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January 17, 2024

1 Homodyne detection

Homodyne detection is a technique used to measure the amplitude and phase of a light wave. It operates by

interfering the light wave with a reference beam that projects the state into its mode, and then measuring the

di↵erence in the photocurrent in the two arms. This method is applicable to both classical and quantum states.

The state to be measured ⇢̂ is combined into a balanced beam-splitter with a local oscillator, a coherent

state with a large photon number and a well defined phase. We note â†
in

and â†
LO

the creation operators in the

spatial mode of the state of interest and the local oscillator respectively. The local oscillator is approximated

by a classical field of amplitude ↵ with phase ✓, so that â†
LO

= ↵LO. The two outputs modes are sent to two

photodiodes. The detection is represented into Fig.1.

(1) Show that the measured photocurrent is:

hÎ1,2i =
1

2
h(â†

in
± ↵⇤

LO
)(âin ± ↵LO)i =

1

2
h(â†

in
âin + |↵LO|2 ± â†

in
↵LO ± âin↵

⇤
LO

)i. (1)

(2) Then show the expression of the subtraction of the photocurrent:

hÎ1 � Î2i = |↵LO|hâ†ine
i�LO + âine

�i�LO i = |↵LO|hx̂(�)i, (2)

where the average value is taken with respect to the initial state ⇢̂. Repeating the measurement, we obtain the

probability distribution p(x,�LO) with mean value hx̂(�LO)i. We point out that the characteristic function is

the Fourier transform of the probability distribution:

p(x,�LO) =

Z
dze�izxheizx̂(�LO)i

=

Z
dze�izxhD̂(ize�i�LO )i. (3)

where the displacement operator has been defined as D̂(↵) = exp
�
↵â† � ↵⇤â

�
. After integration, we obtain:

p(x,�LO) =

Z
dpW⇢̂(xcos(�LO) + psin(�LO),�xsin(�LO) + pcos(�LO)), (4)

which corresponds to the marginals of the Wigner distribution, defined as:

W⇢̂(x, p) =

Z
dx0e2ix

0
p hx� x0| ⇢̂ |x+ x0i (5)

We remind that there is a one-to-one correspondance between the Wigner distribution and the density matrix.

It emphasized the importance of the Wigner distribution alternative representation of a quantum state because

the Wigner distribution can be directly accessed experimentally.

Examples of calculation of the Wigner distribution
For the vacuum state, the wavefunction is:

|0i = 1

⇡1/4

Z 1

�1
e�x

2
/2dx |xi (6)
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(b)

Figure 1: Generation of squeezed state of light and measurement with homodyne detection. 12.7 dB squeezing was

generated by parametric down-conversion in a monolithic PPKTP cavity using a frequency-doubled 1064 nm continuous-

wave laser beam as pump. (see Ref first course).

(3) Calculate the Wigner distribution of the state, and the marginals along the x, and p direction.

For a squeezed state, the quadrature wavefunction is:

 (x) = (
s

⇡
)
1/4e�sx

2
/2

(7)

(4) Calculate the Wigner distribution of the state, and the marginals along the x, and p direction. Also calcu-

late the variances of squeezed state, directly from the Wigner distribution (and show how to obtain them from

the marginals).

Losses
(5) In practice, due to losses, we do not measure the true value of squeezing. The losses of an optical element

are modeled by a beam-splitter operation of transmission T . The output destruction mode operator âout =

tâin � râv. Then show that X̂out = tX̂in � rX̂v. Since the quadrature observable of the signal and vacuum

states are uncorrelated and since h�X̂2
v
i = 1/2, then show that:

h�X̂2

out
i = T h�X̂2

in
i+ 1

2
(1� T ) (8)

Let us consider that the measured squeezing is 0.9 dB. The e�ciency of the photodetectors is 80%, of the

beam-splitter of the homodyne detection 93.3 %. What is the overall e�ciency? How to deduce the h�X̂2

in
i,

and then the associated value in dB?

2 Measurement of the characteristics of photodetectors

(6) Express the count rate on the detectors Nm, as a function of the rate of incident photons R, the dark count

rate D, the dead time ⌧ per count, and the quantum e�ciency.

Solution: The rate of detectable photons is ⌘R.

The rate of measured counts Nm = measured photons + measured dark counts

Dead time per second Nm⌧
Measured photon rate: Rate of detectable photons- lost photon rate due to dead time Lost photon rate due to

dead time: lost dark count due to dead time D is Nm⌧ . Measured dark count rate Dm = D� lost dark counts

due to dead time, Dm = D(1�Nm⌧).

Finally, the count rate is Nm = ⌘R(1�Nm⌧) +D(1�Nm⌧), so that:

Nm =
⌘R+D

1 + ⌧(⌘R+D)
(9)
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