
of ground motion within reach [15, 16]. Convolutional Neural Networks (CNNs, [17]) and Physics
Informed Neural Networks (PINNs, [18]) have shown great success to solve the 2D wave equation
[19–21]. However, these models need to be retrained from scratch each time the configuration
(e.g. geological domain) changes. Neural operators offer new perspectives to AI by designing deep
learning models that are trained for a whole family of configurations [22, 23]. Indeed, neural operators
learn the mapping between a functional space of geological configurations and the functional space
of time- and space-dependent ground motion.

Among the numerous neural operators, the Fourier Neural Operator (FNO, [24]) has shown promising
results, and one of its variants has been successfully applied to predict 3D seismic wave propagation
[25]. Although geologies are inherently three-dimensional, predictions of the neural operators also
depend on three coordinates: two spatial coordinates to describe the sensor position at the surface
of the domain, and the temporal coordinate. Dealing with 3D inputs and outputs leads to several
challenges for neural operators, in terms of memory requirements, model complexity, and data
management [26]. 3D variables are rarely tackled by neural operators, and this work pioneers in this
direction.

This work uses the recently introduced Factorized Fourier Neural Operator (F-FNO, [27]) to predict
ground motion on a geological database specific to the Le Teil earthquake (Section 2). Due to the
cost of acquiring datasets and training models, transfer learning is used to benefit from a previous
training of the F-FNO on a generic database. Then, the predictions of surface wavefields are assessed
using seismological metrics and the influence of geological uncertainties is quantified (Section 3).

2 Methods

2.1 The HEMEW-3D Database for training

The HEMEW-3D database contains 30 000 geologies with their associated velocity wavefields2.
Each geology is a cubic domain of size 9.6 km× 9.6 km× 9.6 km representing shear wave (S-wave)
velocity between 1071m/s and 4500m/s. This dataset is meant to be as generic as possible to enable

2https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/
LAI6YU
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diverse applications. Therefore, geologies are not related to any known geological context. Instead,
each geology contains horizontal layers of random thickness; and heterogeneities are added in each
layer to create varying velocity values (Figure 1). It is important to note that geologies exhibit large
heterogeneities (the mean coefficient of variation of heterogeneities being 20%).

A velocity wavefield is associated with each geology. It was created by propagating seismic waves
originating from the seismic source of the Le Teil earthquake, described as a moment tensor of
strike = 48°, dip = 45°, and rake = 88°, and seismic moment M0 = 2.47× 1016 Nm, [28]. How-
ever, in the HEMEW-3D database, the source is located much deeper (−7.8 km) than the Le Teil
earthquake to allow a longer propagation of seismic waves inside the domain. The 3-component
velocity wavefield is synthetized at a grid of 16× 16 virtual sensors located at the surface of the
domain, between 1 s and 7.4 s with a 0.02 s sampling interval. Simulations of wave propagation were
conducted with the earthquake simulator SEM3D3 [10]. They are valid up to a 5Hz frequency, with
numerical pollution appearing at higher frequency. Although the geological domains are intrinsically
3D (depending on the spatial coordinates x, y, and z), it is important to note that the ground motion
velocity wavefields also depend on three variables: space x and y, and time t.

2.2 Factorized Fourier Neural Operator (F-FNO)

The core principle of the FNO is to view convolution operators as a multiplication of Fourier
coefficients [24]. Each Fourier layer ` decomposes its inputs v` with the Fast Fourier Transform (FFT,
F) and multiplies the obtained Fourier coefficients with the FFT of the layer’s weights R`:

v`+1 = σ
(
F−1 (R` · F(v`)) +W`v`

)
The computation is done efficiently by learning the Fourier layer’s weights in the Fourier space. The
Fourier weights contain 16 Fourier modes in the first and second dimensions, and 32 modes in the
third dimension (excepting the first layer which has 16 modes).

The F-FNO replaces the 3D FFT in the Fourier layers by the sum of 1D FFT on each dimension,
which significantly reduces the number of parameters [27]. Tran et al. [27] showed that the F-FNO
error reduces when the number of F-Fourier layers is increased, which does not hold true for the
original FNO. In this work, the F-FNO is implemented with 20 layers. Before the 20 factorized
Fourier layers, the F-FNO includes an uplift sub-network that converts single-channel material inputs
into 16-channel variables v0 via two dense layers. Finally, three subnetworks project the 16-channel
variable v20 onto 1-channel physical variables corresponding to the surface velocity. Each projection
sub-network is specialized for one of the three wavefield components (East-West, North-South,
Vertical) and comprises two dense layers.

The HEMEW-3D database was split in 27,000 training and 3,000 validation samples. The Adam
optimizer was used with a learning rate of 6 · 10−4 halved on plateau, a batch size of 16 and the
relative mean absolute error as the loss function. The F-FNO was trained for 350 epochs, which took
24h on 4 Nvidia A100 GPUs.

2.3 The Le Teil database for transfer learning

Since compiling a large database of physics-based simulations such as the HEMEW-3D database
represents 1.6million of CPU hours, it is not desirable to build new large databases when one wants
to study a target region. With transfer learning, one benefits from a pre-trained model and continues
training on a smaller, tailored database [29].

Heterogeneities were added to the reference geology to obtain a set of 4000 plausible geologies in the
region. Heterogeneities are represented by random fields with the same parameters as the HEMEW-3D
database: correlation lengths between 1.5 km and 6 km, coefficients of variation normally distributed
around 20% with a standard deviation of 10%, and a von Karman correlation model [2]. To enable
an easier interpretation of results, all layers in the Le Teil database share the same parameters, which
is not the case for the HEMEW-3D database (it does not mean that heterogeneities are located at the
same location in all layers, they only have similar properties). Figure 2 shows the vertical distribution
of VS. Velocity wavefields were obtained with the exact same method as the HEMEW-3D database.

3https://github.com/sem3d/SEM
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Figure 1: The HEMEW-3D database contains geological materials
with their associated ground motion wavefields obtained after the
propagation of seismic waves from a fixed seismic source up to the
surface.

Figure 2: VS distribution in
the Le Teil database. For each
of the 32 vertical levels, the
mean µ, standard deviation σ,
and percentiles are computed
over all horizontal points and
samples.

Inspired from the 1D velocity model used to reproduce the
Le Teil earthquake [30], we designed a database of 4000
geologies based on this model. The reference geology is a
3D domain with six homogeneous horizontal layers and the
S-wave velocities described in Table 1. The ratio of P- and
S-waves velocities (VP and VS) is assumed constant and
equal to 1.7 Density and attenuation factors are computed
from VP and VS [31].

Thickness (m) VS (m/s)
600 2100
600 3500
300 1200
600 2300
5700 3500
1800 4500

Table 1: Reference 1D geological
model for the LeTeil region. S-wave
velocity (VS) and thickness of each
horizontal layer (adapted from [30]).

Among the 4000 pairs of geologies and velocity wavefields, up to 3000 were used for training, 300
for validation, and 700 for testing. With transfer learning, the neural operator’s weights are initialized
with the weights of the F-FNO trained on the HEMEW-3D database. Then, the model is trained solely
on samples from the Le Teil database, forcing it to specialize to the Le Teil context, and hopefully
improve its predictions. The number of samples used for the second training is called the number of
transfer learning samples and is denoted NTL.

3 Results

3.1 Transfer learning advantages

Figure 3 illustrates the benefits of transfer learning, even with a small number of specific training
samples. For comparison purposes, the F-FNO was firstly trained without pre-training, meaning that
the weights were randomly initialized. At the end of the training with 3000 samples from the Le
Teil database, the rMAE was 40.4% (grey dashed line). With transfer learning starting from weights
initialized with the pretrained F-FNO, the rMAE reduced to 31.3% with only 250 transfer learning
samples (blue dashed line).

Although the rMAE is pertinent to train the neural operator, it is not informative about the physical
accuracy of the trained F-FNO. The Goodness-Of-Fit (GOF) criteria give a better assesment of the
F-FNO accuracy. The GOFs were computed at each spatial location and for each testing sample. They

4



Figure 3: Evolution of the training loss (solid lines) and validation loss (dashed lines) computed as
the relative Mean Absolute Error when the F-FNO is trained on the Le Teil database. Four trainings
are shown: random initialization with no pre-training (grey lines), transfer learning with 250 samples
(blue lines), 1000 samples (orange lines), 3000 samples (green lines).

Figure 4: Cumulative distribution of Goodness-Of-Fit (GOF) for enveloppe (left) and phase (right),
as a function of the number of transfer learning samples (colored lines). Results are shown for 700
testing samples.

evaluate the agreement between the predicted timeseries and the simulated timeseries considered as
ground truth, in terms of enveloppe and phase [32]. GOFs are reported on a scale varying from 0 to
10, where 10 means a perfect agreement, and 8 is generally considered as excellent.

Figure 4 shows the cumulative distribution of enveloppe GOF and phase GOF when the number of
transfer learning samples increases. One can firstly notice that the distributions are more shifted
towards the right for the phase GOF than the enveloppe GOF, meaning that the F-FNO is better
at predicting wave arrival times than perfectly accurate amplitudes. With 250 transfer learning
samples, 91% of predictions have a phase GOF larger than 8. This is very close to the performance
achieved with 3000 transfer learning samples (94% of predictions having a phase GOF larger than 8).
Concerning the enveloppe, 62% of predictions achieve a GOF larger than 8 with 250 transfer learning
samples. Using less than 250 samples from the Le Teil database is possible but degrades the F-FNO
accuracy (43% of predictions have an enveloppe GOF larger than 8 when only 20 transfer learning
samples are used).
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Figure 5: Each test sample is represented by the geological coefficient of variation (x axis). For each
sample, the PGV bias is given as the mean of all sensors (black dot) and the standard deviation across
samples (grey error bar).

3.2 Prediction accuracy

The enveloppe GOFs indicate that it is challenging to predict timeseries with very accurate amplitudes
for the entire duration of the signal. Since the amplitude of ground motion is correlated with the
intensity of shaking, it is crucial to ensure that our F-FNO gives reliable estimates of ground motion.
The Peak Ground Velocity (PGV) was computed as the maximum value over time of the geometric
mean of the two horizontal components. Since all timeseries are synthetic, note that the PGV
corresponds to a maximal frequency of 5Hz. For each sample and each spatial point, the PGV
accuracy was defined as the relative bias between the prediction and the simulated ground truth.

Figure 5 shows the PGV relative bias as a function of the heterogeneities’ amplitude for the associated
geology. One can notice that predictions are excellent when heterogeneities have a low amplitude.
Indeed, the PGV relative bias is lower than 3% for coefficients of variation smaller than 0.05.
Then, in average, the F-FNO tends to slightly underestimate the PGV. Indeed, the mean PGV
relative bias across sensors is between 1% and −4% for coefficients of variation around 0.1 When
heterogeneities have large amplitudes (coefficients of variation larger than 0.2 ), the underestimation
generally worsens. However, when one considers a sufficiently large number of samples, there is
no spatial point where the PGV is consistently underestimated. Therefore, by using the maximum
PGV of a set of heterogeneous geologies, some F-FNO predictions will always be larger than the
simulated ground truth. This also holds true when considering only geologies with a coefficient of
variation smaller than 0.1.

Figure 6 gives the F-FNO prediction and simulated ground truth for four geologies at the same spatial
location. Predictions are excellent when the geologies have small coefficients of variation (top figures).
One can also notice that the phase differences are significant between samples and the F-FNO is still
able to capture this variability. The bottom left panel exemplifies a slight overestimation of the PGV,
even though the small variations are still very well captured. The bottom right panel (coefficient
of variation equal to 0.2) illustrates a situation where heterogeneities created an amplification of
ground motion around 3.7 s, which may be a later arrival of S-waves. This singular case is not well
predicted by the F-FNO, suggesting that geological coefficients of variation larger than 0.2 become
very challenging.

3.3 Seismic hazard analysis

The influence of heterogeneities on ground motion can also be evaluated in terms of Pseudo-Spectral
Acceleration (PSA) with a 5% damping ratio. With the reference 1D geology, one gets a PSA value
for each spatial point and each period considered (0.3 s, 1 s, and 3 s). In Fig. 7, the bottom right
display represents the PSA map (16× 16 grid) computed on the 1D reference geology for period
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Figure 6: Three samples with coefficients of variation 0.05 (top left), 0.1 (top right), 0.2 (bottom left
and right). Timeseries are shown at the same sensor for simulation results (black line) and F-FNO
predictions (red dashed line).

T=0.3 s. Blue PSA curves in all other three displays are extractions of the PSA map along the
horizontal blue line of sensors parallel to the x-axis.

One can then compute the PSA on this line for all geologies with a coefficient of variation smaller
than 0.2. Figure 7 shows that the upper bound of the predicted PSA distribution (red shaded area)
is significantly larger than the reference PSA (blue line). This implies that, even though F-FNO
predictions are not perfect, using a set of heterogeneous geologies gives a considerable security
margin compared to the usual method of considering a single homogeneous model.

One can additionally notice that the errors between predicted (grey areas) and true PSA (red areas)
decrease when the period increases. This reflects earlier findings that small-scale patterns are more
difficult to predict that large-scale evolutions [25].

4 Discussion and conclusion

We trained a Factorized Fourier Neural Operator (F-FNO) on the generic HEMEW-3D database to
predict the relationship between geologies and surface ground motion. Acquiring the database of
high-fidelity simulations is computationally demanding, and training a 3D neural operator on a large
database also requires significant computational resources. However, the available pre-trained F-FNO
can be used as the initialization for a second and much cheaper training thanks to transfer learning.
We showed that as few as 250 transfer learning samples were necessary to obtain near-optimal
accuracy for a database of ground motion based on the Le Teil earthquake. This training took only
26min on one Nvidia A100 GPU, making it affordable for other site-specific applications.
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Figure 7: Pseudo-spectral acceleration (PSA) at periods 0.3 s, 1 s, and 3 s for a sensor line parallel to
the x-axis located at y=5 km. The bottom right panel shows the PSA of the reference geology for
all spatial points and indicates the line where the curves were computed (blue horizontal line). On
PSA curves (three other panels), the blue line shows the PSA obtained with the reference geology,
the black line shows the mean true PSA for geologies with a coefficient of variation smaller than 0.2,
and the red line shows the mean prediction for the same geologies.

We proved that the F-FNO has an excellent phase accuracy for 91% of predictions and excellence
amplitude accuracy for more than 62% of predictions (GOF larger than 8). Ground motion intensity
was further assessed with the Peak Ground Velocity (PGV) and the Pseudo-Spectral Acceleration
(PSA). Results indicate that the F-FNO tends to slightly underestimate intensity measures when
comparing predictions and simulated ground truths for the same geology. However, when looking
at a set of heterogeneous geologies, the F-FNO predictions are always significantly larger than the
intensity measures obtained with a single simulation of the reference homogeneous geology. This
indicates that neural operators are appropriate tools to quantify the ground motion uncertainties
deriving from limited knowledge of the geology under a nuclear installation. Also, since predictions
are entire timeseries of ground motion, any intensity measure can be computed for seismic hazard
analyses.

It should however be noted that transfer learning was used between geologies of the same size and
with the same seismic source. Extending the domains to larger areas and modifying the source’s
location and orientation was out of the scope of this study. Transfer learning may help in these
directions but fundamental properties of neural operators should also be further explored.

Transfer learning has also been successfully applied on a database of geologies containing hard rock
inclusions (not shown here). Although this database does not originate from a reference geology and
hard rocks have very different shapes and locations inside the domain, the F-FNO predictions were
accurate with only 500 transfer learning samples. Therefore, transfer learning on neural operators
seems promising to reduce the computational costs associated with acquiring synthetic data and
training large deep learning models.
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