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Abstract— Edge computing empowers service providers to 

deploy smart vehicles applications that require high throughput 

and extremely low latency. In this context, optimal Edge servers' 

placement becomes more difficult since it requires addressing 

several interrelated requirements at the same time,  such as delay, 

deployment cost, and energy consumption. This paper studies 

optimal Edge server placement for energy efficiency. The 

proposed approach, called Green Optimal Edge Server Placement 

(GOESP), models the placement problem using integer linear 

programming to address the trade-off between latency, energy, 

and deployment cost while considering Edge servers' capacity and 

expected vehicle's traffic on the road. GOESP minimizes the 

energy consumption by minimizing the number of deployed Edge 

servers while meeting end-to-end communication latency and 

avoiding servers’ overloading. We evaluate the efficiency of our 

approach mathematically and through simulations utilizing real-

world traffic extracted from open data of Bordeaux city, France. 

The results demonstrate that our technique outperforms other 

methods in terms of energy efficiency and guarantees latency and 

workload balancing requirements.  

Keywords— Green computing, Edge computing, Edge server 

placement, Intelligent Transport Systems.    

I. INTRODUCTION 

Smart vehicle networks have become essential to deploy 
innovative transportations services such as dangereous situation 
warning, special vehicle prioritization, and area reservation. 
Also known as Cooperative Intelligent Transport Systems (C-
ITS), smart vehicle networks improve traffic management and 
road safety policies, ensure a future with fewer road accidents, 
and enable optimal driving to reduce fuel consumption.  

New C-ITS use cases, such as autonomous and remote 
driving, require intensive AI-based processing and video 
analytics and necessitate guaranteed Quality of Service (QoS) 
performance, including ultra-low latency, near-perfect 
reliability, and extremely high bandwidth [1]. Such use cases 
generate massive amounts of data and require in-network 
processing capabilities. For example, smart vehicles are 
equipped with Lidar, radar, and cameras to collect information 
in the vehicle's vicinity [2].  

However, on-board vehicles' computational resources are 
insufficient to handle service processing tasks under a high 
volume of generated data. As a result, some tasks should be 
offloaded to remote computational nodes [3]. Cloud computing 
enables the provision of on-demand extensive processing and 

storage resources capable of managing such enormous amounts 
of data. Nevertheless, cloud computing capabilities are often 
offered by data centers located far from the vehicle's position. 
As a result, end-to-end data transmission often experiences 
considerable delays [4], and networks frequently face 
bottlenecks. Additionally, transmitting high volumes of data 
requires high bandwidth usage that consumes a substantial 
amount of energy [4]. 

 MEC (Multi-Access Edge Computing) promises to deliver 
adequate processing capacity while meeting delay 
constraints and optimizing energy consumption [4]. It entails 
installing a set of high-performance computing nodes near 
vehicles on the base stations of cellular operators or the 
Roadside Units (RSU) of road operators. MEC offers the 
efficient fulfillment of stringent QoS requirements for a diverse 
set of services and use cases and the handling of computationally 
intensive tasks. However, deploying edge servers in urban 
vehicular networks remains a significant challenge. Indeed, 
optimal edge server placement implies limiting the number of 
edge nodes required to meet the service level quality. Such 
deployment should ensure that appropriate computation and 
storage resources are always available to meet the C-ITS 
services' latency, bandwidth, and reliability requirements. 

 Additionally, optimal placement options are necessary to 
reduce deployment costs and increase energy efficiency. 
Inefficient Edge server placement leads to high latency and 
significantly imbalanced workload distribution across Edge 
servers. Thus, some Edge servers may be overburdened while 
others are underutilized. Deploying more edge nodes results in 
increased deployment costs and reduced energy efficiency. 

This study aims to address the issue of efficiently deploying 
an optimal number of Edge servers while adhering to 
deployment costs and network performance constraints. This 
problem is exacerbated in metropolitan environments, where a 
high volume of data is generated due to user mobility and 
density. 

This paper introduces the Green Optimal Edge Server 
Placement (GOESP) approach, a mathematical optimization 
model for a green placement of edge servers in strategic 
locations. Toward this objective, we formulate the problem as 
integer linear programming that minimizes the monetary and 
energy cost associated with the deployment while 
simultaneously satisfying a specific latency threshold and 
balancing workload among Edge servers. To provide a realistic 



Edge server placement solution, we propose a methodology 
based on open data from real-world automobile traffic in 
Bordeaux city [6]. We perform extensive simulations to analyze 
the suggested approach and demonstrate its effectiveness. 

 The rest of this paper is organized as follows. Section II 
introduces some background on Multi-access Edge computing 
and its application in vehicular networks. Section III presents 
related work in edge server deployment and energy efficiency 
solutions. In Section IV, we present our solution and model for 
the green edge servers' placement. Next, Section V presents the 
simulation setup and performance evaluation. Finally, we briefly 
conclude the work and introduce future work in Section VI. 

II. BACKGROUND 

A. Vehicular applications 

In the context of IoT Automotive, V2X (Vehicle to 
Everything) requires a critical communication infrastructure 
where reliability and ultra-low latency are determinant factors 
[7]. V2X covers Vehicle to Vehicle (V2V), Vehicle to 
Infrastructure (V2I), vehicle to Pedestrian (V2P). Intelligent 
Transportation System (ITS) applications can be categorized 
into road traffic safety, road traffic efficiency, and value-added 
services [8][9]. Use cases in these categories include collision 
warning, assistance (Intersection Movement, Left Turn, 
cooperative merging), congestion warning, etc. [8]. 
Communication and computation capabilities must be 
improved to operate an efficient and reliable vehicular 
application that could include real-time traffic monitoring, 
continuous sensing, and cooperative and augmented 
vision [10]. However, the current network and infrastructure 
based on cloud computing cannot fully satisfy the application’s 
requirements. Recently, MEC (Multi-access Edge Computing) 
has emerged as an innovative architecture that offers a higher 
level of flexibility and provides a viable solution that can 
accelerate the development of ITS applications [11]. 

B. Multi-access Edge Computing (MEC) 

Mobile Edge Computing was introduced by the European 
Telecommunications Standards Institute (ETSI) Industry 
Specification Group (ISG) as a means of extending intelligence 
to the edge of the network along with higher processing and 
storage capabilities [12]. From 2017, the ETSI industry group 
renamed it to Multi-Access Edge Computing (MEC) since the 
benefits of MEC technology reached beyond mobile towards 
Wi-Fi and fixed access technologies. The principle of MEC 
consists of extending cloud computing capabilities to the edge 
of networks to minimize network congestion and improve 
resource optimization, user experience, and overall network 
performance.  

C. Deployment of MEC systems 

The primary motivation of Multi-access Edge Computing 
(MEC) is to bring the Cloud computing capability close to the 
network edges to mitigate cloud computing limits such as high 
latency and throughput bottleneck. Selecting MEC locations, 
especially Edge servers, remains the first step towards building 
up the MEC system and deploying vehicular applications. 

However, the site selection for the deployment of Edge servers 
presents an important challenge. The server’s placement 
strategy differs from the conventional base station site 
selection’s problem. The optimal placement of Edge servers is 
related to the computational resource provisioning and 
constrained by the deployment budget [13] and vehicles traffic 
on roads. The MEC providers should consider computational 
demands of task arrival and deployment costs such as site 
rentals to make the MEC servers placement strategy cost-
effective. In general, considering the system deployment 
budget, more MEC servers should be installed in regions with 
higher computation demands. Using existing telecom 
infrastructure, such as base stations, could reduce costs, but it 
would not solve all the problems. Indeed, due to the continuous 
increase in computation requirements for vehicles and various 
smart devices (IoT), application requirements cannot be 
guaranteed. Therefore, Edge servers must be deployed with a 
more distributed strategy and closer to the user. 

III. RELATED WORK 

Existing research works on the usage of edge servers, such 
as [14][15], focus on the placement challenge and load 
balancing, with little emphasis on meeting QoS requirements 
and on green issues such as energy consumption and 
deployment costs. The authors of [16] tackled the placement 
problem using a mixed-integer linear programming formulation 
that minimizes the deployment cost of Edge computing devices 
by jointly satisfying a target level of network coverage and 
computational demand. However, this work disregarded the 
latency requirements of vehicular applications. The work of 
[17] investigated the problem of deploying heterogeneous edge 
servers for response time minimization in mobile edge-cloud 
computing systems. Two stages are proposed: an offline stage 
using an Integer Linear Programming (ILP) technique to 
produce an optimal solution of edge server placement, and an 
online stage that deals with the mobility of users using a game 
theory-based scheme of base stations. Wang et al. [18] 
investigated the Edge server placement problem in mobile Edge 
computing environments for smart cities. They formulated the 
problem as a multi-objective constraint optimization problem 
that places Edge servers in strategic locations to balance 
workload between Edge servers and minimize Edge server 
access delay. Even though this work did not particularly address 
the vehicular network, it is the most pertinent to the placement 
problem discussed in this paper. We consider it for comparison 
with our proposed solution. 

Green edge solutions for vehicular environments focus on 
tasks and computational resources offloading [20][21]. The 
authors of [3] proposed a collaborative edge computing scheme 
that enables vehicle-as-an-edge technology for task processing 
in the vehicular Internet of Things (IoT). Ning et al. [22] 
presented an incentive-based optimal computation offloading 
scheme that maximizes the service provider's utilities while 
reducing smart device energy consumption and task execution 
time. However, none of these works considers the placement of 
edge servers as a vital parameter for green edge solutions for 
automotive networks. 



Our study focuses on developing a global solution that 
considers both the placement strategy required to meet QoS 
requirements and the energy efficiency limitations associated 
with reducing the deployment cost. 

IV. GREEN OPTIMAL EDGE SERVER PLACEMENT 

 Figure 1 depicts the proposed reference architecture for 
vehicular green edge computing. We consider connected 
vehicles equipped with ITS-G5, cellular communication 
interfaces, or both. These vehicles collect data from their 
surrounding environment. Frequently, advanced processing is 
often required by vehicle services’ tasks. To meet the 
requirements of C-ITS applications, storage and computing 
capabilities are provided at the network edge close to the 
vehicles. The edge layer comprises edge servers that can run on 
renewable energy sources such as solar energy if the deployment 
area is equipped with appropriate materials. In such a scenario, 
vehicles offload their processing jobs to the edge servers via 
cellular connection (4G/5G) using the base station (BS) or via 
the ITS-G5 communication using roadside equipment (RSU). 
The edge servers are connected to the cloud and the road 
operator platform via the core network. 

The following subsection describes our solution, namely Green 
Optimal Edge Server Placement (GOESP), which enables 
effective green edge server placement while meeting the 
requirements of automotive applications (latency and load 
balancing) and taking into account the green environmental 
elements of communication 

 

Figure 1. Vehicular green Edge computing reference architecture 

A. System model 

The system is composed of a set J = {S1, S2, …, Sm} of 
potential locations for Edge servers and a set I = {R1, R2, …, 
Rn} of roadside units and/or BS. Some of the proposed sites 
include renewable green energy sources like solar power. Figure 
2 illustrates an example of the vehicular edge computing system 
where one of the three edge servers (S2) is deployed at a location 
with a green energy source.   

Assume that K Edge servers will be assigned to K different 
locations, where K is a constant (in Figure 2, K=3). To process 
the requests sent by the vehicles, we suppose that each Edge 
server has the same restricted computing resource (storage, 
processing, and memory). Each RSU/BS is linked to one Edge 
server to delegate vehicle requests.  

 

Figure 2. Example of the vehicular green edge computing system 

The objective is to install as few edge servers as possible to 
minimize energy consumption while serving all vehicle requests 
without surpassing the servers' capacity. Additionally, the model 
emphasizes the importance of choosing a location in an area 
with a green energy supply. 

The notations utilized in our model are listed in Table 1. cj 
presents the cost of deploying an Edge server at location j. This 
cost combines the monetary and energy consumption cost; 
hence, a lower cost is attributed to a location with a green 
energy source. The tuple memory, storage, and processing 
express the Edge server capacity. Similarly, each RSU/BS has 
its requirements or demands described similarly. Such demand 
represents the aggregated tasks of vehicles received by this 
RSU/BS. 

TABLE 1. NOTATIONS 

Symbol Description 

V= I U J I: a set of RSU/BS 

J: a set of the potential location of Edge servers. 

G = (V,E) E: a set of links between roadside units and Edge servers 

n Number of roadside units 

m Number of potential locations for Edge servers 

K  The number of deployed Edge servers 

��  Cost of deployment of Edge server at location j 

���� Maximum latency (proportional to the distance) 

��,� The latency between RSUi/BSi and Edge server location j 


��   Processing demands of RSUi/BSi 

���   Memory demands of RSUi/BSi 

��   Storage demands of RSUi/BSi 


�� Processing capacity of server j 

��� Memory capacity of server j 

��  Storage capacity of server j 

�� Binary variable for Edge server placed at location j 

��,� Binary variable for RSUi/BSi linked to Edge server at 

location j 

�  The total cost of Edge server's deployment 

Accordingly, we formulate an integer linear programming 
model that captures the model's features under consideration. 
We begin by defining the decision variables of the model:  

 

�� �   �1 , if server is deployed at location $
0 , else                                                        (1) 



��,� � �    1 , if RSU i is linked to server $ 
    0 ,    else                                            (2) 

� �  * �� ��
�+,  

 ∶    total cost   (3) 

 
The objective function is defined as: 
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(4) 

s.t   
 

* ��,�  ��  �  1  ,                         ∀ . 3 4
�+,

        (5) 

* ��,�  ��,�  ��    5   ����   ,
�+,

       ∀ . 3 4    (6) 

* 
��  
�+6

��,�   5  
��  ��  ,            ∀ $ 3 7   (7) 

* ���  
�+6

��,�   5  ���  ��             ∀ $ 3 7  (8) 

* ��  
�+6

��,�   5  ��  ��                ∀ $ 3 7  (9) 

��  3 80,19                                     ∀ $ 3 7  (10) 

��,� 3 80,19                                   ∀ $ 3 7 , ∀ . 3 4    (11) 

Beginning with the decision variables in (1) and (2), we 

describe each expression in our model. ��  denotes a Boolean 

variable indicating whether a candidate position is selected for 

Edge server deployment. ��,� represents a Boolean variable that 

shows which Edge server is connected to each RSU/BS. For 

instance, �:,; = 1 indicates that RSU "5" is connected to the 

Edge server deployed in position "2". The objective function in 
(4) aims to minimize the deployment cost by reducing the 
number of Edge servers to be deployed where cj denotes the 
deployment cost of Edge server at location j from J. 

Following that, we discuss the constraints. Equation (5) 
ensures that each roadside unit is connected to only one server 
among the deployed servers. Constraint (6) guarantees that each 
RSU is connected to an Edge server without exceeding the 

maximum tolerated latency and ����  is defined by distance. 
Constraints (7-9) ensure that memory, storage, and processing 
requirements are met. It guarantees that the total number of 
requests sent by roadside units and base stations to the Edge 
server does not exceed its capacity. Finally, constraints (10-11) 
ensure that the decision variables satisfy the integrality 
requirements. 

B. Use case Scenario 

 We consider the city of Bordeaux, France, as the target 
area for Edge servers' placement. A map of Bordeaux city, 
including information about roads and buildings, is obtained 

from OpenStreetMap [23]. The map bounds an area of 15.10 
km². Figure 3 shows the concerned area. For simplicity but 
without loss of generality, we assume that 27 roadside units are 
installed at road intersections at a set spacing of around 800 
meters apart. We adopted this strategy because of the lack of 
data on actual RSU deployment. The following stage consists 
of identifying potential Edge server sites. We chose those 
locations using a straightforward technique. Between every 
three or four RSUs, one site is specified as a possible location 
for an Edge server. The optimization model chooses the most 
strategic places for deploying Edge servers based on a set of 19 
possible Edge server locations. The candidate locations shown 
in a green square in Figure 3 are equipped with a renewable 
energy source. 
 

 
Figure 3. Use case scenario: Edge servers' placement on Bordeaux 

We used the open dataset OpenDataBordeaux [6] to 
generate a traffic trace similar to the real one of Bordeaux. 
Based on this data, we identified three classes of roads: high 
traffic roads, moderate traffic roads, and low traffic roads. The 
RSUs send vehicles' tasks to the edge servers according to 
generated traffic trace. Therefore, we distinguish three classes 
of RSU: RSU dealing with high demands, RSU with moderate 
demands, and RSU with low demands, as shown in Table 2. 

TABLE 2. RSU CLASSIFICATION 

Category RSU 

High demand  R9, R10, R12, R23 

Moderate demand R3, R4, R5, R6, R7, R11, R15, R16, R17, R22 

Low demand  R1, R2, R8, R13, R14, R18, R19, R20, R21, R24, 
R25, R26, R27 

 

V. EVALUATION AND RESULTS  

A. Methodology and simulation setup 

Figure 4 provides a comprehensive overview of the 
methodology and simulation setup used to evaluate our green 



placement strategy. To obtain the optimal solution of our 
model, we use AIMMS (Advanced Interactive 
Multidimensional Modeling System [24]) with CPLEX12.10 
solver. AIMMS is a perspective analytics platform that allows 
the modeling and development of optimization-based 
applications. The model requires the following inputs: the 
geographical coordinates of roadside units, the geographical 
coordinates of the Edge server's candidate locations, the latency 
threshold (represented by distance), Edge servers' capacity, and 
RSUs demands (in terms of processing, memory, and storage). 
According to the model, the latency, and servers' capacity 
constraints, each roadside unit is linked to one of the edge 
servers. As a result, the solver returns the number of Edge 
servers to deploy as well as the placements of the servers among 
the possible locations. Therefore, the total cost of deployment 
is calculated. The machine for this optimization task presents 
the following configuration: processor intel i7-10610U CPU @ 
1.80GHz   2.30 GHz and RAM 16 GO.  

 
Once the optimal placement of edge servers is obtained, we 

run Omnet++ [25] and the Artery framework [26] to simulate 
vehicle traffic. We use SUMO [27] to generate the traffic trace 
of the simulation. The simulations were conducted on a 
computer with 16 GO RAM and the Intel i7-9700 CPU @ 
3.00GHz x8 processor. 

 
Table 3 summarizes the parameters used to find the optimal 

solution using AIMMS and run simulations. We use two values 
to represent the cost edge server deployment. It is equal to one 
(unit) if the candidate location has a green energy source and 
equal to two (unit) otherwise. We suppose that all Edge servers 
have the same capacity, and the demands of the RSUs depend 
on the category to which the RSU belongs. 

TABLE 3. MODEL AND SIMULATION PARAMETERS 

AIMMS parameters 

Edge server deployment cost at 
location i 

Location with 
a green energy 

source 

1 unit 

Location 
without a green 
energy source 

2 unit 

RSU demands 
(processing/Memory/Storage) 

High Demand 30 unit 

Moderate 
Demand 

20 unit 

Low Demand 10 unit 

Edge server capacity 
(Processing/Memory/Storage) 150 unit 

Latency threshold (in distance) 1500 m 

Omnet/Artery parameters 

RSU transmission power 47,9 mW 

RSU antenna high 5m 

Vehicle transmission 
power 

200 mW 

Frequency band 5.9 GHz 

Propagation model ConstantSpeedPropagation (speed 
of light) 

Pathloss model GEMv2 [28] 

Obstacle loss model DielectricObstacleLoss 

Background noise Model IsotropicScalarBackgroundNoise 
(-110 dBm) 

Message size (payload) 1000 Bytes 

Message frequency 1 Hz 

Vehicles max density 729 Vehicles 

Figure 4: Overview of the used methodology to evaluate “GOESP”. 



B. Results and performance evaluation 

The optimal solution calculated with the solver CPLEX 
indicates that four (K=4) Edge servers should be deployed in the 
concerned area of Bordeaux. The chosen locations are location 
3, location 4, location 13, and location 19, as shown in Figure 5. 
The placement results show that our approach favors the green 
communication strategy as three (3) among the four (4) locations 
are powered by renewable green energy. Thus, the total 
deployment cost is 5. 

To better evaluate our solution, we implemented other 
placement strategies such as Random, Top-K, and K-means as 
baseline comparisons because they are the most used strategies 
in such problems. Furthermore, we also implemented Wang et 
al. approach [18], which is the most relevant state-of-the-art 
placement strategy compared to our work. The different 
strategies are described below: 

• Random: this method randomly assigns the K Edge servers 
to candidate locations. We evaluated two different 
approaches to this problem, based on how the roadside units 
are connected to the Edge servers. The first is Random-
Random, in which RSUs are randomly assigned to servers. 
The second is Random-Nearest, in which each RSU is 
connected to the Edge server located closest to it. 

• Top-K: The K RSUs with the highest traffic demands are 
picked. Each RSU is connected to the Edge server located 
closest to it. Then, the Edge servers are deployed in the 
places that are closest to each RSU (K locations). 

• K-means clustering: This technique is frequently used to 
automatically cluster a dataset into K groups. We discover 
K clusters of roadside units and then put K Edge servers in 
their centers using the K-means clustering technique. 

• Wang et al.'s approach [18]: considers the deployment of 
edge servers in smart cities to balance the workload 
between Edge servers and minimize the Edge server access 
delay. They adopted mixed integer programming to find the 
optimal solution. 

 Table 4 below summarizes the placement results for the 
different strategies. We fixed the number of deployed edge 
servers to K=4 for comparative purposes for the Random, Top-

K, and K-means techniques. As a result, our solution has a lower 
deployment cost than Top-K and K-means. The Wang et al. 
approach has the lowest deployment cost by deploying just two 
servers. However, this solution does not ensure the system's 
performance, and demands may exceed the servers' capacity at 
peak periods. 

TABLE 4. EDGE SERVERS' PLACEMENT RESULTS 

Placement strategy Edge servers' locations Deployment 

cost 

GOESP Loc 3, Loc 4, Loc 13, Loc 19 5 

Top-K Loc 7, Loc 8, Loc 10, Loc 17 7 

K-means Loc 6, Loc 8, Loc 13, Loc 17 7 

Wang et al. [18] Loc 3, Loc 10 3  

 The link between each roadside unit and the Edge server is 
shown in Table 5, and the latency between the entities is stated 
in terms of distance. For instance, Server 1, located at position 
3, is used to connect R5 at a distance of 1101 meters, R6 at a 
distance of 1204 meters, and so on. Additionally, we show the 
Edge servers' workload, which is the aggregate of the demands 
of the roadside units connected to this server; it is 120 units for 
server 1. The obtained results adhere to the server's latency and 
capacity limits. All RSUs (R1 to R27) are linked to one of the 
Edge servers without exceeding the model's maximum latency 
(measured in distance) of 1500m. For example, regarding the 
capacity constraint, the sum of RSUs linked to server 1 is 120 
units, which is less than server 1's capacity (150 units). Our 
method satisfies the server's capacity constraint while also 
ensuring optimal load balancing among edge servers. 

TABLE 5. EDGE SERVERS' PLACEMENT AND RSU CONNECTIONS RESULTS 

Edge server Roadside ID (distance to the edge server) 

Server 1 (at 
location 3) 

R5 (1101m), R6 (1204m), R7 (582m), R8 (1058m), 
R11(1117m), R12(1236m) 

Server 2 (at 
location 4) 

R1 (893m), R2(191m), R3 (1030m), R4(1005m), 
R9(911m), R10(1303m) 

Server 3 (at 
location 13) 

R13 (1337m), R14 (852m), R15 (516m), R16 (1175m), R17 
(530m), R18 (721m), R19(496m), R20 (877m) 

Server 4 (at 
location 19) 

R21 (1338m), R22 (534m), R23 (373m), R24 (242m), R25 
(1056m), R26 (740m), R27 (793m) 

 Figure 5 summarizes and indicates the chosen locations for 
deployment of Edge servers for each placement strategy. The 
Random-Random and Random-Nearest approaches are also not 
presented here as their results are random. Figure 6 highlights 
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Figure 5: Edge server’s placement locations for different approaches: GOESP, Top-K, K-Means and Wang et al. [18] 



the load balancing results achieved using the different placement 
strategies by displaying the percentage of tasks handled by each 
server. Our approach GOESP provides an extremely high level 
of load balancing where servers process nearly the same number 
of tasks (maximum difference of 5%). The GOESP approach 
enhances the fairness among the Edge servers. The other 
strategies do not ensure good load balancing. For example, 
server 2 handles 36% of tasks (160 units) in Top-K, surpassing 
150 units. 

 

Figure 6. Workload results of GOESP, Top-K, K-means, and Wang et al. 
Approaches 

    We examined the critical nature of load balancing in 
situations where servers have limited processing capacity. To do 
this, we fixed the queue size on each server to 150 tasks, and 
when a server's queue is full, the next arriving task is dropped 
and must be retransmitted later. The retransmission of tasks 
from the vehicle to the server consumes additional energy and 
degrade the latency. To this purpose, minimizing the number of 
dropped tasks is critical for decreasing and conserving energy 
consumption on cars and edge servers. The percentage of 
dropped tasks for each approach is depicted in Figure 7 . The 

results indicate that our approach can deliver the best 
performance with the lowest dropped tasks rate. As a result, our 
method is more energy-efficient than the other placement 
strategies. Figure 8 shows the additional energy consumption 
caused by the retransmission of the dropped tasks. Specifically, 
our method consumes 48% less energy than Random-Random 
and 69% less energy than Random-Nearest. The Top-K strategy 
eliminates 5,67% of tasks, resulting in a 95,5% increase in 
energy consumption when compared to our solution. The K-
means and Wang et al. approaches consume significantly more 
energy and increase by up to 394% compared to our solution. 

 
Figure 7. Dropped tasks results 

 
Figure 8.  Additional energy consumption results 
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Figure 9: Latency simulation results: GOESP, Top-K, K-Means and Wang et al. [18]. 



Finally, we examine the effect of our solution on the average 
latency of messages received by the servers. Figure 9 depicts 
the latency curves generated using the simulation tool within 
the Artery framework for the approaches mentioned above. Our 
approach GOESP achieves a latency that varies between 
1,51ms in low density and 1,61ms in high density. The other 
approaches offer a latency in approximately the same interval. 
When we examine the findings more closely, we see that 
GOESP outperforms Wang et al. [18] 

Additionally, our solution presents a higher latency of 
0,01ms (maximum) than the Top-K and K-means approaches. 
This increase could be explained by the fact that those 
approaches use the nearest server criteria, i.e., each RSU is 
connected to the nearest server; however, they do not consider 
other constraints like the server capacity and the workload 
balancing. For example, in the Top-K approach, server 2, with 
a capacity of 150 units, cannot handle all the roadside units' 
tasks (160 units of total demands). Therefore, this minor latency 
increase is acceptable for our solution to ensure that the server’s 
capacity is not exceeded. On the other hand, the proposed 

model ensures that the latency threshold (����) constraint is 
always respected. 

VI. CONCLUSION 

Edge computing remains a new emerging technology that 
can boost the performance of various applications and help 
reduce power consumption by shifting the processing workload 
from the cloud to the edge. The energy-efficient Edge server 
placement problem has received little attention to the best of our 
knowledge. This paper investigated this topic in urban vehicle 
networks to optimize deployment costs, energy consumption, 
and balance workload between Edge servers while minimizing 
latency. We formulated the Edge server placement problem as 
an integer linear programming model. We used a methodology 
based on real-world Bordeaux traffic statistics to give a realistic 
Edge server placement. Our model considers Edge servers' 
capacities to balance servers' workloads efficiently. Using the 
AIMMS analytics platform, we proposed an effective placement 
solution. The obtained results indicate that our solution 
outperforms existing solutions in terms of energy efficiency. 
Workload balancing between servers prevents excessive energy 
consumption. Thus, our proposed placement technique balances 
deployment cost, energy consumption, workload balancing, and 
latency. As future work, we intend to investigate the service 
migration between Edge servers to ensure service continuity, 
decrease application delay, and further optimize energy 
consumption. 
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