
HAL Id: hal-04476083
https://hal.science/hal-04476083

Submitted on 24 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Adaptive Deep Reinforcement Learning Approach for
Service Migration in MEC-Enabled Vehicular Networks

Sabri Khamari, Abdennour Rachedi, Toufik Ahmed, Mohamed Mosbah

To cite this version:
Sabri Khamari, Abdennour Rachedi, Toufik Ahmed, Mohamed Mosbah. Adaptive Deep Reinforce-
ment Learning Approach for Service Migration in MEC-Enabled Vehicular Networks. 2023 IEEE
Symposium on Computers and Communications (ISCC), Jul 2023, Gammarth, Tunisia. pp.1075-
1079, �10.1109/ISCC58397.2023.10218103�. �hal-04476083�

https://hal.science/hal-04476083
https://hal.archives-ouvertes.fr

Adaptive Deep Reinforcement Learning Approach for

Service Migration in MEC-enabled Vehicular

Networks

Sabri Khamari

Univ. Bordeaux, Bordeaux INP,

CNRS, LaBRI, UMR5800,

F-33400 -Talence, France

sabri.khamari@u-bordeaux.fr

Abdennour Rachedi

Univ. Bordeaux, Bordeaux INP,

CNRS, LaBRI, UMR5800,

F-33400 -Talence, France

abrachedi@u-bordeaux.fr

Toufik Ahmed

Univ. Bordeaux, Bordeaux INP,

CNRS, LaBRI, UMR5800,

F-33400 -Talence, France

tad@labri.fr

Mohamed Mosbah

Univ. Bordeaux, Bordeaux INP,

CNRS, LaBRI, UMR5800,

F-33400 -Talence, France

mohamed.mosbah@u-
bordeaux.fr

Abstract— Multiaccess edge computing (MEC) has emerged as

a promising technology for time-sensitive and computation-

intensive tasks. However, user mobility, particularly in vehicular

networks, and limited coverage of Edge Server result in service

interruptions and a decrease in Quality of Service (QoS). Service

migration has the potential to effectively resolve this issue. In this

paper, we investigate the problem of service migration in a MEC-

enabled vehicular network to minimize the total service latency

and migration cost. To this end, we formulate the service

migration problem as a Markov decision process (MDP). We

present novel contributions by providing optimal adaptive

migration strategies which consider vehicle mobility, server load,

and different service profiles. We solve the problem using the

Double Deep Q-network algorithm (DDQN). Simulation results

show that the proposed DDQN scheme achieves a better tradeoff

between latency and migration cost compared with other

approaches.

Keywords— Multi-access edge computing, vehicular network,

service migration, deep reinforcement learning.

I. INTRODUCTION

The integration of connected vehicles and autonomous
driving technology is poised to fundamentally transform
transportation systems, yielding incalculable advantages for our
society [1][2]. Intelligent Transportation Systems (ITS) have the
potential to enhance transportation safety through effective
vehicle coordination and resource management [3]. Along with
safety, ITS will offer entertainment services such as video
streaming and gaming and may even extend to in-vehicle
augmented reality [4][5]. For these capabilities to be realized,
vehicles need to have the ability to communicate and access
services with minimal latency. Thus, the ITS environment must
meet these requirements. Therefore, novel strategies that are
sensitive to mobility and resource constraints are required to
diminish latency for applications and optimize the utilization of
network and computing resources [6].

To satisfy such rigorous quality of service (QoS)
requirements, the Multi-access Edge Computing (MEC)
paradigm has been proposed by deploying servers at the edge of
the network. Efficient deployment of edge servers provides
robust computational capabilities to vehicles while ensuring a
low latency [7][8]. As a result, applications that demand high

computational power such as object detection, video stream
analytics, and path navigation can be executed with edge servers
in vehicular networks [9]. Although MEC-enabled vehicular
networks offer numerous advantages, they present new
challenges in task offloading and computing. A crucial
challenge is the high mobility of vehicles which leads to a highly
dynamic communication topology in vehicular networks
resulting in unreliable communication links [10]. Vehicles may
move beyond the coverage area of an edge server resulting in
increased latency and the interruption of a service session
between the vehicle and the edge server hosting this service.

To address these challenges, we investigate the service
migration problem in MEC-enabled vehicular networks. To
maintain the advantages of MEC, the user's service may require
migration as they move between various geographical locations.
The question is when and where to migrate the service.
However, frequent service migrations can result in high
migration costs, including increased backhaul load [11].
Therefore, it is crucial to explore solutions to the service
migration problem that strikes a tradeoff between maintaining
QoS and minimizing migration costs.

In this paper, we formulate the service migration problem

as a Markov decision process (MDP). We present novel

contributions by providing optimal migration strategies for

different service profiles. Based on the service’s performance

requirements, its required computing capacity, and its size, an

optimal tradeoff between the migration cost and the latency is

determined. In order to solve this problem efficiently, we use

deep reinforcement learning (DRL) techniques, specifically,

deep Q networks (DQN). The proposed DRL-based migration

scheme ensures service continuity under high mobility

constraints and offers optimal latency for each service profile

and a reduced migration cost. The proposed scheme executes

proactive service migration while considering the mobility of

vehicles, the necessary amounts of computational, and the

service profile.
To summarize, the main contributions of this paper are

synthesized as follows:

• We approach the problem of service migration by
formulating it as a Markov decision process (MDP),

where we meticulously define the states, actions, and
reward function. By doing so, we can effectively
determine the optimal time and location for migrating
the service while the vehicles are in motion. Different
from the previous approaches to service migration, our
model considers the type of service. A customized
migration strategy is adopted for each service profile.

• We employ DRL techniques to provide an efficient
MDP model solution. Specifically, we propose a deep
Q learning (DQL)-based solution that utilizes a double
Q network and a replay buffer to enhance the learning
outcomes.

• We evaluate the performance of the proposed DRL-
based scheme and compare it to other service migration
approaches.

The remainder of this paper is organized as follows. In
Section II, recent research works on service migration are
reviewed. The system model is presented in Section III. Then,
the problem formulation is elaborated in Section IV. After that,
Section V presents the simulation and evaluation of the solution.
Finally, the paper is concluded in Section VI.

II. RELATED WORK

In recent years, researchers have proposed many strategies

for service migration. Authors in [12] propose the “always

migration” scheme so that the service always migrates to the

nearest MEC server. However, the migration costs are

neglected. Work in [13] proposes an MDP-based model that

considers the distances between mobile users and edge servers

as the states, associates each state with an action (migrate or

not), and defines the transition probabilities between two states

with a specific action and the rewards. Thus, a model based on

MDP is proposed to address the service migration issue.

However, this work does not consider other parameters besides

the distance between the user and the service to decide the

optimal migration. Peng et al. [14] studied the dynamic

migration decision in the vehicular network, which jointly

considers the QoS and migration cost. However, this migration

strategy determines whether to migrate a service or not without

considering where to migrate the service, so the service is

migrated to the nearest edge server. Abouaomar et al. [15]

studied the problem of service migration in a MEC-enabled

vehicular network to minimize the total service latency and

migration cost. They modeled the problem as a multi-agent

Markov decision process and solved it by leveraging deep Q

learning (DQL). Nevertheless, this paper considers some

context conditions as vehicle positions, and their velocities; but

it didn’t consider the load of edge servers.

In this paper, we present novel contributions by providing

optimal migration strategies while considering the available

capacity on each edge server. Our model provides a

personalized migration strategy for each service profile. To the

best of our knowledge, no work considered the difference

between the service’s profile in the definition of the service

migration strategy.

III. SYSTEM MODEL

We consider a vehicular MEC-enabled architecture covered
with a set of Roadside units (RSU), each equipped with an Edge
server n ∈ N:={ 1,2, … , N} as illustrated in Figure 1. There are
K mobile users (or vehicles, interchangeably) requesting
services from the Edge servers. Each vehicle requests some
service to fulfill its requirements. Services are identified
with a service profile that describes the service class, the
required capacity (computing and memory), and the service
image size.

Figure 1. Illustration of the system architecture [16]

We adopted the service classification presented in [17]
to identify three classes of services:

• Class 0 (used in Service Profile SP0): regroup
highest priority services that need stringent
requirements of low latency.

• Class 1 (used in Service Profile SP1): regroup
second priority services with less stringent
requirements than the first class.

• Class 2 (used in Service Profile SP2): regroup the
lower priority services with nonspecific stringent
requirements of latency.

IV. PROBLEM FORMULATION

In this section, we formulate the service migration problem

as a Markov Decision Process (MDP). Then we present Double

Deep Q Network (DDQN) method as an effective solution to

the problem.

A. The MDP formulation

In reinforcement learning, the environment is formulated as
an MDP which is represented as (S, A, P, R, γ), where S and A
are state space and system actions, respectively. P represents the
probability of each state transition when choosing an action a ∈
A as P (s’| s, a) : S x A x S → [0,1], where s ∈ S and s’ ∈ S is
the current state and the next state respectively. An
immediate reward R is obtained from this state transition as
R(s, a, s’): S x A x S → ℝ. In addition, γ∈[0,1] is the discount
factor used to balance immediate and long-term rewards. At
each time slot, the service provider is responsible for
obtaining the state from vehicles and the MEC servers. Then,
it transmits this accumulated state to the DQL and receives
feedback regarding the optimal action for determining
whether to migrate at this time and to which edge server.

The action is then carried out, and the system shifts to the
next state. The key elements of the MDP are defined as
follows:
1. State space:

We define the state space S = {>? | t = 1, 2, …, ?@AB} where

a state at time slot t >? is a 4-tuple given by:

>? = {C?[K], D?, E?[K], SF?} (1)

Where:

C?[K]: The distance between the vehicle and the K edge Servers

at time slot t where K is the number of the edge servers.

D?: The Edge server hosting the vehicle’s service at time slot t.

E?[K]: Available capacity on the K edge server (CPU, memory,

disk).

GF?: Service Profile:

• Service class (class 0, class 1, or class 2).

• Required capacity by the service.

• Service Image Size.

This definition of state space enables our model to function

as a multi-criteria migration strategy. It takes into account the

distance between the vehicle and each edge server in each time

interval, and thus the vehicle's velocity implicitly. Also, it

considers the load of edge servers and the required capacity of

migrated service. And more importantly, our model adapts its

migration strategy according to the service class.

2. Action space:

An action represents the decision to migrate a service to an

Edge server ei at time slot t. therefore, an action at = {H1, H2,

…,HI}, where Ai is the action of migrating the service to Edge

server ei at time slot t, Hi ϵ {0,1} and ∑HJ=1. No migration will

occur during time slot t if Hj is the hosting edge server and

Aj=1. This action space representation allows our model to

decide where and when a service should be migrated.

3. Reward function:

A MEC agent chooses an action at at time slot t and

receives a reward Rt. Since we seek to reach optimal latency for

each service profile and a reduced migration cost, we define the

reward function as a combination of latency and migration cost

as follows:

KLM
NM = OP(1 O ѡ)R(?) S ѡET>?(?)U (2)

Where D(t) is the sum of communication delay, backhaul

delay, and computing delay. And Cost(t) is the migration cost

EV of service v at time slot t. ѡ is the weight factor, and ѡ W

[0,1].

B. The proposed DDQN

DQN is a sample and efficient Deep Reinforcement learning

(DRL) algorithm. DQN approximates the Q-values Q(s, a, X)

of each state-action pair (s, a) using a Deep Neural Network

(DNN), where X represents the parameters of the Q-network.

The training process of the DNN uses the experience replay

memory mechanism by periodically storing MEC agent

experience in a replay buffer. This experience consists

primarily of the current state, the next state, the selected action,

and the resulting reward. The experience replay memory

mechanism provides uncorrelated data as inputs, thereby

eliminating undesirable temporal correlations. The DDQN is

used to make the training process faster and more reliable by

using two DNNs [18]. The first DNN is called the main Q-

network which is used to calculate the Q-values. And the

second DNN is called the target Q-network which is used to

provide the target Q-values Q(s, a, X-) to train the parameter X

of the main Q-network. The training phase of our proposed

DDQN is presented in Algorithm 1.

In each episode, the training continues for several time slots

(or steps). Each MEC agent observes the current state of its

environment and selects an action at from its action space at

each step. The MEC agent utilizes the W-greedy policy to select

an action. This policy selects an action randomly with

probability W. The MEC agent receives its reward and moves to

the next state. The obtained experience is stored in the replay

buffer which is used to create a training dataset. The latter is

used to perform the training process in order to minimize the

loss function given by:

YT>>(X) = (1/[) \ []̂ O _(>̂ , Â , X)]` (3)

Where _(>̂ , Â , X) is the Q-value of action Â given in the

state >̂ which is calculated using the main Q-network with

parameter X. And]̂ is the target Q-value which is calculated

using the target Q-network with parameter X-.

To update the parameter X of the main Q-network, the agent

performs a gradient descent step. Finally, the parameter X- is

updated after each K steps by copying the parameter X of the

main Q-network.

 The second phase is the inference phase of the DQL. Once

the trained DDQN is obtained, the agent uses its optimal

parameters to find the optimal migration strategy. The MEC

agent observes the current state at each step and chooses the

action that maximizes the Q-value based on the trained DDQN.

Thus, we find the solution to the migration problem, and we can

determine when and where to migrate a service to achieve an

optimal balance between latency and cost.

V. SIMULATION AND EVALUATION

A. Simulation Envirenment

The simulation experiments are based on OMNeT++ [19]
and the Artery framework [20] to simulate the simulate
movement of the vehicles and the communication between the
vehicles and the RSUs, on the one hand, and the communication
between the RSUs and the edge servers, on the other. The
implementation of the DDQN agent is performed using Python
and Keras.

We consider a MEC-enabled vehicular network where five
Edge servers are deployed over a highway as depicted in Figure
2. The distance between each two neighbor servers is assumed
the same. The RSUs are deployed in every 800m and each RSU
is attached to the nearest Edge server. The length of the highway
is 30 km. The vehicles move with a randomly-chosen fixed
speed from the range of [60, 110] km/h.

Figure 2. Simulation scenario

The DDQN and vehicular network parameters are presented
in Table 1.

Table 1. Simulation parameters

Parameter Value

Number of Edge servers 5

RSU Transmission power 47,9 mW

Vehicles transmission power 200 mW

Access Technology IEEE 802.11p

Learning rate 5e -4

Learning rate 0,99

Replay memory size 1000000

Mini-batch size 64

Target update interval 100

Optimizer Adam

RNN hidden layers
Two hidden layers of 256 neurons
each.

Activation function ReLU

B. Simulation Results and Analysis

Figure 3 illustrates the average reward per episode. It is clear
that the reward improves with the training episodes. This shows
the effectiveness of our proposed DQL algorithm. We notice
that the DDQN algorithm converges at approximately 190
episodes. In other words, the corresponding MEC agent
converges to a good learning outcome, which implies that it will
explore better actions.

Figure 3. The training rewards for MEC agent

Our proposed service migration strategy is compared with
the composite of the following approaches:

• Random migration (RM): the service is migrated
randomly at each time slot t.

• Never migrate (NM): the service is hosted in one of the
edge servers and does not migrate during the
simulation.

• Always migration (AM): the migration schema
proposed in [12], considers the migration of the service
to the nearest edge server. We considered also the load
of the edge server, if the nearest server is at 100% of
capacity the migration doesn’t occur.

• Peng et al. approach [14]: a state-of-the-art DRL-based
service migration strategy. In this work, the different
service profiles are not considered.

 The simulations were carried out under different
configurations of service profiles (class of service). As
explained earlier, we consider three service profiles: SP0, SP1,
and SP2 where SP0 represents the highest priority services that
need stringent requirements of low latency.
 Figure 4 represents the migration cost results for a service
size of 5. (unit). The NM method is excluded from this
comparison (Migration cost equal to zero). The results indicate
that our DDQN method has the lowest migration cost compared
to other methods. In SP0, the service's latency requirements are
stringent, so our model migrates the service more frequently to
a more effective edge server near the vehicle. The approach of
Peng et al. provides marginally lower costs than our model in
SP0. In SP1 and SP2, however, our model's migration costs
outperform those of other approaches. The cost of migration is
reduced in SP1 and SP2 because services in these service
profiles are less latency-sensitive. So we can reduce migration
while maintaining the QoS of these services.

Figure 5 illustrates the average service latency under the
same configuration. The results show that the latency of our
model increases in SP1 and SP2 compared to SP0. This is
justified by the fact that SP1 and SP2 services are tolerant of
higher latencies compared with SP0 which has a stringent
requirement of low latency. However, as depicted in Figure 4,
this increased latency allowed us to minimize the migration
cost. In other words, our model can be adapted to the
requirement of each service in order to reach an optimal balance

-350

-300

-250

-200

-150

-100

-50

0

0 9

1
8

2
7

3
6

4
5

5
4

6
3

7
2

8
1

9
0

9
9

1
0
8

1
1
7

1
2
6

1
3
5

1
4
4

1
5
3

1
6
2

1
7
1

1
8
0

1
8
9

1
9
8

2
0
7

2
1
6

2
2
5

2
3
4

2
4
3

2
5
2

2
6
1

2
7
0

S
c
o
re

Episodes

between migration cost and latency. Compared to the other
approaches, our DDQN model outperforms RM, NM, and Peng
et al. when the service is under SP0. AM offers the lowest
latency because the service is always migrated to the nearest
edge server, but the migration cost is significantly higher.

Figure 4. Migration cost results

Figure 5. Latency results

VI. CONCLUSION

In this paper, we proposed a DRL-based scheme to solve the
problem of vehicular service migration. The problem was
initially formulated as a Markov Decision Process (MDP). This
system takes into account various constraints, including
vehicles’ mobility, servers’ capacity, and most importantly, the
service profile. Considering this service profile enables the
model to provide an adaptable migration strategy according to
the service’s requirements. We propose a deep Q learning
(DQL)-based solution that utilizes a double Q network and a
replay buffer to enhance the learning outcomes. Finally, we
have demonstrated through extensive simulations that the
proposed DQL algorithm, depending on the requirements of the
service profile, achieves the best tradeoff between latency and
migration cost compared to other strategies. In future work, we
will expand our solution to a more realistic 2D scenario and
transform the model into a multi-agent MDP to improve model
training.

REFERENCES

[1] Lu, H., Liu, Q., Tian, D., Li, Y., Kim, H., and Serikawa, S. (2019). The
Cognitive Internet of Vehicles for Autonomous Driving. IEEE Network,
33(3):65–73.

[2] Coutinho, R.W. and Boukerche, A. (2019). Guidelines for the Design of
Vehicular Cloud Infrastructures for Connected Autonomous Vehicles.
IEEE Wireless Communications, 26(4):6–11.

[3] Lin, Y., Wang, P., & Ma, M. (2017, May). Intelligent transportation
system (ITS): Concept, challenge and opportunity. In 2017 ieee 3rd
international conference on big data security on cloud (bigdatasecurity),
ieee international conference on high performance and smart computing
(hpsc), and ieee international conference on intelligent data and security
(ids) (pp. 167-172). IEEE.

[4] S.Wang, V. Charissis, J. Campbell,W. Chan, D. Moore, and D. Harrison,
“An Investigation Into the Use of Virtual Reality Technology for
Passenger Infotainment in a Vehicular Environment,” in Proc. IEEE Int.
Conf. Adv. Mater. Sci. Eng. (ICAMSE), 2016, pp. 404–407.J. Clerk
Maxwell, A Treatise on Electricity and Magnetism, 3rd ed., vol. 2.
Oxford: Clarendon, 1892, pp.68–73.

[5] H. Khan, S. Samarakoon, and M. Bennis, “Enhancing Video Streaming
in Vehicular Networks via Resource Slicing,” IEEE Trans. Veh.
Technol., vol. 69, no. 4, pp. 3513–3522, 2020

[6] Aljeri, N. and Boukerche, A. (2019). Fog-enabled vehicular networks: A
new challenge for mobility management. Internet Technology Letters.

[7] K. Zhang, Y. Zhu, S. Leng, Y. He, S. Maharjan, and Y. Zhang, “Deep
learning empowered task offloading for mobile edge computing in urban
informatics,” IEEE Internet Things J., vol. 6, no. 5, pp. 7635–7647, Oct.
2019.

[8] Khamari, S., Ahmed, T., & Mosbah, M. (2022, December). Efficient
Edge Server Placement under Latency and Load Balancing Constraints
for Vehicular Networks. In GLOBECOM 2022-2022 IEEE Global
Communications Conference (pp. 4437-4442). IEEE.

[9] J. Zhang and K. B. Letaief, “Mobile edge intelligence and computing for
the internet of vehicles,” Proc. IEEE, vol. 108, no. 2, pp. 246–261, 2020.

[10] Lopes, D., & Sargento, S. (2014, June). Network mobility for vehicular
networks. In 2014 IEEE Symposium on Computers and Communications
(ISCC) (pp. 1-7). IEEE.

[11] Peng, Y., Liu, L., Zhou, Y., Shi, J., & Li, J. (2019, December). Deep
reinforcement learning-based dynamic service migration in vehicular
networks. In 2019 IEEE Global communications conference
(GLOBECOM) (pp. 1-6). IEEE.

[12] W. Bao, D. Yuan, Z. Yang, S. Wang, W. Li, B. Zhou and A. Zomaya,
“Follow Me Fog: Toward Seamless Handover Timing Schemes in a Fog
Computing Environment,” IEEE Communications Magazine, pp. 72-78,
2017.

[13] A. Ksentini, T. Taleb, and M. Chen, “A markov decision processbased
service migration procedure for follow me cloud,” in Proceedings of the
IEEE International Conference on Communications (ICC), pp. 1350–
1354, IEEE, 2014.

[14] Peng, Y., Liu, L., Zhou, Y., Shi, J., & Li, J. (2019, December). Deep
reinforcement learning-based dynamic service migration in vehicular
networks. In 2019 IEEE Global communications conference
(GLOBECOM) (pp. 1-6). IEEE.

[15] Abouaomar, A., Mlika, Z., Filali, A., Cherkaoui, S., & Kobbane, A.
(2021, October). A deep reinforcement learning approach for service
migration in mec-enabled vehicular networks. In 2021 IEEE 46th
conference on local computer networks (LCN) (pp. 273-280). IEEE.

[16] Khamari, S., Ahmed, T., & Mosbah, M. (2022, December). Efficient
Edge Server Placement under Latency and Load Balancing Constraints
for Vehicular Networks. In GLOBECOM 2022-2022 IEEE Global
Communications Conference (pp. 4437-4442). IEEE.

[17] Maaloul, S., Aniss, H., Kassab, M., & Berbineau, M. (2021).
Classification of C-ITS services in vehicular environments. IEEE
Access, 9, 117868-117879.

[18] H. Van Hasselt, A. Guez, and D. Silver, “Deep Reinforcement Learning
with Double Q-Learning,” in Proc. AAAI Conf. Artif. Intell., vol. 30, no.
1, 2016.

[19] VARGA, OMNeT++ Discrete Event Simulation System, Release 5.6,
2020.

[20] Riebl, Raphael, Obermaier, Christina, et Gunther, Hendrik-Jörn. Artery:
Large Scale Simulation Environment for ITS Applications. In: Recent
Advances in Network Simulation. Springer, Cham, 2019. p. 365-406

. . .

20000

0

500

1000

1500

2000

2500

SP0 SP1 SP2

M
ig

ra
ti
o

n
 c

o
s
t

RM DDQN AM Peng et al.

. . .

. . .

. . .

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

SP0 SP1 SP2

L
a
te

n
c
y

(s
)

RM NM DDQN AM Peng et al.

