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Abstract— Multiaccess edge computing (MEC) has emerged as 

a promising technology for time-sensitive and computation-

intensive tasks.  However, user mobility, particularly in vehicular 

networks, and limited coverage of Edge Server result in service 

interruptions and a decrease in Quality of Service (QoS). Service 

migration has the potential to effectively resolve this issue. In this 

paper, we investigate the problem of service migration in a MEC-

enabled vehicular network to minimize the total service latency 

and migration cost. To this end, we formulate the service 

migration problem as a Markov decision process (MDP). We 

present novel contributions by providing optimal adaptive 

migration strategies which consider vehicle mobility, server load, 

and different service profiles. We solve the problem using the 

Double Deep Q-network algorithm (DDQN). Simulation results 

show that the proposed DDQN scheme achieves a better tradeoff 

between latency and migration cost compared with other 

approaches.  

Keywords— Multi-access edge computing, vehicular network, 

service migration, deep reinforcement learning. 

I. INTRODUCTION 

The integration of connected vehicles and autonomous 
driving technology is poised to fundamentally transform 
transportation systems, yielding incalculable advantages for our 
society [1][2]. Intelligent Transportation Systems (ITS) have the 
potential to enhance transportation safety through effective 
vehicle coordination and resource management [3]. Along with 
safety, ITS will offer entertainment services such as video 
streaming and gaming and may even extend to in-vehicle 
augmented reality [4][5]. For these capabilities to be realized, 
vehicles need to have the ability to communicate and access 
services with minimal latency. Thus, the ITS environment must 
meet these requirements. Therefore, novel strategies that are 
sensitive to mobility and resource constraints are required to 
diminish latency for applications and optimize the utilization of 
network and computing resources [6]. 

To satisfy such rigorous quality of service (QoS) 
requirements, the Multi-access Edge Computing (MEC) 
paradigm has been proposed by deploying servers at the edge of 
the network. Efficient deployment of edge servers provides 
robust computational capabilities to vehicles while ensuring a 
low latency [7][8].  As a result, applications that demand high 

computational power such as object detection, video stream 
analytics, and path navigation can be executed with edge servers 
in vehicular networks [9]. Although MEC-enabled vehicular 
networks offer numerous advantages, they present new 
challenges in task offloading and computing.  A crucial 
challenge is the high mobility of vehicles which leads to a highly 
dynamic communication topology in vehicular networks 
resulting in unreliable communication links [10]. Vehicles may 
move beyond the coverage area of an edge server resulting in 
increased latency and the interruption of a service session 
between the vehicle and the edge server hosting this service. 

To address these challenges, we investigate the service 
migration problem in MEC-enabled vehicular networks. To 
maintain the advantages of MEC, the user's service may require 
migration as they move between various geographical locations. 
The question is when and where to migrate the service. 
However, frequent service migrations can result in high 
migration costs, including increased backhaul load [11]. 
Therefore, it is crucial to explore solutions to the service 
migration problem that strikes a tradeoff between maintaining 
QoS and minimizing migration costs. 

In this paper, we formulate the service migration problem 

as a Markov decision process (MDP). We present novel 

contributions by providing optimal migration strategies for 

different service profiles. Based on the service’s performance 

requirements, its required computing capacity, and its size, an 

optimal tradeoff between the migration cost and the latency is 

determined. In order to solve this problem efficiently, we use 

deep reinforcement learning (DRL) techniques, specifically, 

deep Q networks (DQN). The proposed DRL-based migration 

scheme ensures service continuity under high mobility 

constraints and offers optimal latency for each service profile 

and a reduced migration cost. The proposed scheme executes 

proactive service migration while considering the mobility of 

vehicles, the necessary amounts of computational, and the 

service profile. 
To summarize, the main contributions of this paper are 

synthesized as follows:  

• We approach the problem of service migration by 
formulating it as a Markov decision process (MDP), 



where we meticulously define the states, actions, and 
reward function. By doing so, we can effectively 
determine the optimal time and location for migrating 
the service while the vehicles are in motion. Different 
from the previous approaches to service migration, our 
model considers the type of service. A customized 
migration strategy is adopted for each service profile. 

• We employ DRL techniques to provide an efficient 
MDP model solution. Specifically, we propose a deep 
Q learning (DQL)-based solution that utilizes a double 
Q network and a replay buffer to enhance the learning 
outcomes. 

• We evaluate the performance of the proposed DRL-
based scheme and compare it to other service migration 
approaches.  

The remainder of this paper is organized as follows. In 
Section II, recent research works on service migration are 
reviewed. The system model is presented in Section III. Then, 
the problem formulation is elaborated in Section IV. After that, 
Section V presents the simulation and evaluation of the solution. 
Finally, the paper is concluded in Section VI. 

II. RELATED WORK 

In recent years, researchers have proposed many strategies 

for service migration. Authors in [12] propose the “always 

migration” scheme so that the service always migrates to the 

nearest MEC server. However, the migration costs are 

neglected. Work in [13]  proposes an MDP-based model that 

considers the distances between mobile users and edge servers 

as the states, associates each state with an action (migrate or 

not), and defines the transition probabilities between two states 

with a specific action and the rewards. Thus, a model based on 

MDP is proposed to address the service migration issue. 

However, this work does not consider other parameters besides 

the distance between the user and the service to decide the 

optimal migration.  Peng et al. [14] studied the dynamic 

migration decision in the vehicular network, which jointly 

considers the QoS and migration cost. However, this migration 

strategy determines whether to migrate a service or not without 

considering where to migrate the service, so the service is 

migrated to the nearest edge server. Abouaomar et al. [15] 

studied the problem of service migration in a MEC-enabled 

vehicular network to minimize the total service latency and 

migration cost. They modeled the problem as a multi-agent 

Markov decision process and solved it by leveraging deep Q 

learning (DQL). Nevertheless, this paper considers some 

context conditions as vehicle positions, and their velocities; but 

it didn’t consider the load of edge servers.  

In this paper, we present novel contributions by providing 

optimal migration strategies while considering the available 

capacity on each edge server. Our model provides a 

personalized migration strategy for each service profile. To the 

best of our knowledge, no work considered the difference 

between the service’s profile in the definition of the service 

migration strategy.  

III. SYSTEM MODEL  

We consider a vehicular MEC-enabled architecture covered 
with a set of Roadside units (RSU), each equipped with an Edge 
server n ∈ N:={ 1,2, … , N} as illustrated in Figure 1. There are 
K mobile users (or vehicles, interchangeably) requesting 
services from the Edge servers. Each vehicle requests some 
service to fulfill its requirements. Services are identified 
with a service profile that describes the service class, the 
required capacity (computing and memory), and the service 
image size.  

 

Figure 1. Illustration of the system architecture [16] 

We adopted the service classification presented in [17] 
to identify three classes of services: 

• Class 0 (used in Service Profile SP0): regroup 
highest priority services that need stringent 
requirements of low latency.  

• Class 1 (used in Service Profile SP1): regroup 
second priority services with less stringent 
requirements than the first class. 

• Class 2 (used in Service Profile SP2): regroup the 
lower priority services with nonspecific stringent 
requirements of latency.  

IV. PROBLEM FORMULATION  

In this section, we formulate the service migration problem 

as a Markov Decision Process (MDP). Then we present Double 

Deep Q Network (DDQN) method as an effective solution to 

the problem.  

A.   The MDP formulation  

In reinforcement learning, the environment is formulated as 
an MDP which is represented as (S, A, P, R, γ), where S and A 
are state space and system actions, respectively. P represents the 
probability of each state transition when choosing an action a ∈ 
A as P (s’| s, a) : S x A x S → [0,1], where s ∈ S and s’ ∈ S is 
the current state and the next state respectively. An 
immediate reward R is obtained from this state transition as 
R(s, a, s’): S x A x S → ℝ. In addition, γ∈[0,1] is the discount 
factor used to balance immediate and long-term rewards. At 
each time slot, the service provider is responsible for 
obtaining the state from vehicles and the MEC servers. Then, 
it transmits this accumulated state to the DQL and receives 
feedback regarding the optimal action for determining 
whether to migrate at this time and to which edge server. 



The action is then carried out, and the system shifts to the 
next state. The key elements of the MDP are defined as 
follows: 
1. State space:  

We define the state space S = {>? | t = 1, 2, …, ?@AB} where 

a state at time slot t >? is a 4-tuple given by: 

>? = {C?[K], D?, E?[K], SF?} (1) 

Where: 

C?[K]: The distance between the vehicle and the K edge Servers 

at time slot t where K is the number of the edge servers.  

D?: The Edge server hosting the vehicle’s service at time slot t. 

E?[K]: Available capacity on the K edge server (CPU, memory, 

disk). 

GF?: Service Profile: 

• Service class (class 0, class 1, or class 2). 

• Required capacity by the service.  

• Service Image Size. 

This definition of state space enables our model to function 

as a multi-criteria migration strategy. It takes into account the 

distance between the vehicle and each edge server in each time 

interval, and thus the vehicle's velocity implicitly. Also, it 

considers the load of edge servers and the required capacity of 

migrated service. And more importantly, our model adapts its 

migration strategy according to the service class. 

 

2. Action space:  

An action represents the decision to migrate a service to an 

Edge server ei at time slot t. therefore, an action at = {H1, H2, 

…,HI}, where Ai is the action of migrating the service to Edge 

server ei at time slot t, Hi ϵ {0,1} and ∑HJ=1. No migration will 

occur during time slot t if Hj is the hosting edge server and 

Aj=1. This action space representation allows our model to 

decide where and when a service should be migrated.  

3. Reward function:  

A MEC agent chooses an action at at time slot t and 

receives a reward Rt. Since we seek to reach optimal latency for 

each service profile and a reduced migration cost, we define the 

reward function as a combination of latency and migration cost 

as follows:  

KLM
NM = OP(1 O ѡ)R(?) S ѡET>?(?)U (2) 

Where D(t) is the sum of communication delay, backhaul 

delay, and computing delay. And Cost(t) is the migration cost 

EV of service v at time slot t. ѡ is the weight factor, and ѡ W 

[0,1].  

B. The proposed DDQN 

DQN is a sample and efficient Deep Reinforcement learning 

(DRL) algorithm. DQN approximates the Q-values Q(s, a, X) 

of each state-action pair (s, a) using a Deep Neural Network 

(DNN), where X represents the parameters of the Q-network. 

The training process of the DNN uses the experience replay 

memory mechanism by periodically storing MEC agent 

experience in a replay buffer. This experience consists 

primarily of the current state, the next state, the selected action, 

and the resulting reward. The experience replay memory 

mechanism provides uncorrelated data as inputs, thereby 

eliminating undesirable temporal correlations. The DDQN is 

used to make the training process faster and more reliable by 

using two DNNs [18]. The first DNN is called the main Q-

network which is used to calculate the Q-values. And the 

second DNN is called the target Q-network which is used to 

provide the target Q-values Q(s, a, X-) to train the parameter X 

of the main Q-network. The training phase of our proposed 

DDQN is presented in Algorithm 1. 

In each episode, the training continues for several time slots 

(or steps). Each MEC agent observes the current state of its 

environment and selects an action at from its action space at 

each step. The MEC agent utilizes the W-greedy policy to select 

an action. This policy selects an action randomly with 

probability W. The MEC agent receives its reward and moves to 

the next state. The obtained experience is stored in the replay 

buffer which is used to create a training dataset. The latter is 

used to perform the training process in order to minimize the 

loss function given by:  

YT>>(X)  =  (1/[) \  []̂ O  _(>̂ ,  Â , X)]`    (3) 

Where _(>̂ ,  Â , X) is the Q-value of action  Â  given in the 

state >̂  which is calculated using the main Q-network with 

parameter X. And ]̂  is the target Q-value which is calculated 

using the target Q-network with parameter X-.  

 
To update the parameter X of the main Q-network, the agent 

performs a gradient descent step. Finally, the parameter X- is 

updated after each K steps by copying the parameter X of the 

main Q-network. 

 The second phase is the inference phase of the DQL. Once 

the trained DDQN is obtained, the agent uses its optimal 

parameters to find the optimal migration strategy. The MEC 



agent observes the current state at each step and chooses the 

action that maximizes the Q-value based on the trained DDQN. 

Thus, we find the solution to the migration problem, and we can 

determine when and where to migrate a service to achieve an 

optimal balance between latency and cost.  

V. SIMULATION AND EVALUATION 

A. Simulation Envirenment  

The simulation experiments are based on OMNeT++ [19]  
and the Artery framework [20] to simulate the simulate 
movement of the vehicles and the communication between the 
vehicles and the RSUs, on the one hand, and the communication 
between the RSUs and the edge servers, on the other. The 
implementation of the DDQN agent is performed using Python 
and Keras.  

We consider a MEC-enabled vehicular network where five 
Edge servers are deployed over a highway as depicted in Figure 
2. The distance between each two neighbor servers is assumed 
the same. The RSUs are deployed in every 800m and each RSU 
is attached to the nearest Edge server. The length of the highway 
is 30 km. The vehicles move with a randomly-chosen fixed 
speed from the range of [60, 110] km/h. 

 

Figure 2. Simulation scenario 

The DDQN and vehicular network parameters are presented 
in Table 1. 

Table 1. Simulation parameters 

Parameter Value 

Number of Edge servers 5 

RSU Transmission power  47,9 mW  

Vehicles transmission power 200 mW 

Access Technology IEEE 802.11p 

Learning rate 5e -4  

Learning rate 0,99 

Replay memory size 1000000 

Mini-batch size 64 

Target update interval 100 

Optimizer Adam 

RNN hidden layers 
Two hidden layers of 256 neurons 
each. 

Activation function ReLU 

B. Simulation Results and Analysis  

Figure 3 illustrates the average reward per episode. It is clear 
that the reward improves with the training episodes. This shows 
the effectiveness of our proposed DQL algorithm. We notice 
that the DDQN algorithm converges at approximately 190 
episodes. In other words, the corresponding MEC agent 
converges to a good learning outcome, which implies that it will 
explore better actions. 

 

Figure 3. The training rewards for MEC agent 

Our proposed service migration strategy is compared with 
the composite of the following approaches:  

• Random migration (RM): the service is migrated 
randomly at each time slot t.  

• Never migrate (NM): the service is hosted in one of the 
edge servers and does not migrate during the 
simulation. 

• Always migration (AM): the migration schema 
proposed in [12], considers the migration of the service 
to the nearest edge server. We considered also the load 
of the edge server, if the nearest server is at 100% of 
capacity the migration doesn’t occur. 

•  Peng et al. approach [14]: a state-of-the-art DRL-based 
service migration strategy. In this work, the different 
service profiles are not considered.  

 The simulations were carried out under different 
configurations of service profiles (class of service). As 
explained earlier, we consider three service profiles: SP0, SP1, 
and SP2 where SP0 represents the highest priority services that 
need stringent requirements of low latency.  
 Figure 4  represents the migration cost results for a service 
size of 5. (unit). The NM method is excluded from this 
comparison (Migration cost equal to zero). The results indicate 
that our DDQN method has the lowest migration cost compared 
to other methods. In SP0, the service's latency requirements are 
stringent, so our model migrates the service more frequently to 
a more effective edge server near the vehicle. The approach of 
Peng et al. provides marginally lower costs than our model in 
SP0. In SP1 and SP2, however, our model's migration costs 
outperform those of other approaches. The cost of migration is 
reduced in SP1 and SP2 because services in these service 
profiles are less latency-sensitive. So we can reduce migration 
while maintaining the QoS of these services.   

Figure 5 illustrates the average service latency under the 
same configuration. The results show that the latency of our 
model increases in SP1 and SP2 compared to SP0. This is 
justified by the fact that SP1 and SP2 services are tolerant of 
higher latencies compared with SP0 which has a stringent 
requirement of low latency. However, as depicted in Figure 4, 
this increased latency allowed us to minimize the migration 
cost. In other words, our model can be adapted to the 
requirement of each service in order to reach an optimal balance 
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between migration cost and latency. Compared to the other 
approaches, our DDQN model outperforms RM, NM, and Peng 
et al. when the service is under SP0. AM offers the lowest 
latency because the service is always migrated to the nearest 
edge server, but the migration cost is significantly higher.    

 
Figure 4. Migration cost results 

 

Figure 5. Latency results 

VI. CONCLUSION 

In this paper, we proposed a DRL-based scheme to solve the 
problem of vehicular service migration. The problem was 
initially formulated as a Markov Decision Process (MDP). This 
system takes into account various constraints, including 
vehicles’ mobility, servers’ capacity, and most importantly, the 
service profile. Considering this service profile enables the 
model to provide an adaptable migration strategy according to 
the service’s requirements. We propose a deep Q learning 
(DQL)-based solution that utilizes a double Q network and a 
replay buffer to enhance the learning outcomes. Finally, we 
have demonstrated through extensive simulations that the 
proposed DQL algorithm, depending on the requirements of the 
service profile, achieves the best tradeoff between latency and 
migration cost compared to other strategies. In future work, we 
will expand our solution to a more realistic 2D scenario and 
transform the model into a multi-agent MDP to improve model 
training. 
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