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DEVIATIONS FOR GENERALIZED TILING BILLIARDS IN CYCLIC

POLYGONS

MAGALI JAY

Abstract. This work continues the study of tiling billiards, a class of dynamical system
introduced by Davis et al. in 2018. We develop the study of generalized tiling billiards
in a cyclic polygon. This work shows that the behavior of generalized tiling billiards in
cyclic N -gons with N ⩾ 5 is considerably different from that of triangular and quadrilateral
tiling billiards studied before. Indeed, we exhibit an open set of generalized tiling billiard
trajectories deviating sublinearly from their asymptotic direction, whereas for N = 3 or 4
almost every trajectory stays at a bounded distance from a line. Moreover, we establish the
rate of deviations both in the generic case and in some non generic cases.

1. Introduction

1.1. A quick bibliographical orverview of tiling billiards. Davis, DiPietro, Rustad and
St-Laurent [DDRS18] defined and studied a class of dynamical systems that they called tiling
billiards. In a tiling billiard, the trajectory is refracted across the boundary of a plane tiling
(the angle of incidence and the angle of refraction are opposite), see Figure 2. Nogueira
had already suggested to study such billiards at the end of [Nog89], in relation with interval
exchange transformations with flips (IETFs).

Figure 1. Trajectories of regular tiling billiards

Figure 2. Example of two trajectories of a polygonal tiling billiard
Only a part of the tiling is drawn, hence only a part of each trajectory.
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2 MAGALI JAY

For a fixed tiling of the plane, we are interested in the following questions. What sort of
trajectories exist? Periodic, unbounded, dense in open sets of the plane? Are they stable
under perturbations of initial conditions of the trajectory (starting point and direction) or of
the form of the tiling?

There exist examples of tiling billiards with periodic, drift-periodic or linearly escaping
trajectories. We call drift-periodic a trajectory with a translation symmetry. We say that a
trajectory is linearly escaping if it is not drift-periodic and the main part of the asymptotic
expansion of its coodinates (by arclength parametrization) is linear and the remaining term
is bounded by a constant.Another behavior is known: in the trihexagonal tiling billiard, the
generic trajectories are dense in open sets of the plane [DH18].

Triangle and cyclic quadrilateral tilings. Let us consider a triangle tiling where each tile is a
centrally symmetric copy of each of its neighboring tiles. The qualitative behavior of triangle
tiling billiards has been fully classified in [Par19], building upon [BDFI24] and [HP22]. We
say that a trajectory is stable is a small perturbation of it leads to another trajectory that
crosses the same sides (in the same order).

Theorem 1.1 ([BDFI24], [Par19], [HP22]). Let δ be a triangle. Let γ be a trajectory in the
δ-tiling billiard. Then exactly one of the following four cases holds:

(1) The trajectory γ is periodic and stable under pertubation of the tiling or of the initial
conditions.

(2) The trajectory γ is drift-periodic and the angles of δ are rationnaly dependant.
(3) The trajectory γ is linearly escaping.
(4) The trajectory γ is not bounded, has no asymptotic direction and passes through cir-

cumcenter of triangles. Moreover δ belongs to the Rauzy gasket, which has a zero
Lebesgue measure.

See Figure 3 for an illustration of the first three cases. The exceptional case of unbounded
trajectories with no asymptotic direction is linked to minimal IETFs. Hubert and Paris-
Romaskevich with Dynnikov, Mercat and Skripchenko [DHMPS] obtained the analogous result
for classication of trajectories on cyclic quadrilateral tilings, and related the dynamics of such
billiards to the Novikov’s problem of the study of foliations on subsurfaces of genus 3 of the
3-torus given by 1-forms, see also [Par21].

For triangle and cyclic quadrilateral tiling, the dynamical systems have an integral of mo-
tion: the oriented distance of a trajectory to the circumcenters of the crossed polygons is
preserved. Baird-Smith, Davis, Fromm, Iyer explain this for triangles in [BDFI24] (Lemma
3.2), with a beautiful argument of folding. It was then generalized in [Par19]. This allows us
to study such tiling billiards via IETFs. See Section 2.2 for another explanation of the link
between tiling billiards and IETFs.

The behaviors of trajectories in tiling billiards tend to differ from the ones in classical
inner billiards, as dynamics of IETFs differs from those of interval exchange transformations
without flips (IETs). No general study of tiling billiards exists yet. In this article, we will
handle open sets of parameters in generalized tiling billiards, made with any cyclic N -gons
with N ⩾ 5, although they will not tile the plane. The results are true for polygons with
more than five sides but the reader can think of pentagons in a first reading. All polygons
will be drawn as pentagons.
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(a) Some periodic trajectories and two
(stable) pertubations

The green and grey tiling is a perturbation
of the green and orange one.

(b) A part of a drift-periodic trajectory and two of its
(stable) perturbations

The light and deep blue tiling is a perturbation of the green
and orange one.

(c) A part of a linearly escaping trajectory

Figure 3. Examples of trajectories in triangle tiling billiards

1.2. The studied system.

The generalized tiling. We first define how we build the generalized tiling with the N -gons
(N ⩾ 5). Each one of its tiles is congruent to a fixed cyclic polygon. Moreover if T and T ′
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are two neighboring tiles then T ′ is the image of T via a central symmetry with respect to the
middle of their shared side. This does not define a proper tiling: polygons will either overlap
each other or not fill the entire plane. Indeed when turning around a vertex, all the angles of
the N -gon appear and sum up to (N − 2)π, which is not a divisor of 2π, see Figure 4. But we
can still define a billiard trajectory in the plane, generalizing tiling billiards for any polygon.

(a) Polygons either overlap... (b) ... or leave empty space

Figure 4. The way we put polygons together to play tiling billiards will not
tile the plane with N -gons, N ⩾ 5.

Fix a N -gon on the plane, a point inside it and a direction (see Figure 5a). Follow the
direction until reaching a side. Then draw a second centrally symmetric polygon, so that
the two polygons share the crossed side (see Figure 5b). The trajectory is refracted through
the side and continues in a straight line in the second polygon (see Figure 5c). Each time
the trajectory reaches a side, we draw the following polygon via central symmetry. The new
polygon may overlap a previous one. The trajectory takes into account only the last drawn
polygon (see Figure 5e and 5f). A trajectory that hits a corner stops.

Assumptions. Let P be a cyclic polygon. We will denote by a1, ...,aN the sides of P , clock-
wise labelled and aN being its longest side. We denote by a1, ..., aN the lengths of the arcs
subtended by each side (see Figure 6a). Conversely, if a1, . . . , aN > 0, with aN being maxi-
mal, we denote by P (a1, . . . , aN ) the cyclic polygon whose arcs subtended by its sides have
lengths a1, . . . , aN . We will restrict ourselves to the study of billiards satisfying the following
conditions:

(C)

{
P is inscribed in a circle (C0)
a1 + ..+ aN−1 < τ < aN (C1)

Condition (C0) ensures that a certain parameter τ (see Figure 6b and Definition 2.3) is
preserved all along the trajectory and hence allows us to use IETFs to study the system
(see Sections 2.2 and 2.3), as in [BDFI24], [HP22], [Par19], [Par21] and [DHMPS]. This is a
crucial fact for the now existing methods of study — we know nothing for tiling billiards made
with non cyclic polygons. Condition (C1) means both that P is inscribed in a half-circle and
that the trajectory is close to the circumcenter. It is crucial for the following since it allows
to reduce the system to a standard IET without flips with N intervals of continuity, which
permits to use ergodic theory tools (see paragraphs 2.2 and 2.3).

1.3. Results. Let us identify the real plane with C. Let pn ∈ C be the point of the trajectory
on the n-th side crossing.
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(a) First step (b) Position of the second pentagon

(c) Second step (d) Third step

(e) Fourth step with overlap (f) Fifth step with overlap

(g) A part of a generalized pentagon tiling billiard trajectory satisfying condition (C)

Figure 5. Examples of trajectories in a generalized pentagonal tiling billiard

a1

a2

a4...

aN

(a) Sides

P

τ

(b) Parameter τ of the trajectory

Figure 6. Notations for cyclic polygons

Lemma 1.2. For every a1, . . . , aN−1, almost every aN >
∑N−1

i=1 ai, and every τ ∈
(∑N−1

i=1 ai, aN

)
,

the cyclic N -gon P (a1, . . . , aN ) defines a generalized tiling billiard whose trajectories having
parameter τ all admit a mean displacement m = lim

n→∞
pn
n that does not vanish.
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Theorem A. Let L be a line in the asymptotic direction (almost always defined) of the
trajectory. For almost every tiling billiard satisfying the conditions (C), the trajectory does
not stay at a bounded distance from L.

We quantify the order of magnitude of deviations from the asymptotic direction with the
following two theorems. They are linked to the behavior of the Teichmüller flow on the moduli
space of translation surfaces.

Theorem B. Let N ∈ N, N ⩾ 5. There exist θ1 > θ2 > θ3 > 0 such that for almost every
N -gon P and every τ , both satisfying condition (C), for any initial direction having parameter
τ in a P-tiling billiard, the sequence of points (pn)n∈N satisfies:

lim sup
n→∞

log |pn − nm|
log n

=

{
θ2
θ1

> 0 if N is odd
θ2
θ1

or θ3
θ1

> 0 if N is even
,

where m = lim
n→∞

pn
n .

Remark 1.3. The numbers θ1, θ2 and θ3 depend only on the number of sides of the polygon!
The numbers 1 + θi

θ1
(1 ⩽ i ⩽ 3) are the first three Lyapounov exponents of Teichmüller flow

in the hyperelliptic component of the stratum H(N − 3) if N is odd, and H(N2 − 2, N2 − 2) if
N is even.

When N = 5, a result of Eskin, Kontsevich and Zorich [EKZ11] states that θ2
θ1

= 1
3 . Forni

[For02] proves that θ1, θ2 and θ3 are distinct.

We prove these results via IETs and their generic properties. The Rauzy induction R (see
paragraph 3.1) is a powerful tool to study orbits of an IET. If T is an IET on I, R(T ) is the
first return map of T on a well chosen subinterval J ⊂ I, which gives once again an IET with
the same number of intervals of continuity. To track the orbit of T through Rauzy induction,
we need to know both the sequence of combinatorial data of the induced IETs (Rn(T ))n∈N
and the lengths of their intervals of continuity. This information can be encoded in an infinite
path in a finite graph, called the Rauzy diagram. The lengths of intervals of continuity of
Rn(T ) linearly depend on those of T . A corresponding matrix cocycle (see paragraph 3.1) is
important for the study of our dynamical system. The Rauzy induction for IETs corresponds
to the Teichmüller flow for their suspensions (that are translation surfaces). See [Via06],
[MMY05],[Yoc10].

When the path in the Rauzy diagram corresponding to some IET is a loop, which is the
same as to say that the orbit of the IET through the Rauzy induction is periodic, we say that
this IET is self-similar. The matrix associated to this loop allows us to study the symbolic
coding of a point by the IET T . When the loop is complex enough, the matrix is primitive.
This case is obviously not generic but important. Indeed it corresponds to the case when the
vertical flow on a suspension of the IET is a pseudo-Anosov map. In this case, one can give
a more precise estimate of the deviations.

Theorem C. Let N ∈ N, N ⩾ 5 and a = (a1, a2, ..., aN−1) be the (normalized) Perron
eigenvector (with eigenvalue λ1) of a primitive matrix M ∈ MN−1(R) that corresponds to a
loop in the Rauzy diagram. Assume that the second eigenvalue λ2 of M is such that |λ2| > 1

and that no other eigenvalue has the same modulus as λ2. For almost every aN >
∑N−1

i=1 ai,

there exist C1 and C2 and an infinite set S ⊂ N such that for every τ ∈ (
∑N−1

i=1 ai, aN ) and any
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trajectory having parameter τ in a P (a1, ..., aN )-tiling billiard, the sequence of points (pn)n∈N
satisfies:  ∀n ∈ N |pn − nm| < C1n

log λ2
log λ1

∀n ∈ S |pn − nm| > C2n
log λ2
log λ1

.

Figure 7 illustrates this phenomenon of deviation and the growth rate. This theorem
quantifies the second term of the asymptotic expansion of some Birkhoff’s sums for a fixed
point. Another related problem is to study the uniform speed of convergence of the same
Birkhoff’s sums, i.e. to study the discrepancy. This was done by Adamczewski in [Ada04].

Figure 7. The modulus of the deviations, depending on the number of steps
of the trajectory, has a sublinear growth

Deviations, depicted in blue, are always smaller than a (strictly) sublinear function, depicted in green, with a
growth rate ρ, and infinitely often greater than another function, also in green, with the same growth rate ρ.

To summarize, this article shows that for almost every generalized tiling billiard satisfying
condition (C):

(1) like for triangle or cyclic quadrilateral tiling billiards, the trajectory has an asymptotic
direction (Lemma 1.2),

(2) unlike in triangles and cyclic quadrilaterals case, it deviates sublinearly from it (The-
orems A, B and C).

1.4. Outline of the proof. The proofs of our theorems are organised as follows:

(1) Define the IET that corresponds to our generalized tiling billiard.
(2) Define a piecewise constant function f (that depends on P ) and approximates the

trajectory. We show that f has almost always a non zero mean, which means that the
trajectory of the studied tiling billiard has an asymptotic direction.

(3) Study the function h = Im( 1
mf − 1) linked to the deviations from the asymptotic

direction. We show that for almost every aN , h is not contained in a codimension 3
subspace (resp. 2 if N is odd).

(4) Zorich’s results on deviations for IETs give the rate given in Theorem B

IETs are generically uniquely ergodic [Mas82] [Vee82]. Hence we know that the orbit of a
point equidistributes in the different intervals of continuity. Zorich establishes [Zor99] how
much an orbit can deviate from this equidistribution. We can think of such results as central
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limit theorems. To prove this, Zorich studies Teichmüller flow of suspension surfaces (that are
translation surfaces) of IETs and how it behaves with respect to Oseledets’ flag decomposition.

The main contribution of this article is to prove that one can apply Zorich’s results to the
case of tiling billiards we study. This is not a straightforward verification. We have to show
where some specific vector lies in the flag given by the Oseledets’ theorem (see Section 3.2).
The difficult point is that we know the expression of the vector but, in general, not of the
subspaces of the flag. We can think of them as random subspaces. We can still conclude for
almost every parameters because the vector has one more degree of freedom than the flag.
Moreover it depends analytically on this parameter independent of the flag. This corresponds
to step (3) in the following decomposition of the proof:

The most technical parts of the proofs of Theorems B are done first for pentagons and then
generalized. We prove Theorem C by direct computation.

1.5. Outline of the paper. We explain step (1) in Section 2. Then we recall briefly some
background in Section 3. We introduce functions f and g in Section 4. Section 5 studies the
function g and show the properties that allow us to apply Zorich’s results. Section 6 handles
with the direct computations of deviations in case of a self-similar IET, using techniques of
symbolic coding, Rauzy induction and Rokhlin towers, in order to prove Theorem C.

Acknowledgements
I thank my PhD advisors Pascal Hubert and Olga Paris-Romaskevich for having introduced

this subject to me.

2. The studied system

2.1. Definition of a generalized tiling billiard.

Definition 2.1 (Generalized tiling billiard). Let P be a polygon and v a vertex of P . We call
a generalized tiling billiard trajectory the triplet (T, (Pi)i∈N, (vi)i∈N) where T is a piecewise
linear curve in the real plane such that for every integer i:

• (Pi, vi) is an isometric copy of (P, v) in the plane,
• T crosses Pi in a segment,
• Pi and Pi+1 share a side, crossed by T,
• Pi+1 is the image of Pi through a central symmetry,
• the common side of Pi and Pi+1 is the bissector of the angle made by T ∩ Pi and
T ∩ Pi+1.

This defines a P -generalized tiling billiard as a dynamical system. See Figure 8 for an
illustration.

Remark 2.2. When we think of a generalized tiling billiard trajectory, we mostly think of T
although defining it as a triplet with crossed polygons and vertices vi is much more convenient
for the study of the trajectory. The definition requires no property of P although we will
restrict in the following to the case where P is cyclic. We denote by Ci the circumcircle of Pi.

2.2. A system of coordinates. Here we describe a convenient frame of reference to study
a tiling billiard trajectory. It is the one of an ant that would follow this trajectory. At each
step, the ant can see the polygon it is crossing and its circumcircle. We need the following
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v0

P0

v2

P2 v3

P3

v1

P1

T

Figure 8. Notations for generalized tiling billiards

data to determine the position of Pi with respect to the ant (in other words, the position of
the ant in P ):

(1) On which chord of the circumcircle Ci of Pi the ant is travelling,
(2) Where vi is on Ci (this determines how Pi is placed in Ci).
Lemma 3.2 in [BDFI24] applies also for generalized tiling billiards made with any cyclic

polygon and shows that the chord of Ci on which the ant is travelling is preserved (See Section
2.3). The data (1) is hence a parameter of the trajectory. For example if the ant is travelling
on a diameter of Ci, then it will also travel on a diameter of any Cj . Therefore we will need
only the position of vi on Ci to determine the position of P with respect to the ant.

Definition 2.3. We say that the trajectory has parameter τ if the arc between the two end-
points of the chord supporting a step of the trajectory T has length τ (see Figure 6b).

Let (T, (Pi)i∈N, (vi)i∈N) be a tiling billiard. We normalize the situation to a1 + . . .+ aN−1 = 1.

We identify the circumcircle Ci of Pi with the interval [0,
∑N

k=1 ak) = [0, 1+aN ) by identifying
0 to the point oi ∈ Ci where the line containing Ti = T ∩ Pi would meet Ci if going on in
straight line after the side crossing. Then we locate the vertex vi of Pi in the frame of Ci. Let
xi ∈ [0, 1 + aN ) be the point with which vi is identified. See Figure 9 for an illustration of
notations.

2.3. The obtained Interval Exchange Transformation. We can prove the following by
direct computation (see Figure 11) or with an argument of folding, which was the proof of
[BDFI24] for triangles. It also applies for generalized tiling billiards made with any cyclic
polygon, see Lemma 1 of [Par19].

Theorem 2.4 (Theorem 3.3 of [BDFI24]). There is an IETF Φ such that xi+1 = Φ(xi) for
every i (see Figure 10a).

If we add the hypothesis (C1), the IETF Φ of Theorem 2.4 has permutation

π(Φ) =

(
I1 I2 ... IN−1 I+N I−N
I+N I1 I2 ... IN−1 I−N

)
where we overlined flipped intervals (here, the IET flipps every interval). The intervals of
continuity of the IET have lengths

λ(Φ) =
(
a1 a2 ... aN−1 aN − τ τ

)
.
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v0

P0

C0

o0

v2

P2

C2

o2

v3

P3

C3

o3

C1

v1

P1 o1

T

(a) Notations

v0

P0

C0

o0

x0

(b) First crossed polygon

C1

v1

P1

o1

x1

(c) Second crossed polygon

Figure 9. Moving frame of reference

Remark 2.5. Here we consider Φ as an IET on an interval, it has N + 1 intervals of
continuity. If we define it on a circle it has only N intervals of continuity.

The choice of v ensures that the trajectory crosses the side ak if and only if x ∈ Ik.

The condition (C1) implies that the trajectory crosses the longest side every other cross-
ing.It is hence enough to study the squared map Φ2, which is an IET without flip, see Figure
10. We consider T = Φ2

|I the square of Φ, restricted on I = I1 ∪ ... ∪ IN−1. Recall that we

have normalized the situation so that a1 + ... + aN−1 = 1 so T is defined on (0, 1). It is an
IET (without flip) with permutation

π(T ) =

(
I1 I2 ... IN−1

IN−1 ... I2 I1

)
and lengths

λ(T ) =
(
a1 a2 ... aN−1

)
.

We give here a straightforward way to compute the coordinate xi+1 depending on xi, and
on the parameters a1, . . . , aN and τ . Because of the refraction law, the lengths α and β on
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Φ
x0 Φ(x0)Φ2(x0)

τ

(a) The IETF Φ

Φ2
x0 Φ2(x0)

τ

(b) The IET Φ2 without flip

Orbits of points inside grey parts do not correspond to a trajectory of a tiling billiard.

Figure 10. Example of the IETs Φ and Φ2, corresponding to a tiling billiard.

xi

τ

xi+1

0

0τ

αβ

γ

a2

a1

a3

a2

a1

Figure 11. Coordinates xi and xi+1 are related via a linear equation

the Figure 11 are equal. Since α = xi−
∑j−1

k=1 ak, one gets that γ = τ −β = τ −xi+
∑j

k=1 ak.
We conclude the expression of xi+1 depending on xi, a1, . . . , aN and τ :

xi+1 = γ +

j∑
k=1

ak

= τ − (xi − aj)

which corresponds to the expression of a fully flipped IET.

3. Background

3.1. Rauzy induction, Rokhlin towers, and the associated cocycle. The Rauzy in-
duction R(T ) of an IET T defined on I is the first return map of T to a well chosen subinterval
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J ⊂ I. It can be convenient to consider the renormalized Rauzy induction R that consists
to remormalise J to the size of I. For more details, see [Via06]. Zorich [Zor96] showed that
one can speed up the Rauzy induction so that the induction is ergodic with respect to an
absolutely continuous invariant probability measure µZ . The Rauzy induction acts also on
the underlying permutation of the IET. We call the Rauzy class of the permutation σ
the permutations in the orbit of σ by the Rauzy induction.

When we cut off I ′ = I \J from I, we can think of it being stacked over its preimage by T .
The choice of J ensures that the subinterval on which I ′ is being stacked corresponds exactly
to an interval of continuity of R(T ). We can do that at each iteration of Rauzy induction. We

obtain a stack of subintervals of I, that we call a Rokhlin tower. Let J (k) be the subinterval
on which Rk(T ) is defined and x ∈ J (k). The subintervals stacked over x allow to keep track

of the orbit of x under T . Their number corresponds to the time of first return of x to J (k).
See Figure 12. We call towers of order l the ones obtained when applying l times the
induction1.

We denote by A
(l)
i,j the number of subintervals stacked over the interval of continuity I

(l)
j of

Rl(T ) that were initially in the interval of continuity Ii of T . It corresponds to the number of

times that the orbit of x ∈ I
(l)
j lies in the old interval Ii before first return to I

(l)
j . This number

does not depend on x ∈ I
(l)
j thanks to the choice of subintervals on which we induce. We

denote AT =
(
A

(1)
i,j

)
1⩽i,j⩽d

the matrix whose entries are these numbers. It is a transvection.

This defines a cocycle T ∈ IET(I) 7→ AT ∈ SLd(R).
Analogously we denote by B the cocycle associated to Zorich induction. We underline the

fact that the time related to cocyle B is not the same as the one related to cycle A, there is
a speeding up factor. Moreover there is an exponential factor between the time of cocyle B
and the time of the iteration of T , see Lemma 4 in [Zor99].

3.2. Oseledets’ theorem. We recall Oseledets’ theorem on which rely Zorich’s results that
we will need later in this article.

Theorem 3.1 (Oseledets). Let X be a topological space, φ : X −→ X be a measurable func-

tion, and µ be an ergodic φ-invariant probability mesure on X. Let A :

{
X −→ Md(R)
x 7→ Ax

}
be a cocycle. Assume that the cocycle is log-integrable:

∫
X log |||Ax|||dµ < ∞.

There exist θ1 > θ2 > ... > θd, called Lyapunov exponents, such that for almost every

x ∈ X, there exists a flag Rd = H(x)
k ⊃ H(x)

k−1 ⊃ ... ⊃ H(x)
1 such that:

AxH(x)
j = H(φ(x))

j

and

∀v ∈ Hj \ Hj−1,
1

n
log ||A(n)

x v|| −→
n→∞

θj

where A
(n)
x = Aφn−1(x)...Aφ(x)Ax.

1Note that this notion depends on the induction we apply, Rauzy or Zorich one.
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A B C D

BC AD

T

The colored subinterval will be cut in the following step of Rauzy induction (and
stacked over the interval to form a Rokhling tower).

(a) Before induction

A B C D

BCAD

R(T )

(b) First order

A B C D

BCAD

R(T )

(c) Renormalized first order

A B C D

B CAD

R2(T )

(d) Second order

A B C D

B CAD

R2(T )

(e) Renormalized second order

A B C D

B CAD

R3(T )

(f) Third order

A B C D

B CAD

R3(T )

(g) Renormalized third order

A B C D

B CAD

R4(T )

(h) Fourth order

A B C D

B CAD

R4(T )

(i) Renormalized fourth order

A B C D

BC AD

R5(T )

(j) Fifth order

A B C D

BC AD

R5(T )

(k) Renormalized fifth order

Figure 12. Rokhlin towers of orders 1 to 5 for the Rauzy induction of an IET

In our context we apply Oseledets’ theorem in the set

X =
⊔

σ∈[π(T )]

∆N−1 × {σ}

of all IETs whose underlying permutation is in the Rauzy class [π(T )] of

π(T ) =

(
I1 I2 ... IN−1

IN−1 ... I2 I1

)
.
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The spaceX is equipped with µZ , which is an ergodicR-invariant probability measure [Zor96].
The cocycle B introduced in last section is invertible, B and B−1 are log-integrable. We
consider here B−1. This is used in [Zor99] to prove Proposition 5.1.

In this article we call Oseledets generic both an IET for which the flag decomposition
exists and the corresponding uplet of its lengths (a1, . . . , aN−1).

3.3. Decomposition of the symbolic coding. At each step of renormalized Rauzy induc-
tion, there is an associated substitution. For example, the substitutions associated to the
example of Figure 12 are:

σ1 :


a
b
c
d

7→

ad
b
c
d

, σ2 :


a
b
c
d

7→

a
bd
c
d

, σ3 = σ4 :


a
b
c
d

7→

a
b
c
cd

, σ5 :


a
b
c
d

7→

a
b
cd
d

.

The composition of the substitutions gives the substitution associated to R5:

σ = σ5 ◦ σ4 ◦ σ3 ◦ σ2 ◦ σ1 :


a
b
c
d

7→

ad
bd
cccd
ccd

.

Its associated matrix is

Mσ =


1 0 0 0
0 1 0 0
0 0 3 2
1 1 1 1

 .

See [Del16] for more details about the substitution associated to the Rauzy induction. We
mention also that Definition 8 of [AI01] proposes a more general framework. For more details
about the matrix of a substitution we refer to [Que10].

Proposition 3.2. Let T be a self-similar IET on an interval I. Let q be the minimal integer
such that Rq(T ) = T . Let σ be the substitution associated to Rq applied to T . We define
K = max

a∈A
|σ(a)|. Let x ∈ I. Let x = x0x1x2... be the symbolic coding of x under T . Let n ∈ N.

We can decompose the prefix of x of length n as

xn = s0σ(s1)...σ
l−1(sl−1)σ

l(ml)σ
l−1(pl−1)...σ(p1)p0

where each word si or pi is of length at most K − 1 and the length of ml is between 1 and
2K − 2.

Remark 3.3. In this decomposition, l is as big as possible, the words si (resp. pi) are suffixes
(resp. prefixes) of words of σ(A).

For a proof of this proposition, see Lemma 5.5 in [Que10].

In terms of Rokhlin towers, this means that we consider towers of order l (apply the
substitution once corresponds to apply the Rauzy induction once, and consider one order
further on the Rokhlin tower). If the point x (whose symbolic coding begins with xn) belongs
to the interval on which we induce, then all si are empty words. The orbit of x under T can
be read on the Rokhlin tower, starting at the bottom of one tower. If not, it starts in the
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middle of some tower, goes up until the top of this tower and then returns at the bottom of
another (or maybe the same) tower (of order l). The length of the word ml corresponds to the
number of towers (with multiplicity) totally wandered by the first n steps of the orbit of x. If
the orbit stops in the top of a tower, all pi are empty words. Otherwise, the orbit continues
to wander a part of a tower of rank l, and this part is the concatenation of |pl−1| towers of
rank l − 1, |pl−2| towers of rank l − 2, ..., |p1| towers of rank 1 and finally |p0| towers of rank
0 (i.e. non-towers).

Bounding the number l of induction steps in terms of the size n of the orbit. We recall some
classical facts.

Lemma 3.4. Let σ be a primitive substitution on an alphabet A and λ the Perron-Frobenius
eigenvalue for the matrix Mσ of the substitution. There exist constants A,B > 0 such that
for every letter x in A and every n ∈ N, Aλn < |σn(x)| < Bλn.

This lemma results from basic properties of primitive substitutions that are explained in
[Que10].

Corollary 3.5. Let T be an IET on an interval I and x ∈ I. Let x be the symbolic coding
of x under T . Assume that Rq(T ) = T . Denote by λ the Perron-Frobenius eigenvalue of Mσ

where σ is the substitution associated to Rq applied to T . There exists a constant κ > 0 such
that the decomposition

xn = s0σ(s1)...σ
l−1(sl−1)σ

l(ml)σ
l−1(pl−1)...σ(p1)p0

verifies

∀l ∈ N,
∣∣∣∣l − log(n)

log(λ)

∣∣∣∣ ⩽ κ.

Proof. LetA,B be the constants of Lemma 3.4, andK = max
a∈A

|σ(a)|. We set C = max
(
A, (2K−2)Bλ

λ−1

)
and κ = logC

log λ . Lemma 3.4 gives upper and lower bounds for n =
∑l−1

k=0(|σk(sk)|+ |σk(pk)|) +
|σl(ml)|, which permits to show the corollary. □

4. Estimation of the trajectory

4.1. Lengths of shifts. The assumption (C1) implies that one out of two crossed sides is
the side aN (the biggest one). Let us remark that every other polygon along the trajectory
is a translation of the first one. Therefore we can approach two steps (i and i + 1) of the
trajectory by a translation: the one that sends the polygon Pi to the polygon Pi+2.

We identify the space of translation with C. Let us denote by fi the translation induced
by crossing the side ai and then the side aN (see Figure 13). We recall that x0 denotes the
position of the vertex v0 of P0 in C0. One has:

∀k ∈ {1, .., N − 1}, fk = r
(
eXk − eXN + eXk−1 − eX0

)
,

where

Xk = − i

r

x0 +
k∑

j=1

aj

 and r =
1 + aN
2π

is the radius of the circumcircle of P.
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f1

(a) f1

f2

(b) f2

f3

(c) f3

f4

(d) f4

Figure 13. Translations fi when crossing sides ai followed by side a5

4.2. Estimate the trajectory. Let us define the piecewise constant complex function f on
the interval [0, 1) by:

f(x) = fi if

i−1∑
k=1

ak ⩽ x <

i∑
k=1

ak.

After 2n steps in the plane, the trajectory is in the polygon P2n, polygon which is equal to
the first one (P0) translated by

Snf(x0) =

n−1∑
k=0

f(T k(x0)).

This sum is the Birkhoff sum of f with respect to T and x0. We approach the trajectory
with this value. We highlight that we only need to know how many times the orbit (T kx)k⩽n

goes into each interval Ii ⊂ (0, 1) to compute Birkhoff sum. The sequence (Snf(x0))n∈N of
Birkhoff sums gives us (with uniformly bounded error) an estimate of the position p2n (of the
2n-th side crossing of the trajectory) and hence also of p2n+1.

Note that f depends on x0. However, a change of x0 will only multiply f by a complex
number. Therefore all the translations fi depend on x0 (i.e. on the position of P0) only up
to the same rotation. Whether the trajectory has a limit or not hence does not depend on
x0. Nor the fact that the trajectory stays at bounded distance of a line. Only the asymptotic
direction (if it exists) depends on x0.

4.3. Average shift. We first show that the trajectory has almost always an asymptotic
direction.

Lemma 1.2. For every a1, . . . , aN−1, almost every aN >
∑N−1

i=1 ai, and every τ ∈
(∑N−1

i=1 ai, aN

)
,

the cyclic N -gon P (a1, . . . , aN ) defines a generalized tiling billiard whose trajectories having
parameter τ all admit a mean displacement m = lim

n→∞
pn
n that does not vanish.
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Proof. As soon as T is uniquely ergodic (which is the generic case [Mas82], [Vee82]), Birkhoff’s

theorem tells us that the main part of this sum will be n times the mean valuem =
∑N−1

k=1 akfk
of f :

∀x0 Snf(x0) =
n→∞

n

N−1∑
k=1

akfk + o(n).

Hence, in terms of the trajectory, m corresponds to the asymptotic direction of the trajec-
tory, as soon as it does not vanish. Let us show that this is almost always the case.

We have:

m =

N−1∑
k=1

akfk

= re
i
r
x0

[
N−2∑
k=1

(ak + ak+1)e
i
r

∑k
j=1 aj −

(
N−2∑
k=1

ak

)
e

i
r

∑N−1
j=1 aj −

(
N−1∑
k=2

ak

)]
.

Let us denote s = 2π
1+aN

= 1
r the inverse of the radius of the circumcircles Ci. If a1, ..., aN−1

are fixed, the map s ∈ [0, π] 7→ sm is analytic. As a non trivial sum of linearly independant

functions (s 7→ eis
∑k

j=1 aj for 1 ⩽ k ⩽ N), it cannot be everywhere equal to zero. Therefore
the map has a finite number of zeros in the compact set [0, π]. We conclude that only a finite
number of values of aN ∈ (1,+∞) could make m vanish. □

4.4. Normalized deviations. Our goal is to study the deviations from the mean displace-
ment. We want to estimate their size and their direction, in particular we want to show that
they are happening in the direction orthogonal to m. To do so, we renormalize the situation
so that the trajectory goes asymptotically in the horizontal direction at unit speed, namely
we rotate and contract (or expand) the plane by the complex coefficient 1

m . Now we have to
show that the deviations have an unbounded imaginary part.

Lemma 4.1. We set G = 1
m

 f1
...

fN−1

 −

 1
...
1

 and H = Im(G). Let h : (0, 1) −→ R

be the map that is constant and equal to Hi on the subinterval (
∑i

j=1 aj ,
∑i+1

j=1 aj) for every
0 ⩽ i ⩽ N − 1. The following statements are equivalent:

(1) The trajectory in the plane admits unbounded deviations in the direction orthogonal
to the asymptotic one.

(2) The trajectory does not stay at a bounded distance from a line.
(3) The sequence (Sn(h))n∈N is not bounded.

Moreover, if T is Osseledets-generic they are also equivalent to:

(4) The vector H is not in the contracted plane of the flag decomposition of RN−1 given
by the Oseledets’ theorem.

Proof. The first two statements are clearly equivalent.
Quantifying deviations consists in computing the second term of the asymptotic expansion

of Snf(x0), namely studying Snf(x0)− nm. We renormalize the situation by dividing by m:
1
mSnf(x0) − n. This corresponds to contract the plane by a factor of 1

m , the renormalized
trajectory admits the real line as an asymptotic direction. Since we are interested in its
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deviations from this asymptotic line, we want to compute the imaginary part of the second
term in the asymptotic expansion of Snf(x0):

Im

(
1

m
Snf(x0)− n

)
= Snh(x0).

The function h corresponds to the deviations from the renormalized mean displacement (equal
to (1, 0) ∈ R2).

If H is in the contracted plane of the Oseledets’ flag, then the sum converges (as a geometric
sum), i.e. Snh(x0) is bounded, and the trajectory stays at a bounded distance from the
asymptotic line. On the contrary, if H is not in the contracted plane of the Oseledets’ flag,
then the sum diverges (see Proposition 5.1), i.e. Snh(x0) is not bounded, and the trajectory
does not stay at a bounded distance from the asymptotic line. □

The following property of vector G will be useful.

Lemma 4.2. The vector G is normal to the vector V =

 a1
...

aN−1

.

Proof. This is a direct computation:

tV G =
1

m

N−1∑
k=1

akfk︸ ︷︷ ︸
=m

−
N−1∑
k=1

ak︸ ︷︷ ︸
=1

= 0.

□

We show in the next section that in the generic case we can apply Zorich’s result on
deviations for IETs. This gives Theorem B . We handle the non generic case of a self-similar

IET in Section 6: one has B
(nq)
T =

(
B

(q)
T

)n
. Direct computations on H and M = B

(q)
T allow

to prove Theorem C.

5. The generic case

We assume here that T is Oseledets-generic, which means (see Subsection 3.2) that there
exists a flag depending on T

H1 ⊂ H2 ⊂ ... ⊂ Hg(T ) ⊂ RN−1

with 2g(T ) =

{
N − 1 if N is odd
N − 2 if N is even

, such that

∀v ∈ Hk \ Hk−1,
1

n
log ||B(n)

T (v)|| −→
n→∞

θk

where the numbers θ1 > · · · > θg(T ) do not depend on T . The 1 + θi
θ1

are the Lyapunov

exponents of the Teichmüller flow on the hypereliptic stratum (H(N − 3) if N is odd, (resp.
H(N2 − 2, N2 − 2) if N is even) of the moduli space of abelian differentials. We will apply
Proposition 3 of [Zor99]:
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Proposition 5.1 (Zorich). For a generic IET on (0, 1), any point x ∈ (0, 1), and any function
φ ∈ Ann(Hp) \Ann(Hp+1), 1 ⩽ p ⩽ g(T )− 1, the following holds:

lim sup
n→+∞

log |Sn(φ(x))|
log n

=
θp+1

θ1
.

We already know that the function h is in Ann(H1) (because it has 0 mean). In this
section we will show that it is not in Ann(H3) for almost every choice of parameters (see
Proposition 5.5). This will establish Theorems A and B.

To do that, we give an expression of H. It involves a matrix Q whose size increases with
N : Q ∈ M (N−1)N

2
,N−1

(R). This is why we do the proof first for N = 5 (in Sections 5.1 and

5.2) and then, with the very same proof but a bigger matrix, for N > 5 (in Section 5.3) .

5.1. Expression of H, when N = 5. Let us compute

H = Im

 1

m


f1
f2
f3
f4

−


1
1
1
1


 =

1

|m|2
Im

m


f1
f2
f3
f4




where m denotes the complex conjugate of m. One can check that, with s = 2π
1+a5

,

H =
1

|m|2
Q



sin(a1s)
sin(a2s)
sin(a3s)
sin(a4s)

sin((a1 + a2)s)
sin((a2 + a3)s)
sin((a3 + a4)s)

sin((a1 + a2 + a3)s)
sin((a2 + a3 + a4)s)

sin((a1 + a2 + a3 + a4)s)


= H(a1, a2, a3, a4, s)

where

tQ =



a2 + a3 + a4 −a1 + a3 + a4 −(a1 + a2) −(a1 + a2)
a2 + a3 −a1 + a3 −(a1 + a2) 0

0 a3 + a4 −a2 + a4 −(a2 + a3)
a3 + a4 a3 + a4 −(a1 + a2) + a4 −(a1 + a2 + a3)

0 a4 a4 −(a2 + a3)
a3 + a4 a3 + a4 −(a1 + a2) −(a1 + a2)
a2 + a3 −a1 −a1 0

0 −(a3 + a4) a2 a2
−a3 −a3 a1 + a2 0

−(a2 + a3 + a4) a1 − a4 a1 − a4 a1 + a2 + a3


.

5.2. Vector H is almost never in a fixed plane, when N = 5. We show that H does
not stay in a fixed plane of R4 when s varies.

Proposition 5.2. Let P be a plane in R4. Let a1, a2, a3, a4 ∈ R+ summing up to 1. Then
the set {s ∈ (0, π) | H(a1, a2, a3, a4, s) ∈ P} is finite.
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We first show:

Lemma 5.3. The matrix Q has rank 3.

Proof. Since the vector V =
t
( a1 a2 a3 a4 ) is normal to G, and H = Im(G), the

relation
∑4

i=1 aiRi(Q) = 0 holds, where Ri(Q) denotes the i-th row of Q (i.e. the i-th column
of tQ). It means that Q has rank at most 3.

Moreover the minor of tQ formed by the first three columns and the fourth, fifth and eighth
rows of tQ is:∣∣∣∣∣∣

a3 + a4 a3 + a4 −(a1 + a2) + a4
0 a4 a4
0 −(a3 + a4) a2

∣∣∣∣∣∣ = (a3 + a4)a4(a2 + a3 + a4) > 0.

The matrix Q has hence rank at least 3. □

Proof of Proposition 5.2. The map

H :
[0, π] −→ R4

s 7→ H(a1, a2, a3, a4, s)

is analytic. If H(s) were lying in P for all s in a sub-interval J of [0, π], then we would have
two linearly independent relations { ∑

i µi sin(θis) = 0∑
i λi sin(θis) = 0

where the θi’s are sums of aj with consecutive indices. Since G is normal to v, the first relation
holds if µ = v. But Q has rank 3 and s 7→ sin((a1 + a2 + a2 + a3 + a4)s) = sin(s) is linearly
independent of all other maps s 7→ sin(θs) for θ ̸= ±1. Therefore the second relation cannot
hold for all s ∈ J .

Moreover, the zeroes of the analytic map s ∈ [0, π] 7→
∑

i λ sin(θis) are discrete, and in
finite number in the compact [0, π]. This proves Proposition 5.2

□

5.3. For N > 5. As in the case N = 5, we consider H the imaginary part of G:

H = Im

 1

m

 f1
...

fN−1

−

 1
...
1


 =

1

|m|2
Im

m

 f1
...

fN−1


 .

All coordinates of |m|2H are of the form
∑

λi sin(θis) where s = 1
r , θi are sums of aj with

consecutive indices, and λi are sums of ±aj . We can write |m|2H as |m|2H = QΘ where
the matrix Q ∈ M (N−1)N

2
,N−1

(R) has all of its coefficients in the set {0, λi} and the vector

Θ ∈ M (N−1)N
2

,1
has all of its coordinates of the form sin(θis). We order this coordinates by

lexical order on (number of terms aj within the sum θi =
∑

j aj ; number of the first index
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j), so that:

Θ =



sin (a1s)
...

sin (aN−1s)

sin ((a1 + a2)s)
...

sin ((aN−2 + aN−1)s)

sin ((a1 + a2 + a3)s)
...

sin ((aN−3 + aN−2 + aN−1)s)

...

...

sin ((a1 + a2 + ...+ aN−2)s)
sin ((a2 + a3 + ...+ aN−1)s)

sin ((a1 + a2 + ...+ aN−1)s)



.

One can check that lots of coordinates of Q are zero. In the following we only need to
consider a submatrix of Q.

Lemma 5.4. The matrix Q ∈ M (N−1)N
2

,N−1
(R) has rank at least N − 3, at most N − 2, and

exactly N − 2 when N is odd.

Proof. As in the case N = 5, G is normal to the vector V =
t
( a1 . . . aN−1 ), which

implies that Q has rank at most N − 2.
The submatrix of tQ made of the first N − 1 rows and N − 2 columns is:

∑N−1
k=2 ak −a1 +

∑N−1
k=3 ak −(a1 + a2) −(a1 + a2)

a2 + a3 −a1 + a3 −(a1 + a2) 0 0

0 a3 + a4 −a2 + a4

a4 + a5 0

−aN−4 + aN−2 −aN−4 − aN−3

0 0 aN−2 + aN−1 −aN−3 + aN−1

aN−2 + aN−1 aN−2 + aN−1 −(
∑N−3

k=2 ak) + aN−1


Note that the framed submatrix formed by the rows 2, .., N − 2 and first N − 3 columns of

tQ is an invertible diagonal matrix, so Q has rank at least N − 3.
We show now that if N is odd, Q has rank at least N − 2. We replace the j-th column Cj

of tQ by Cj +
∑j−1

k=1(−1)j−kCk. The rows between 2 and N − 1 and the first N − 2 columns
of this new matrix are equal to (changes are written in blue):
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

a2 + a3 −a1 − a2 0 0 0

0 a3 + a4 −a2−a3 0

a4 + a5 −a3−a4 0

−aN−4−aN−3 0

0 0 aN−2 + aN−1 −aN−3−aN−2

aN−2 + aN−1 0 aN−2 + aN−1 0 −(
∑N−3

k=2 ak) + aN−1


We develop the determinant with respect to the last row of this submatrix and get:

(aN−2 + aN−1)[(−a1 − a2)(−a2 − a3)...(−aN−3 − aN−2)

+ (a2 + a3)(a3 + a4)(−a3 − a4)...(−aN−3 − aN−2)

+ (a2 + a3)(a3 + a4)(a4 + a5)(a5 + a6)(−a5 − a6)...(−aN−3 − aN−2)

+ (a2 + a3)(a3 + a4)...(a7 + a8)(−a7 − a8)...(−aN−3 − aN−2)

...

+ (a2 + a3)(a3 + a4)...(aN−4 + aN−3)(−aN−3 − aN−2)]

+

(
−

N−3∑
k=1

ak + aN−1

)
(a2 + a3)(a3 + a4)...(aN−3 + aN−2)(aN−2 + aN−1)

= (aN−2 + aN−1)

(−1)N−3
N−3∏
k=1

(ak + ak+1) +
N−3∑
l=3
l odd

(
(al + al+1)(−1)N−3−l+1

N−3∏
k=2

(ak + ak+1)

)
+

(
−

N−3∑
k=1

ak + aN−1

)
N−2∏
k=2

(ak + ak+1)

=

N−2∏
k=2

(ak + ak+1)

[
N−3∑
k=1

ak −
N−3∑
k=1

ak + aN−1

]

= aN−1

N−2∏
k=2

(ak + ak+1) ̸= 0.

We conclude that if N is odd, then Q has rank exactly N − 2.
□

As for the case N = 5, the map

H :
[0, π] −→ CN−1

s 7→ H(a1, ..., aN−1, s) = QΘ

is analytic. With Lemma 5.4, it allows us to prove the following proposition.
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Proposition 5.5. Let P be a subspace of dimension N −3 in CN−1. Let a = (a1, ..., aN−1) ∈
(R∗

+)
N−1 summing up to 1 and Oseledets generic. The set {s ∈ (0, π) | H(a, s) ∈ P} is finite.

Moreover, if N is odd, it holds also for P a subspace of dimension N − 2 in CN−1.

5.4. Conclusion. As a corollary we get Theorems A and B.

Theorem A. Let L be a line in the asymptotic direction (almost always defined) of the
trajectory. For almost every tiling billiard satisfying the conditions (C), the trajectory does
not stay at a bounded distance from L.

Theorem B. Let N ∈ N, N ⩾ 5. There exist θ1 > θ2 > θ3 > 0 such that for almost every
N -gon P and every τ , both satisfying condition (C), for any initial direction having parameter
τ in a P-tiling billiard, the sequence of points (pn)n∈N satisfies:

lim sup
n→∞

log |pn − nm|
log n

=

{
θ2
θ1

> 0 if N is odd
θ2
θ1

or θ3
θ1

> 0 if N is even
,

where m = lim
n→∞

pn
n .

Theorem A. Let L be a line in the asymptotic direction (almost always defined) of the
trajectory. For almost every tiling billiard satisfying the conditions (C), the trajectory does
not stay at a bounded distance from L.

Proof. Recall that the function g is in Ann(H1) (because it has 0 mean). Let P = Ann(H3)
(or Ann(H2) if Q has rank N − 2). Proposition 5.5 tells that for almost every choice of
parameters, h is not in P. The proposition 5.1 applied to h hence establishes Theorem B:

|p2n − 2nm| = |Snh(x0)|+Rn where Rn is uniformely bounded

lim sup
n→+∞

log |p2n − 2nm|
log(2n)

= lim sup
n→+∞

log |Snh(x0)|
log(n)

=
θ

θ2

where θ = θ2 if N is odd, and θ ∈ {θ2, θ3} if N is even.
Moreover we have renormalized our problem to the case when the asymptotic direction is

horizontal and we have studied the imaginary part of the deviations, this hence proves also
Theorem A. □

6. A special case

The previous theorems tells nothing when our IET T is not Oseledets generic. The goal of
this section is to study a non generic but important case for which we manage to do explicit
computations, and prove Theorem C.

Let M be the matrix associated to a loop in the Rauzy diagram. Then M is positive. We
assume that the loop is complex enough so that M is primitive. We assume that the second
eigenvalue λ2 of M is simple, that M has no other eigenvalue of the same modulus than λ2,
and |λ2| > 1. The article [Ham23] implies that this is the generic behavior. It follows that
λ ∈ R. We denote by V the Perron Frobenius vector for M , normalized so that its coordinates
sum up to 1 and set (a1, ..., aN−1) = V . The IET with lengths (a1, ..., aN−1) is self similar
and uniquely ergodic. Section 4.3 applies: the mean m of f (corresponding to the asymptotic
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direction) does not vanish for almost every choice of aN >
∑N−1

k=1 ak. We will now compute
the order of magnitude of deviations.

We denote by W1 the Perron Frobenius eigenvector for tM (normalized so that its co-
ordinates sum up to 1) and by W2 its (normalized) eigenvector associated to the second
eigenvalue λ2. Note that W2 is a real vector since M and λ are real. We decompose
RN−1 = Vect(W1)⊕Vect(W2)⊕E3 where E3 is the direct sum of characteristic spaces of tM
(associated to eigenvalues λ3, . . . , λd). By assumption:

∀v ∈ E3,
|| tMv||
||v||

⩽ |λ3| < |λ2|.

We consider cases where aN >
∑N−1

k=1 ak is such that H /∈ E3. According to Proposition
5.5, this is all cases but finitely many ones.

6.1. Upper bound. If w = w0w1...wn−1 is a finite word over the alphabet {1, ..., N − 1}, we
set ew =

∑n−1
k=0 ewk

.
Let x ∈ S1 and let xn = x0x1...xn−1 be the prefix of length n of its symbolic coding x under

T , decomposed as (see Proposition 3.2)

xn = s0σ(s1)...σ
l−1(sl−1)σ

l(ml)σ
l−1(pl−1)...σ(p1)p0.

One has:

exn =
l−1∑
k=0

Mkesk +M leml
+

l−1∑
k=0

Mkepk .

The deviations from the mean displacement (normalized to be horizontal at unit-speed)
are approximated by:

Snh(x) =
n−1∑
k=0

h(T k(x))

=< H, exn >

=

l−1∑
k=0

< tMkH, esk + epk > + < tM lH, eml
>

The vectorH = Im(G) is in the vector space Vect(W2)⊕E3 becauseG is normal to the Perron-
Frobenius vector V of M , and H /∈ E3. . It can therefore be decomposed as GI = αW2 + U
with U ∈ E3 and α ∈ R∗. Then one has:

Snh(x) = α

(
l−1∑
k=0

< tMkW2, esk + epk > + < tM lW2, eml
>

)

+

l−1∑
k=0

< tMkU, esk + epk > + < tM lU, eml
> .

We write P1 = α
(∑l−1

k=0 <
tMkW2, esk + epk > + < tM lW2, eml

>
)

and P2 =
∑l−1

k=0 <
tMkU, esk + epk > + < tM lU, eml

>.
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The principal part of the deviations is given by:

P1 = α

(
l−1∑
k=0

λk
2 < W2, esk + epk > +zλl

2 < W2, eml
>

)
whose norm is dominated by:

|α||λ2|l
|λ2|

|λ2| − 1
2(K − 1)||W2||∞

where K is such that all sk and pk are at length at most K − 1 and ml at most 2K − 2
(see Proposition 3.2). The other part of the deviations, P2, whose norm is dominated by

|λ3|l |λ3|
|λ3|−12(K − 1)||U ||∞, has a smaller order. To summarize, we have, for l big enough:

|Sng(x)| ⩽ Dλl
2

with D = α λ2
λ2−12(K − 1)||W2||∞ + 1.

Finally, using Corollary 3.5, one gets, for n big enough:

|Sng(x)| ⩽ D′n
log(λ2)
log(λ1)

with D′ = D exp( log(λ2) log(A)
log(λ1)

). One can replace D′ by a larger constant C1 so that the

inequality

|Sng(x)| ⩽ C1n
log(λ2)
log(λ1)

is true for all n ∈ N.
This shows the first inequality of Theorem C. We prove the second one in the following

paragraph.

6.2. Lower bound. We want to build an increasing sequence (nl)l∈N of indices of ”significant
deviations”, in other words such that

(⋆) ∃C2, ∀l ⩾ l0, |Snl
h(x)| > C2n

log λ2
log λ1
l .

Let l be an integer. We decompose the symbolic coding of x as

x = s0σ(s1)...σ
l−1(sl−1)σ

l(w)

where the si are finite words of length at most K−1 (see Proposition 3.2) and w is an infinite
word. This corresponds to decompose the orbit of x with Rokhlin towers of order l.

Let us denote by πj (for 1 ⩽ j ⩽ 2) the projection onto Vect(Wj) and π3 the one onto E3

with respect to the decomposition RN−1 = Vect(W1)⊕Vect(W2)⊕ E3.
Let us denote ml = |s0σ(s1)...σl−1(sl−1)|, corresponding to the hight of the partial Rokhlin

tower before the orbit of x0 arrives at the bottom of a tower of order l.
If |Sml

h(x)| > |λ2|l, then we define nl = ml and we have:

|Sml
h(x)| > |λ2|l ⩾ D|λ2|

log(nl)

log(λ1) = Dn
log(|λ2|)
log(λ1)

l

with D = exp( −C
log(λ1)

) (where C is the constant given by Corollary 3.5).

Else (|Sml
h(x)| ⩽ |λ2|l). At least one vector ek of the canonical basis of RN−1 is such that

π2(ek) ̸= 0. Let i be such that π2(ewi) ̸= 0 and for every index j < i, π2(ewj ) = 0. The matrix
M is primitive, so is the substitution σ. Hence there exists L (which depends only on M , not
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on w) such that i ⩽ L. Let us denote m′
l = |σl(w1...wi−1)| and m′′

l = |σl(wi)|. We define nl

as the length |s0σ(s1)...σl−1(sl−1)σ
l(w1...wi)| = ml +m′

l +m′′
l . Then we have:

|Snl
h(x)| = |Sml

h(x) + Sm′
l
h(Tml(x)) + Sm′′

l
h(Tml+m′

l(x))|

⩾ |Sm′′
l
h(Tml+m′

l(x))| − |Sml
h(x)| − |Sm′

l
h(Tml(x))|

By hypothese, one has

|Sml
h(x)| ⩽ |λ2|l.

By definition of i, if we set c = max
1⩽k⩽N−1

|π3(ek)|, one has

|Sm′
l
h(Tml(x))| ⩽ c|λ3|i ⩽ c|λ3|L.

Finally ∣∣∣Sm′′
l
h
(
Tml+m′

l(x)
)∣∣∣ = ∣∣∣< tM lH, ewi >

∣∣∣
⩾ |α|

∣∣∣λl
2 < W2, ewi >

∣∣∣− ∣∣∣< tM lU, ewi >
∣∣∣

⩾ |α| |λ2|l − c|λ3|l||U ||.

Putting these inequalities together we conclude that, for l big enough:

|Snl
h(x)| ⩾ |α|

2
|λ2|l ⩾

|α|
2
D|λ2|

log(nl)

log(λ1) =
|α|
2
Dn

log(|λ2|)
log(λ1)

l .

In the first case |Sml
h(x)| > |λ|l so ml goes to infinity as l increases and in the second case

nl ⩾ m′′
l ⩾ Aλl

1 (Lemma 3.4). Therefore the sequence (nl)l∈N goes to infinity. If we set

C2 =
|α|
2
D =

|α|
4
exp(

−C

log(λ1)
),

the inequality (⋆) holds for l ∈ N big enough, which gives the second inequality of Theorem C.

7. Concluding remarks

In this article we assumed that the N -gons are inscribed in a half-circle (that means a pro-
portion of N

2N
of the cyclic N -gons) and we studied trajectories passing near the circumcenter

of the polygons. In this section, we discuss briefly the obstacles to remove such assumptions.
We recall the key elements to prove Theorems A, B and C.

(1) We can study the trajectory via an IETF Φ because the N -gon is cycic.
(2) The square Φ2 of this map stabilizes a subinterval J , and Φ2

|J is an IET with N − 1

intervals of continuity. We do not need assumption to ensure that Phi2 does not flip
any interval, but we do need the assumption on the parameter τ of the trajectory to
ensure that Φ2

|J has only N − 1 intervals of continuity.

(3) We can define a function f of displacement, that is analytic.
(4) We can show that for any fixed codimension 3 (or 2 if N is odd) subspace E of RN−1,

the vector H, whose coordinates are the values of the function h = Im( 1
mf − 1), is

not in E. This relies strongly on the fact that we have an explicit expression of H.
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We could overcome point 2 by studying the Rauzy-Nogueira diagram of the underlying
permutation of Φ. We would get many open sets of parameters, each one associated to a new
map, that is a renormalization of Φ. So far, we can again define a function f of displacement
and even ensure that it is analytic. But if we want to conclude, we need to have an explicit
expression of the function f for each open set of parameters. These open sets depend on paths
in the Rauzy-Nogueira diagram in question. The trouble is that this diagram, for N = 5,
has more than 1 millon of vertices and more than 3 millions of edges! Hence establishing the
apropriate open sets seems out of reach without another idea, either about how we cut the
set of parameters, or about how we show that H is not in E.
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Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000), 2001, pp. 181–
207.

[BDFI24] P. Baird-Smith, D. Davis, E. Fromm, and S. Iyer, Tiling billards on triangle tilings,
and interval exchange transformations, 2024.

[DDRS18] D. Davis, K. DiPietro, J. Rustad, and A. St Laurent, “Negative refraction and
tiling billiards,” Adv. Geom., vol. 18, no. 2, pp. 133–159, 2018.

[DH18] D. Davis and W. P. Hooper, “Periodicity and ergodicity in the trihexagonal
tiling,” Comment. Math. Helv., vol. 93, no. 4, pp. 661–707, 2018.

[Del16] V. Delecroix, Interval exchange transformations, 2016.
[DHMPS] I. Dynnikov, P. Hubert, P. Mercat, O. Paris-Romaskevich, and A. Skripchenko,

“Novikov gasket has zero lebesgue measure,” work in progress.
[EKZ11] A. V. Eskin, M. Kontsevich, and A. Zorich, “Sum of lyapunov exponents of the

hodge bundle with respect to the teichmüller geodesic flow,” Publ. Math. Inst.
Hautes Études Sci., vol. 120, pp. 207–333, 2011.

[For02] G. Forni, “Deviation of ergodic averages for area-preserving flows on surfaces of
higher genus,” Ann. of Math. (2), vol. 155, no. 1, pp. 1–103, 2002.
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[Que10] M. Queffélec, “Dynamical systems arising from substitutions,” in Substitution
Dynamical Systems - Spectral Analysis, 2nd ed. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2010, pp. 125–160.

[Vee82] W. A. Veech, “Gauss measures for transformations on the space of interval ex-
change maps,” Annals of Mathematics, vol. 115, no. 2, pp. 201–242, 1982.

[Via06] M. Viana, “Ergodic theory of interval exchange maps.,” Rev. Mat. Univ. Complut.
Madrid, vol. 19, no. 1, pp. 7–100, 2006.

[Yoc10] J.-C. Yoccoz, “Interval exchange maps and translation surfaces,” in Homogeneous
flows, moduli spaces and arithmetic. Proceedings of the Clay Mathematics Institute
summer school, Centro di Recerca Mathematica Ennio De Giorgi, Pisa, Italy,
June 11–July 6, 2007, Providence, RI: American Mathematical Society (AMS);
Cambridge, MA: Clay Mathematics Institute, 2010, pp. 1–69.

[Zor96] A. Zorich, “Finite Gauss measure on the space of interval exchange transfor-
mations. Lyapunov exponents,” Ann. Inst. Fourier (Grenoble), vol. 46, no. 2,
pp. 325–370, 1996.

[Zor99] A. Zorich, “How do the leaves of a closed 1-form wind around a surface?” In
Pseudoperiodic topology, ser. Amer. Math. Soc. Transl. Ser. 2, vol. 197, Amer.
Math. Soc., Providence, RI, 1999, pp. 135–178.

Magali Jay, Aix-Marseille Université, I2M, Marseille, France
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