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Edge computing empowers service providers to deploy smart vehicles applications that require high throughput and extremely low latency. In this context, optimal Edge servers' placement becomes more difficult since it requires addressing several interrelated requirements at the same time, such as delay, deployment cost, and energy consumption. This paper studies optimal Edge server placement for energy efficiency. The proposed approach, called Green Optimal Edge Server Placement (GOESP), models the placement problem using integer linear programming to address the trade-off between latency, energy, and deployment cost while considering Edge servers' capacity and expected vehicle's traffic on the road. GOESP minimizes the energy consumption by minimizing the number of deployed Edge servers while meeting end-to-end communication latency and avoiding servers' overloading. We evaluate the efficiency of our approach mathematically and through simulations utilizing realworld traffic extracted from open data of Bordeaux city, France. The results demonstrate that our technique outperforms other methods in terms of energy efficiency and guarantees latency and workload balancing requirements.

INTRODUCTION

Smart vehicle networks have become essential to deploy innovative transportations services such as dangereous situation warning, special vehicle prioritization, and area reservation. Also known as Cooperative Intelligent Transport Systems (C-ITS), smart vehicle networks improve traffic management and road safety policies, ensure a future with fewer road accidents, and enable optimal driving to reduce fuel consumption.

New C-ITS use cases, such as autonomous and remote driving, require intensive AI-based processing and video analytics and necessitate guaranteed Quality of Service (QoS) performance, including ultra-low latency, near-perfect reliability, and extremely high bandwidth [START_REF] Velez | 5g beyond 3gpp release 15 for connected automated mobility in cross-border contexts[END_REF]. Such use cases generate massive amounts of data and require in-network processing capabilities. For example, smart vehicles are equipped with Lidar, radar, and cameras to collect information in the vehicle's vicinity [START_REF] Kocić | Sensors and sensor fusion in autonomous vehicles[END_REF]. However, on-board vehicles' computational resources are insufficient to handle service processing tasks under a high volume of generated data. As a result, some tasks should be offloaded to remote computational nodes [START_REF] Buda | Collaborative vehicular edge computing towards greener ITS[END_REF]. Cloud computing enables the provision of on-demand extensive processing and storage resources capable of managing such enormous amounts of data. Nevertheless, cloud computing capabilities are often offered by data centers located far from the vehicle's position. As a result, end-to-end data transmission often experiences considerable delays [START_REF] Ning | Mobile edge computing-enabled Internet of vehicles: Toward energy-efficient scheduling[END_REF], and networks frequently face bottlenecks. Additionally, transmitting high volumes of data requires high bandwidth usage that consumes a substantial amount of energy [START_REF] Ning | Mobile edge computing-enabled Internet of vehicles: Toward energy-efficient scheduling[END_REF]. MEC (Multi-Access Edge Computing) promises to deliver adequate processing capacity while meeting delay constraints and optimizing energy consumption [START_REF] Ning | Mobile edge computing-enabled Internet of vehicles: Toward energy-efficient scheduling[END_REF]. It entails installing a set of high-performance computing nodes near vehicles on the base stations of cellular operators or the Roadside Units (RSU) of road operators. MEC offers the efficient fulfillment of stringent QoS requirements for a diverse set of services and use cases and the handling of computationally intensive tasks. However, deploying edge servers in urban vehicular networks remains a significant challenge. Indeed, optimal edge server placement implies limiting the number of edge nodes required to meet the service level quality. Such deployment should ensure that appropriate computation and storage resources are always available to meet the C-ITS services' latency, bandwidth, and reliability requirements.

Additionally, optimal placement options are necessary to reduce deployment costs and increase energy efficiency. Inefficient Edge server placement leads to high latency and significantly imbalanced workload distribution across Edge servers. Thus, some Edge servers may be overburdened while others are underutilized. Deploying more edge nodes results in increased deployment costs and reduced energy efficiency.

This study aims to address the issue of efficiently deploying an optimal number of Edge servers while adhering to deployment costs and network performance constraints. This problem is exacerbated in metropolitan environments, where a high volume of data is generated due to user mobility and density.

This paper introduces the Green Optimal Edge Server Placement (GOESP) approach, a mathematical optimization model for a green placement of edge servers in strategic locations. Toward this objective, we formulate the problem as integer linear programming that minimizes the monetary and energy cost associated with the deployment while simultaneously satisfying a specific latency threshold and balancing workload among Edge servers. To provide a realistic Edge server placement solution, we propose a methodology based on open data from real-world automobile traffic in Bordeaux city [START_REF] Opendatabordeaux | [END_REF]. We perform extensive simulations to analyze the suggested approach and demonstrate its effectiveness.

The rest of this paper is organized as follows. Section II introduces some background on Multi-access Edge computing and its application in vehicular networks. Section III presents related work in edge server deployment and energy efficiency solutions. In Section IV, we present our solution and model for the green edge servers' placement. Next, Section V presents the simulation setup and performance evaluation. Finally, we briefly conclude the work and introduce future work in Section VI.

II. BACKGROUND

A. Vehicular applications

In the context of IoT Automotive, V2X (Vehicle to Everything) requires a critical communication infrastructure where reliability and ultra-low latency are determinant factors [START_REF] Zakaria | [END_REF]. V2X covers Vehicle to Vehicle (V2V), Vehicle to Infrastructure (V2I), vehicle to Pedestrian (V2P). Intelligent Transportation System (ITS) applications can be categorized into road traffic safety, road traffic efficiency, and value-added services [8][9]. Use cases in these categories include collision warning, assistance (Intersection Movement, Left Turn, cooperative merging), congestion warning, etc. [START_REF] Singh | A tutorial survey on vehicular communication state of the art, and future research directions[END_REF]. Communication and computation capabilities must be improved to operate an efficient and reliable vehicular application that could include real-time traffic monitoring, continuous sensing, and cooperative and augmented vision [START_REF] Porambage | Survey on multi-access edge computing for internet of things realization[END_REF]. However, the current network and infrastructure based on cloud computing cannot fully satisfy the application's requirements. Recently, MEC (Multi-access Edge Computing) has emerged as an innovative architecture that offers a higher level of flexibility and provides a viable solution that can accelerate the development of ITS applications [START_REF] Datta | Vehicles as connected resources: Opportunities and challenges for the future[END_REF].

B. Multi-access Edge Computing (MEC)

Mobile Edge Computing was introduced by the European Telecommunications Standards Institute (ETSI) Industry Specification Group (ISG) as a means of extending intelligence to the edge of the network along with higher processing and storage capabilities [START_REF] Hu | Mobile edge computing-A key technology towards 5G[END_REF]. From 2017, the ETSI industry group renamed it to Multi-Access Edge Computing (MEC) since the benefits of MEC technology reached beyond mobile towards Wi-Fi and fixed access technologies. The principle of MEC consists of extending cloud computing capabilities to the edge of networks to minimize network congestion and improve resource optimization, user experience, and overall network performance.

C. Deployment of MEC systems

The primary motivation of Multi-access Edge Computing (MEC) is to bring the Cloud computing capability close to the network edges to mitigate cloud computing limits such as high latency and throughput bottleneck. Selecting MEC locations, especially Edge servers, remains the first step towards building up the MEC system and deploying vehicular applications.

However, the site selection for the deployment of Edge servers presents an important challenge. The server's placement strategy differs from the conventional base station site selection's problem. The optimal placement of Edge servers is related to the computational resource provisioning and constrained by the deployment budget [START_REF] Mach | Mobile edge computing: A survey on architecture and computation offloading[END_REF] and vehicles traffic on roads. The MEC providers should consider computational demands of task arrival and deployment costs such as site rentals to make the MEC servers placement strategy costeffective. In general, considering the system deployment budget, more MEC servers should be installed in regions with higher computation demands. Using existing telecom infrastructure, such as base stations, could reduce costs, but it would not solve all the problems. Indeed, due to the continuous increase in computation requirements for vehicles and various smart devices (IoT), application requirements cannot be guaranteed. Therefore, Edge servers must be deployed with a more distributed strategy and closer to the user.

III. RELATED WORK

Existing research works on the usage of edge servers, such as [START_REF] Zhang | An optimal roadside unit placement method for vanet localization[END_REF][15], focus on the placement challenge and load balancing, with little emphasis on meeting QoS requirements and on green issues such as energy consumption and deployment costs. The authors of [START_REF] Premsankar | Efficient placement of edge computing devices for vehicular applications in smart cities[END_REF] tackled the placement problem using a mixed-integer linear programming formulation that minimizes the deployment cost of Edge computing devices by jointly satisfying a target level of network coverage and computational demand. However, this work disregarded the latency requirements of vehicular applications. The work of [START_REF] Cao | Exploring placement of heterogeneous edge servers for response time minimization in mobile edge-cloud computing[END_REF] investigated the problem of deploying heterogeneous edge servers for response time minimization in mobile edge-cloud computing systems. Two stages are proposed: an offline stage using an Integer Linear Programming (ILP) technique to produce an optimal solution of edge server placement, and an online stage that deals with the mobility of users using a game theory-based scheme of base stations. Wang et al. [START_REF] Wang | Edge server placement in mobile edge computing[END_REF] investigated the Edge server placement problem in mobile Edge computing environments for smart cities. They formulated the problem as a multi-objective constraint optimization problem that places Edge servers in strategic locations to balance workload between Edge servers and minimize Edge server access delay. Even though this work did not particularly address the vehicular network, it is the most pertinent to the placement problem discussed in this paper. We consider it for comparison with our proposed solution.

Green edge solutions for vehicular environments focus on tasks and computational resources offloading [20][21]. The authors of [START_REF] Buda | Collaborative vehicular edge computing towards greener ITS[END_REF] proposed a collaborative edge computing scheme that enables vehicle-as-an-edge technology for task processing in the vehicular Internet of Things (IoT). Ning et al. [START_REF] Ning | Mobile edge computing-enabled Internet of vehicles: Toward energy-efficient scheduling[END_REF] presented an incentive-based optimal computation offloading scheme that maximizes the service provider's utilities while reducing smart device energy consumption and task execution time. However, none of these works considers the placement of edge servers as a vital parameter for green edge solutions for automotive networks.

Our study focuses on developing a global solution that considers both the placement strategy required to meet QoS requirements and the energy efficiency limitations associated with reducing the deployment cost.

IV. GREEN OPTIMAL EDGE SERVER PLACEMENT

Figure 1 depicts the proposed reference architecture for vehicular green edge computing. We consider connected vehicles equipped with ITS-G5, cellular communication interfaces, or both. These vehicles collect data from their surrounding environment. Frequently, advanced processing is often required by vehicle services' tasks. To meet the requirements of C-ITS applications, storage and computing capabilities are provided at the network edge close to the vehicles. The edge layer comprises edge servers that can run on renewable energy sources such as solar energy if the deployment area is equipped with appropriate materials. In such a scenario, vehicles offload their processing jobs to the edge servers via cellular connection (4G/5G) using the base station (BS) or via the ITS-G5 communication using roadside equipment (RSU). The edge servers are connected to the cloud and the road operator platform via the core network.

The following subsection describes our solution, namely Green Optimal Edge Server Placement (GOESP), which enables effective green edge server placement while meeting the requirements of automotive applications (latency and load balancing) and taking into account the green environmental elements of communication 

A. System model

The system is composed of a set J = {S1, S2, …, Sm} of potential locations for Edge servers and a set I = {R1, R2, …, Rn} of roadside units and/or BS. Some of the proposed sites include renewable green energy sources like solar power. Figure 2 illustrates an example of the vehicular edge computing system where one of the three edge servers (S2) is deployed at a location with a green energy source.

Assume that K Edge servers will be assigned to K different locations, where K is a constant (in Figure 2, K=3). To process the requests sent by the vehicles, we suppose that each Edge server has the same restricted computing resource (storage, processing, and memory). Each RSU/BS is linked to one Edge server to delegate vehicle requests. The objective is to install as few edge servers as possible to minimize energy consumption while serving all vehicle requests without surpassing the servers' capacity. Additionally, the model emphasizes the importance of choosing a location in an area with a green energy supply.

The notations utilized in our model are listed in Table 1. cj presents the cost of deploying an Edge server at location j. This cost combines the monetary and energy consumption cost; hence, a lower cost is attributed to a location with a green energy source. The tuple memory, storage, and processing express the Edge server capacity. Similarly, each RSU/BS has its requirements or demands described similarly. Such demand represents the aggregated tasks of vehicles received by this RSU/BS. Accordingly, we formulate an integer linear programming model that captures the model's features under consideration. We begin by defining the decision variables of the model:

1 , if server is deployed at location $ 0 , else (1) 
, 1 , if RSU i is linked to server $ 0 , else

* +, ∶ total cost (3) (2) 
The objective function is defined as:
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Beginning with the decision variables in (1) and (2), we describe each expression in our model. denotes a Boolean variable indicating whether a candidate position is selected for Edge server deployment. , represents a Boolean variable that shows which Edge server is connected to each RSU/BS. For instance, :,; = 1 indicates that RSU "5" is connected to the Edge server deployed in position "2". The objective function in (4) aims to minimize the deployment cost by reducing the number of Edge servers to be deployed where cj denotes the deployment cost of Edge server at location j from J.

Following that, we discuss the constraints. Equation ( 5) ensures that each roadside unit is connected to only one server among the deployed servers. Constraint [START_REF] Opendatabordeaux | [END_REF] guarantees that each RSU is connected to an Edge server without exceeding the maximum tolerated latency and is defined by distance. Constraints (7-9) ensure that memory, storage, and processing requirements are met. It guarantees that the total number of requests sent by roadside units and base stations to the Edge server does not exceed its capacity. Finally, constraints [START_REF] Porambage | Survey on multi-access edge computing for internet of things realization[END_REF][START_REF] Datta | Vehicles as connected resources: Opportunities and challenges for the future[END_REF] ensure that the decision variables satisfy the integrality requirements.

B. Use case Scenario

We consider the city of Bordeaux, France, as the target area for Edge servers' placement. A map of Bordeaux city, including information about roads and buildings, is obtained from OpenStreetMap [23]. The map bounds an area of 15.10 km². Figure 3 shows the concerned area. For simplicity but without loss of generality, we assume that 27 roadside units are installed at road intersections at a set spacing of around 800 meters apart. We adopted this strategy because of the lack of data on actual RSU deployment. The following stage consists of identifying potential Edge server sites. We chose those locations using a straightforward technique. Between every three or four RSUs, one site is specified as a possible location for an Edge server. The optimization model chooses the most strategic places for deploying Edge servers based on a set of 19 possible Edge server locations. The candidate locations shown in a green square in Figure 3 are equipped with a renewable energy source. We used the open dataset OpenDataBordeaux [START_REF] Opendatabordeaux | [END_REF] to generate a traffic trace similar to the real one of Bordeaux. Based on this data, we identified three classes of roads: high traffic roads, moderate traffic roads, and low traffic roads. The RSUs send vehicles' tasks to the edge servers according to generated traffic trace. Therefore, we distinguish three classes of RSU: RSU dealing with high demands, RSU with moderate demands, and RSU with low demands, as shown in Table 2. 

V. EVALUATION AND RESULTS

A. Methodology and simulation setup

Figure 4 provides a comprehensive overview of the methodology and simulation setup used to evaluate our green placement strategy. To obtain the optimal solution of our model, we use AIMMS (Advanced Interactive Multidimensional Modeling System [START_REF]Download AIMMS developer[END_REF]) with CPLEX12.10 solver. AIMMS is a perspective analytics platform that allows the modeling and development of optimization-based applications. The model requires the following inputs: the geographical coordinates of roadside units, the geographical coordinates of the Edge server's candidate locations, the latency threshold (represented by distance), Edge servers' capacity, and RSUs demands (in terms of processing, memory, and storage). According to the model, the latency, and servers' capacity constraints, each roadside unit is linked to one of the edge servers. As a result, the solver returns the number of Edge servers to deploy as well as the placements of the servers among the possible locations. Therefore, the total cost of deployment is calculated. The machine for this optimization task presents the following configuration: processor intel i7-10610U CPU @ 1.80GHz 2.30 GHz and RAM 16 GO.

Once the optimal placement of edge servers is obtained, we run Omnet++ [START_REF] Varga | Modeling and Tools for Network Simulation[END_REF] and the Artery framework [START_REF] Riebl | Artery: Large scale simulation environment for its applications[END_REF] to simulate vehicle traffic. We use SUMO [START_REF] Lopez | Microscopic traffic simulation using sumo[END_REF] to generate the traffic trace of the simulation. The simulations were conducted on a computer with 16 GO RAM and the Intel i7-9700 CPU @ 3.00GHz x8 processor. Table 3 summarizes the parameters used to find the optimal solution using AIMMS and run simulations. We use two values to represent the cost edge server deployment. It is equal to one (unit) if the candidate location has a green energy source and equal to two (unit) otherwise. We suppose that all Edge servers have the same capacity, and the demands of the RSUs depend on the category to which the RSU belongs. 

B. Results and performance evaluation

The optimal solution calculated with the solver CPLEX indicates that four (K=4) Edge servers should be deployed in the concerned area of Bordeaux. The chosen locations are location 3, location 4, location 13, and location 19, as shown in Figure 5. The placement results show that our approach favors the green communication strategy as three (3) among the four (4) locations are powered by renewable green energy. Thus, the total deployment cost is 5.

To better evaluate our solution, we implemented other placement strategies such as Random, Top-K, and K-means as baseline comparisons because they are the most used strategies in such problems. Furthermore, we also implemented Wang et al. approach [START_REF] Wang | Edge server placement in mobile edge computing[END_REF], which is the most relevant state-of-the-art placement strategy compared to our work. The different strategies are described below:

• Random: this method randomly assigns the K Edge servers to candidate locations. We evaluated two different approaches to this problem, based on how the roadside units are connected to the Edge servers. The first is Random-Random, in which RSUs are randomly assigned to servers. The second is Random-Nearest, in which each RSU is connected to the Edge server located closest to it.

• Top-K: The K RSUs with the highest traffic demands are picked. Each RSU is connected to the Edge server located closest to it. Then, the Edge servers are deployed in the places that are closest to each RSU (K locations).

• K-means clustering: This technique is frequently used to automatically cluster a dataset into K groups. We discover K clusters of roadside units and then put K Edge servers in their centers using the K-means clustering technique.

• Wang et al.'s approach [START_REF] Wang | Edge server placement in mobile edge computing[END_REF]: considers the deployment of edge servers in smart cities to balance the workload between Edge servers and minimize the Edge server access delay. They adopted mixed integer programming to find the optimal solution.

Table 4 below summarizes the placement results for the different strategies. We fixed the number of deployed edge servers to K=4 for comparative purposes for the Random, Top-K, and K-means techniques. As a result, our solution has a lower deployment cost than Top-K and K-means. The Wang et al. approach has the lowest deployment cost by deploying just two servers. However, this solution does not ensure the system's performance, and demands may exceed the servers' capacity at peak periods. The link between each roadside unit and the Edge server is shown in Table 5, and the latency between the entities is stated in terms of distance. For instance, Server 1, located at position 3, is used to connect R5 at a distance of 1101 meters, R6 at a distance of 1204 meters, and so on. Additionally, we show the Edge servers' workload, which is the aggregate of the demands of the roadside units connected to this server; it is 120 units for server 1. The obtained results adhere to the server's latency and capacity limits. All RSUs (R1 to R27) are linked to one of the Edge servers without exceeding the model's maximum latency (measured in distance) of 1500m. For example, regarding the capacity constraint, the sum of RSUs linked to server 1 is 120 units, which is less than server 1's capacity (150 units). Our method satisfies the server's capacity constraint while also ensuring optimal load balancing among edge servers. 

Edge server

Roadside ID (distance to the edge server)

Server 1 (at location 3) R5 (1101m), R6 (1204m), R7 (582m), R8 (1058m), R11(1117m), R12(1236m) Server 2 (at location 4) R1 (893m), R2(191m), R3 (1030m), R4(1005m), R9(911m), R10(1303m) Server 3 (at location 13) R13 (1337m), R14 (852m), R15 (516m), R16 (1175m), R17 (530m), R18 (721m), R19(496m), R20 (877m) Server 4 (at location 19) R21 (1338m), R22 (534m), R23 (373m), R24 (242m), R25 (1056m), R26 (740m), R27 (793m) Figure 5 summarizes and indicates the chosen locations for deployment of Edge servers for each placement strategy. The Random-Random and Random-Nearest approaches are also not presented here as their results are random. Figure 6 highlights the load balancing results achieved using the different placement strategies by displaying the percentage of tasks handled by each server. Our approach GOESP provides an extremely high level of load balancing where servers process nearly the same number of tasks (maximum difference of 5%). The GOESP approach enhances the fairness among the Edge servers. The other strategies do not ensure good load balancing. For example, server 2 handles 36% of tasks (160 units) in Top-K, surpassing 150 units. We examined the critical nature of load balancing in situations where servers have limited processing capacity. To do this, we fixed the queue size on each server to 150 tasks, and when a server's queue is full, the next arriving task is dropped and must be retransmitted later. The retransmission of tasks from the vehicle to the server consumes additional energy and degrade the latency. To this purpose, minimizing the number of dropped tasks is critical for decreasing and conserving energy consumption on cars and edge servers. The percentage of dropped tasks for each approach is depicted in Figure 7 . The results indicate that our approach can deliver the best performance with the lowest dropped tasks rate. As a result, our method is more energy-efficient than the other placement strategies. Figure 8 shows the additional energy consumption caused by the retransmission of the dropped tasks. Specifically, our method consumes 48% less energy than Random-Random and 69% less energy than Random-Nearest. The Top-K strategy eliminates 5,67% of tasks, resulting in a 95,5% increase in energy consumption when compared to our solution. The Kmeans and Wang et al. approaches consume significantly more energy and increase by up to 394% compared to our solution. Finally, we examine the effect of our solution on the average latency of messages received by the servers. Figure 9 depicts the latency curves generated using the simulation tool within the Artery framework for the approaches mentioned above. Our approach GOESP achieves a latency that varies between 1,51ms in low density and 1,61ms in high density. The other approaches offer a latency in approximately the same interval. When we examine the findings more closely, we see that GOESP outperforms Wang et al. [START_REF] Wang | Edge server placement in mobile edge computing[END_REF] Additionally, our solution presents a higher latency of 0,01ms (maximum) than the Top-K and K-means approaches. This increase could be explained by the fact that those approaches use the nearest server criteria, i.e., each RSU is connected to the nearest server; however, they do not consider other constraints like the server capacity and the workload balancing. For example, in the Top-K approach, server 2, with a capacity of 150 units, cannot handle all the roadside units' tasks (160 units of total demands). Therefore, this minor latency increase is acceptable for our solution to ensure that the server's capacity is not exceeded. On the other hand, the proposed model ensures that the latency threshold ( ) constraint is always respected.

VI. CONCLUSION

Edge computing remains a new emerging technology that can boost the performance of various applications and help reduce power consumption by shifting the processing workload from the cloud to the edge. The energy-efficient Edge server placement problem has received little attention to the best of our knowledge. This paper investigated this topic in urban vehicle networks to optimize deployment costs, energy consumption, and balance workload between Edge servers while minimizing latency. We formulated the Edge server placement problem as an integer linear programming model. We used a methodology based on real-world Bordeaux traffic statistics to give a realistic Edge server placement. Our model considers Edge servers' capacities to balance servers' workloads efficiently. Using the AIMMS analytics platform, we proposed an effective placement solution. The obtained results indicate that our solution outperforms existing solutions in terms of energy efficiency. Workload balancing between servers prevents excessive energy consumption. Thus, our proposed placement technique balances deployment cost, energy consumption, workload balancing, and latency. As future work, we intend to investigate the service migration between Edge servers to ensure service continuity, decrease application delay, and further optimize energy consumption.
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 2 RSU CLASSIFICATION

	Category	RSU
	High demand	R9, R10, R12, R23
	Moderate demand	R3, R4, R5, R6, R7, R11, R15, R16, R17, R22
	Low demand	R1, R2, R8, R13, R14, R18, R19, R20, R21, R24,
		R25, R26, R27

TABLE 3 .

 3 MODEL AND SIMULATION PARAMETERS

	AIMMS parameters	
		Location with	1 unit
		a green energy	
	Edge server deployment cost at	source	
	location i	Location	2 unit
		without a green	
		energy source	
		High Demand	30 unit
	(processing/Memory/Storage) RSU demands	Demand	20 unit
		Low Demand	10 unit
	Edge server capacity (Processing/Memory/Storage)	150 unit	
	Latency threshold (in distance)	1500 m	
	Omnet/Artery parameters	
	RSU transmission power	47,9 mW	
	RSU antenna high	5m	
	Vehicle transmission	200 mW	
	power		
	Frequency band	5.9 GHz	
	Propagation model	ConstantSpeedPropagation (speed
		of light)	
	Pathloss model	GEMv2 [28]
	Obstacle loss model	DielectricObstacleLoss
	Background noise Model	IsotropicScalarBackgroundNoise
		(-110 dBm)	
	Message size (payload)	1000 Bytes	
	Message frequency	1 Hz	
	Vehicles max density	729 Vehicles

TABLE 4 .

 4 EDGE SERVERS' PLACEMENT RESULTS

	Placement strategy	Edge servers' locations	Deployment
			cost
	GOESP	Loc 3, Loc 4, Loc 13, Loc 19	5
	Top-K	Loc 7, Loc 8, Loc 10, Loc 17	7
	K-means	Loc 6, Loc 8, Loc 13, Loc 17	7
	Wang et al. [18]	Loc 3, Loc 10	3

TABLE 5 .

 5 EDGE SERVERS' PLACEMENT AND RSU CONNECTIONS RESULTS