

Exploring the Role of Divalent Cations in the Hammerhead Ribozyme Mechanism with Molecular Simulations

Julie Puyo-Fourtine, Marie Juillé, Jérôme Hénin, Carine Clavaguéra, Iñaki Tuñon, Elise Duboué-Dijon

▶ To cite this version:

Julie Puyo-Fourtine, Marie Juillé, Jérôme Hénin, Carine Clavaguéra, Iñaki Tuñon, et al.. Exploring the Role of Divalent Cations in the Hammerhead Ribozyme Mechanism with Molecular Simulations. Molecular Simulation 2022: Present, Past and Future, Jun 2022, Erice (Sicile), Italy. hal-04476086

HAL Id: hal-04476086 https://hal.science/hal-04476086

Submitted on 24 Feb 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Exploring the Role of Divalent Cations in the Hammerhead Ribozyme Mechanism with Molecular Simulations

<u>Julie Puyo-Fourtine¹</u>, Marie Juillé¹, Jérôme Hénin¹, Carine Clavaguéra², Iñaki Tuñon³, Elise Duboué-Dijon¹

¹CNRS, Laboratoire de Biochimie Théorique, Institut de Biologie Physico-Chimique, 75005 Paris, France ²Université Paris-Saclay, CNRS, Institut de Chimie Physique, 91405 Orsay, France ³Departamento de Química Física, Universidad de Valencia, 46100, Burjassot, Spain

RNA enzymes, called ribozymes, are found to be involved in an increasing number of biological processes. An intriguing question pertains to the role played by divalent cations in the ribozyme activity; for the hammerhead **ribozyme**, the cleavage reaction is 500 times faster in the presence of Mg^{2+} than in the presence of Ca^{2+} and 10 000 times faster than in the presence of Na^{+} .

We face several challenges: first, the interaction of divalent ions with negatively charged nucleic acids is notoriously poorly described in standard classical simulations due to an oversimplified description of electrostatic interactions, making it difficult to properly capture their slow reorganization along the reaction; here, we thus examine how different strategies to include electronic polarization effects in force fields — implicitly through the use of scaled charges or pair-specific Lennard-Jones parameters, or explicitly with polarizable force fields, the Drude polarizable force field and AMOEBA — capture the interaction of a model phosphate compound, dimethylphosphate. We show that the computational efficiency of implicit models makes them ideally suited for large-scale simulations of biological assemblies, with improved accuracy compared to state-of-the-art fixed-charge force fields. Since RNA is very flexible, it is necessary to properly sample their conformations with the use of specific tools (REST2) to characterize the conformational fluctuations of the active site in the presence of different cations. From the main identified conformations, the Adaptive String Method with a QM(DFTB3)/MM MD description is used in order to study the reaction mechanism.

How to describe cations-RNA interactions?

+ 700

Lemkul, Huang, Roux, MacKerell, Chem. Rev., 2016, 13, 2613-2626

J.Puyo-Fourtine, M.Juillé, J.Hénin, C.Clavaguéra, E.Duboué-Dijon. JPCB. 2022, 126, 22, 4022-4034

How to sample the conformational landscape?

Replica Exchange with Solute Tempering 2

 $E_i(\vec{X}) = \lambda_i E_{pp}(\vec{X}) + \sqrt{\lambda} E_{pw}(\vec{X}) + E_{ww}(\vec{X})$

Epp(X), Epw(X), and Eww(X) respectively designate the protein-protein, protein-water, and water-water potential energies

Stirnemann, G; Sterpone, F. J. Chem. Theory Comput. 2015, 11, 12, 5573-5577

HO2' is oriented towards O5'

How to Explore the Reaction Mechanism? Suggested mechanism **Catalytic strand** General base General acid: G12 G8 or cation-bound water

Adaptative String Method Dynamic exploration based on QM/MM MD

Preliminary results

Total: 97 739 atoms

QM part: **75 atoms** QM theory: **DFTB3** MM : amberff99-bsc0- χ_{OL3} -(ξ_{OL1} - β_{OL1})

QM/MM convergence

- 2 Proton Transfers and a Nucleophilic Attack
- What is the **Influence of the Ions** on the Catalytic Activity? (nature, barriers, concerted or sequential mechanism?)

Roychowdhury-Saha, M.; Burke, D. H. RNA, 2006, 12, 1846–1852; Wong, York, Biochem, JCTC, 2011, 7,1; Mir, A.; Chen, J.; Robinson, K.; Lendy, E.; Goodman, J.; Neau, D.; Golden, B. L., *Biochemistry*, **2015**, 54, 6369–6381

- Restrained MD Simulations
 - Convergence to the MFEP • Umbrella Sampling with Hamiltonian Replica Exchange \rightarrow sample the Configurational Space

Zinovjev, K.; Tuñón, I. J. Phys. Chem. A. 2017, 121, 9764-9772 Mir, A.; Golden, B. L. Biochemistry, 2016, 55, 633-636

Conclusion and Perspectives

• Implicit Description of the Polarization successfully reproduce the Binding Free Energy : more adapted for Large Scale Biochemical Assemblies Challenges: lack of Transferability for the Pair-Specific LJ approach, and Scaling of Biomolecular Charges for ECC

Mg²⁺

- For the tested conformation: concerted mechanism with phosphorane-like intermediate
- Explore mechanistic routes by changing the order of the events, the type of mechanism (Ssequential or concerted), the Nature of the Ions....