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The celebrated Hong—Ou—Mandel effect illustrates the richness of two-photon interferometry. In this work,
we show that this richness extends to the realm of time-frequency interferometry. Taking advantage of the
mathematical analogy which can be drawn between the frequency and quadrature degrees of freedom of light
when there is a single photon in each auxiliary mode, we consider the equivalent of the Hong—Ou—Mandel
effect in the frequency domain. In this setting, the n-Fock state becomes equivalent to a single-photon state
with a spectral wave function given by the n’”* Hermite—Gauss function and destructive interference corresponds
to vanishing probability of detecting single photons with an order one Hermite—Gauss spectral profile. This
intriguing analogy leads us to introduce an interferometric strategy using a frequency engineered two-photon
state allowing to reach Heisenberg scaling for phase estimation, and to generalise the Gaussian Boson Sampling
model to time-frequency degrees of freedom of single photons.

I. INTRODUCTION

Photonic quantum information processing is based on play-
ing with fundamental bosonic properties of quantum states
of light. The celebrated Hong—Ou—Mandel (HOM) bunching
effect [1] provides one of the most basic but also striking ex-
amples of the nonclassical behaviour of photons. Boson Sam-
pling [2], a computational generalisation of the HOM effect,
has been introduced as a near-term candidate for harnessing
the computational power of photonics. As such, its variant
Gaussian Boson Sampling (GBS), defined in [3], led to the
first attempts of demonstration of experimental quantum com-
putational advantage using photonic platforms [4, 5].

The theoretical protocol for GBS involves the preparation of
a multimode Gaussian quantum state and its measurement by
a photon number-resolving detector in each mode. The prob-
ability of obtaining a given photon-number outcome is related
to a combinatorial function known as the Hafnian, a quantity
that is #P-hard to compute [6]. This approach directly utilizes
entanglement, interference phenomena, and non-Gaussian op-
erations to gain a potential quantum advantage over classical
algorithms. The Hafnian is associated with various mathemat-
ical problems in graph theory, including graph isomorphism
[71, the clique problem, perfect matching of undirected graphs,
and finding dense subgraphs [8]. As a result, GBS has poten-
tial applications in quantum chemistry [9, 10] and quantum
optimization [11], although the precise quantum advantage
of GBS for specific computational tasks beyond sampling re-
mains uncertain.

Many quantum optics platforms focus on degrees of free-
dom of quantum states of light such as polarization, spatial
modes or time-bins, including the recent GBS experiments
[4, 5]. However, quantum information can be also encoded us-
ing the time and frequency degrees of freedom of single pho-
tons, that are intrinsically continuous variables [12], but can be
discretized into bins or modes. Recent advances have consider-
ably improved the manipulation of the frequency (or spectral)
degree of freedom of single photons: techniques that use pulse
shapers and/or electro-optic modulators [ 13—18], or quadrature
phase-shift keying modulators [19], allow for performing sin-

gle photon operations, as well as two-photon operations [20];
other techniques for manipulating the time-frequency degree
of freedom of photon pairs modify the temperature of the non-
linear crystal at the generation stage [21, 22], by engineering
the spatial distribution of the pump as in integrated circuits
[23-25], in atomic cloud, or by engineering the spatial struc-
ture of the non-linear crystal [26-29].

In [30], a formalism to establish the mathematical corre-
spondence between the quadrature and the frequency degrees
of freedom considered as a continuous variable was estab-
lished, based on the property that each auxiliary mode (other
than the frequency) must be occupied by one single photon.
This formalism opens new avenues for quantum information
processing, enabling universal quantum computations by uti-
lizing the frequency degree of freedom of single photons as
a continuous-variable encoding of quantum information. Fur-
thermore, it facilitates an understanding of the spectral (or
temporal) width as a source of quantum noise in computing,
as explored in earlier work [12, 31], and in recent quantum
metrology protocols [32].

In this paper, based on this mathematical analogy between
the quadrature and frequency continuous variables, we con-
sider the equivalent of the HOM effect in the frequency domain
of single photons. Following this analogy, N excitations of the
electromagnetic field correspond to single-photon states with
a Hermite—Gauss frequency spectrum of order N. The beam-
splitter in the original HOM effect is replaced by a frequency
beam-splitter which entangles the frequency of two single-
photon states occupying two auxiliary modes [12, 30, 33], and
performs a /4 rotation of the joint spectral amplitude of two
single photons. The final output is an intriguing frequency
interference phenomena that suppress single photons in one
frequency mode, similar to the destructive interference effect
that leads to bunching in the HOM experiment. The proposed
experiment in this paper can be seen as the continuous-variable
counterpart of the one described in [34] using linear optics or
with quantum frequency translation [35].

We then provide a first application of the frequency-based
HOM effect in quantum metrology. Following the same anal-
ogy, we then define a quantum state composed of two-photon
states with a spectrum that is the Hermite—Gauss function of or-
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TABLE I. Analogy between the quadratures and the time-frequency degrees of freedom. The analogy holds as soon as the auxiliary modes
a, b are populated by one single photon. The name "frequency beam-splitter" comes from the mathematical equivalence to the standard

beam-splitter operation in the quadrature domain.

der N (see [36, 37] and develop the strategy developed adapted
from [38] for reaching the Heisenberg limit for phase estima-
tion. This avoids the use of large entangled quantum states of
many photons for reaching the Heisenberg scaling, similarly
to strategies developed using the orbital angular momentum of
one single photon [39].

Finally, our mathematical correspondence finds application
in quantum computing through the novel concept of GBS gen-
eralized in the continuous time-frequency variables of single
photons. In this protocol, we start from single photons with
a Gaussian spectrum (that are mathematically equivalent to
squeezed states), that enter into an interferometer perform-
ing time-frequency Gaussian operations. The output state is
a time-frequency Gaussian state whose chronocyclic Wigner
distribution [12, 40, 41] is Gaussian. The final step involves
single photon mode-resolved detection, which is projection
onto a spectral Hermite—Gauss basis, coupled with measure-
ments employing single-photon detectors, thereby simulating
the equivalent of photon number-resolving detection. A given
configuration is given here as the simultaneous measurement
of N single-photon states with Hermite—Gauss mode spectrum
ny,...ny. Intime-frequency GBS, a configuration involves the
measurement of specific single-photon states, each associated
with its respective Hermite—Gauss mode spectrum, in contrast
to Boson sampling where configurations are defined by the
detection of single photon states, irrespective of their degrees
of freedom structure. The importance of this result is that
combining time-frequency Gottesman—Kitaev—Preskill states
[12, 31, 42, 43] with a time-frequency GBS interferometer
provides an architecture for realizing a fault-tolerant quantum
computer, similar to what has been proposed in the quadrature
domain [44].

The rest of the paper is organized as follows. In Sec. II,
we develop the essential tools for understanding the formal-
ism describing the frequency degree of freedom of single pho-
tons. In Sec. III, we discuss the continuous-variable frequency
HOM effect by using the mathematical analogy between the
quadrature and the frequency degree of freedom. Following
this analogy in Sec. IV, we then develop a quantum metrol-
ogy protocol relying on a two-photon probe whose frequency
spectrum is engineered so that to achieve Heisenberg scaling
for phase estimation. Finally in Sec. V, we translate the GBS
model to the frequency degree of freedom of single photons.

II. FREQUENCY-BASED QUANTUM INFORMATION
PROCESSING

We recall the formalism of a single photon with a
continuous-variable frequency degree of freedom. A single
photon with a frequency w in the spatial mode (or any other
auxiliary mode) a is denoted @' (w) |Q),, where |Q),, is the
vacuum state. The Fourier transform of a creation operator
in the frequency domain correspond to a creation operator in
the temporal domain. We introduce the frequency and time
operators as:

d)azi/dwwdT(w)d(a}), (1)
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Although frequencies and times are nonnegative, the integra-
tion is over R without loss of generality: in practice wave
functions are localized far away from the origin. If the auxil-
iary mode is populated by a single photon, the frequency and
time operator verify the Heisenberg—Weyl canonical commu-
tation relation [30]:

[Barta] =1 3)

Therefore, we must have in each spatial mode only one single
photon for the mathematical analogy between the quadrature
and frequency variables to hold. Equipped with this mathe-
matical analogy, a single photon with a Gaussian frequency
spectrum becomes mathematically analogous to the vacuum
state in the quadrature domain:
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where o is the frequency width of the Gaussian spectrum. A
single photon spectrum is centered around a certain value that
we will omit, which depends on the physical system producing
such a single photon. Such a state would be actually the
equivalent of a coherent state in the quadrature domain, but
as we will set the central frequency to zero, the state becomes
equivalent to the vacuum. Then, the n'" Fock state is in this
encoding a single photon with a Hermite—-Gauss frequency
spectrum corresponding to the wave function [45]:
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where forinstance Ho(x) = 1, H; (x) = 2x and H» (x) = 4x>-2.
We can check that (n|m) = d,,,. Projecting the state into (n|
reads as first performing a frequency filtering operation with

the Hermite-Gauss filter Hy, (w/0")e~ /29" /271! and then
a non-resolved frequency detection (that is modeled by an in-
tegration over the frequency variable). The projector defined
as [1(n) = |n) (n| could be implemented experimentally by
using a spatial light modulator for shaping the spectral distri-
bution of the single photon. The projection of a single photon
into the Fock-like basis is therefore: (I1(n)) = [(n|y)|*, which
corresponds to a frequency filtering in the Hermite—Gauss ba-
sis followed by non-resolved frequency detection. From the
mathematical correspondence between the quadrature and the
time-frequency, we can perform the correspondence between
the number of photons (Fock state) into a spatial mode, and
the Hermite—Gauss spectral mode of a single photon. A simi-
lar mapping from Fock states to Hermite—Gauss modes of the
spatial degree of freedom of single photons was previously
proposed [46], together with proposal for the violation of a
Bell inequality.

In the frequency domain, the equivalent of the beam-splitter
is the frequency beam-splitter [12, 30, 33] which performs the
operation:
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Such an operation performs a /4 rotation of the joint spectral
amplitude of two single photons, leading them to frequency
entanglement if the initial joint spectral amplitude was sepa-
rable (see Fig. IT). Besides, each input and output modes (a, b)
are occupied by one and only one single photon. Akin to
the beam-splitter in the quadrature domain (see Fig. 1), this
is a Gaussian operation for the frequency continuous variable
[45, 47]. A similar operation has been achieved experimen-
tally by using a quantum dot embedded into a waveguide where
the efficiency of one process is of 99% [48] (see also [49] for
further theoretical study).

Due to possible confusion in the denomination or experi-
mental apparatus, we should emphasize that in [34, 50], they
define an analogous beam-splitter where the two spatial modes
of the standard beam-splitter are now two frequency modes.
We want also to emphasize that the frequency beam-splitter is
not a frequency-dependent beam-splitter [51, 52], since such
a device acts on the quadrature as a standard beam-splitter but
with frequency-dependent reflection coefficient.

Another time-frequency gate that will be important in this
paper is the fractional Fourier transform [45] that can be cast
as:

F(¢) = exp(i¢(&* + 1% - 1)), 7)

and which has been demonstrated experimentally in [16]. Note
that we have employed dimensionless units for the frequency
and time operators, as it was done in the transversal position-
momentum of single photons [53]. The fractional Fourier
transform in the frequency domain is equivalent to the phase-
shift operation ¢?#?'? in the quadrature domain.
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FIG. 1. Two initially separable single photons have Gaussian fre-
quency spectrums with different widths, and their joint spectral in-
tensity is represented on the left. After the action of a frequency
beam-splitter, the photon pair is now entangled, and the frequency
beam-splitter acts as a /4 rotation of the spectrum. The equivalent
process in the quadrature domain is to start with two single-mode
squeezed states which become an entangled two-mode squeezed state
after a standard beam-splitter operation.

III. HOM EFFECT IN THE FREQUENCY DOMAIN OF
SINGLE PHOTONS

Let us assume that we start with two separable single photon
in spatial paths a, b that possess the same Hermite—Gauss
spectrum [/) = [1,1),, :=[|1), ® [1),, (see Eq. (5)), and let
us proceed to the equivalent of the HOM experiment: the state
[} is sent into a frequency beam-splitter (see Eq. (6)). After
such an operation, we remain in the single-photon subspace
for each output spatial mode. The output wave function after
the frequency beam-splitter is given by:
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We perform a change of variable to obtain:
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In the standard HOM interference, the output wave function
written with quadrature variables is not often employed, how-
ever, in the particle-number representation the output state is
given by

1 1
%('2’ 0>ab_|07 2>ab+|17 1>ab_|1’ 1>ab) = %('2’ O>ab_|0’ 2>(a1l(7)))’

which clarifies the origin of the destructive interference be-
tween coincidence events.

In comparison, in the frequency domain, we obtain a de-
structive interference between different frequency modes, i.e.,
the equivalent of a frequency bunching effect Izndeed from
Eq. (8), we have H; (<) H, (“’ W'y = “+ which cor-
responds directly to t }Q: two buncﬁed terms and we do not
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FIG. 2. Standard HOM experiment, analysed both in the particle representation and by representing the joint quadrature distribution at each
step. Two indistinguishable single photons are combined on a balanced beam-splitter that is modeled by the unitary operation /. Coincidence
measurement is performed in both arms of the interferometer. In the quadrature representation, the state that was initially separable becomes
entangled after the beam-splitter. As the input and the output are orthogonal (it corresponds to a rotation of the joint quadrature distribution),

thus the corresponding measured probability is zero.
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FIG. 3. Frequency-based HOM experiment using the spectral degree of freedom of single photons. We start from two separable single photon
with a Hermite—Gauss spectrum or order one, that become frequency entangled after the frequency beam-splitter operation. We obtain an
equivalent destructive interference which does not affect the total particle number (that stays fixed during the frequency beam-splitter operation)
but the spectral degree of freedom of each single photon. Each path (a, b) is always occupied by one single photon, as represented in the
particle (physical) representation. In the particle (mathematical) or mode representation, black dots are not single photon, but instead represent
the Hermite—Gauss mode labeling of the spectral degrees of freedom, from which we understand the destructive interference between different

spectral contributions.



get any order one polynomial. Projecting the state into the
equivalent of coincidences (1, 1| (which is a photon number-
resolving detection in the quadrature domain) corresponds to
applying first a spectral filtering corresponding to the first order
Hermite—Gauss function and then applying a non-frequency
resolved detection [54, 55]. It corresponds to a mode-resolved
detection for only the mode 1. The probability of detecting
the photon pair in coincidence in the frequency modes 1, 1 is
then:

1
V2

which is zero. Thus, we have obtained a non-trivial destruc-
tive frequency interference between two single photons having
an order 1 Hermite—Gauss frequency spectrum, which is the
analogue of the HOM effect in the frequency domain.

In Fig. 2 and Fig. 3, we have represented the continuous-
variable quadrature (resp. frequency) states before and after
the beam-splitter (resp. frequency beam-splitter). The beam-
splitter has the effect of performing a rotation of the joint
spectrum, leading to an entangled state in the quadrature and
the frequency domains, respectively.

o (L 1O W) = 11, 1] —=(12, 0y = 10,2 )% (1)

IV. PHASE ESTIMATION AT THE HEISENBERG LIMIT
USING TWO-PHOTON INTERFEROMETRY

In this section, we provide a two-photon quantum state and
a new measurement strategy reaching Heisenberg scaling for
the estimation of a phase parameter ¢ that is the analogous in
the frequency domain to the one in the quadrature [38], which
is difficult to implement experimentally when N is the number
of excitation of the electromagnetic field.

We start with the two-photon state |N, N),;, which corre-
sponds to a separable two-photon state with Hermite—Gauss
spectrums of order N, and is therefore mathematically anal-
ogous to a twin-Fock state [38]. Then, this two-photon state
enters in the interferometer described in Fig. 4, which con-
tains a frequency beam-splitter followed by a fractional Fourier
transform in the frequency domain (see Eq. (7)), and finally
by another frequency beam-splitter. This is a non-linear inter-
ferometer, as frequency beam-splitters require light-matter in-
teraction for their implementation. The detection is composed
of two single-photon detectors that are resolved in frequency
modes. In other words, this is a mode-resolved detector that is
in perfect analogy with photon-number resolved detector. The
probability of measuring the frequency modes N —g and N +¢
at the spatial ports a and b is given by:

P(ql®) = [(N = g, N +q| Vap, IN, N[, (12)

where V5, = exp(—¢/2(dafp — Dpiy)) (see Sec. II for the def-
inition of the time and frequency operators). The probability
is found to be for g < N [38]:

P(ql¢) = J;(¢N), (13)

where J, is a Bessel function of the first kind. The precision
over the phase parameter that can be reached with such an

Mode-number
resolving detectors

a [ ] .
IN,N), < X
bb =/

Vb ab (N — ¢, N +¢q|

FIG. 4. Interferometry at the Heisenberg limit for phase estimation
with a two-photon state. The protocol starts with a separable two-
photon state whose spectrum is a Hermite—Gauss function of order
N. The two photon state becomes entangled by a first frequency
beam-splitter (FBS), and crosses the sample that induces a frequency
shift. A measurement in an entangled basis is then performed, that is
composed of frequency beam-splitter and a mode-resolved detector.

interferometer is bounded by the Cramér—Rao bound:

A¢p > L (14)

T \WE(@9)

where v is the number of repetitions of the experiment and
F(¢) is the Fisher information that can be written in our case:

2
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where the sum over ¢ is taken until 30. Numerical analy-
sis shows that the Fisher information scales as F(¢) ~ N2
for large N, so that the sensitivity for the phase estimation
is A¢p ~ 1/N, which corresponds to Heisenberg scaling. In
this protocol, we only use two photons, which is economical
in terms of resources for reaching Heisenberg scaling com-
pared to phase estimation protocols using N-photon states.
This is an example of spectral engineering of photon pairs that
is employed for reaching better resolution over the measure-
ment of a parameter as it was done in [56]. Apart from the
fractional Fourier transform and the mode-resolved measure-
ment, the main challenge in this protocol lies in performing
the frequency-entangling operation.

Note that experimentally, reaching the Heisenberg scaling
with a twin-Fock state when N is the number of atoms in a
Bose-Einstein condensate is easier to implement experimen-
tally [57], while this is difficult to achieve experimentally when
N denotes the number of photons.

V. GAUSSIAN BOSON SAMPLING IN THE FREQUENCY
DOMAIN OF SINGLE PHOTONS

A. Description of the protocol

With such equivalence between quadrature and frequency
degrees of freedom of single photons, we obtain straightfor-
wardly the equivalent of the GBS in the frequency domain
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FIG. 5. (a) Boson Sampling, where each black dot corresponds to a single photon occupying one single spatial mode. The output state is
an entangled state of a presence/absence of single photon into N spatial modes. (b) GBS, where each red dot corresponds to a single-mode
squeezed state. The output state after the Gaussian operation is a multimode entangled Gaussian state that is then measured with N photon
number-resolving detectors. (c) FGBS experiment, where each black dot supplemented by a frequency comb indicated one single photon
with a Gaussian continuous spectral structure. The output state after the time-frequency interferometer is a multimode (spatial for instance)
time-frequency entangled Gaussian state (schematized with colored lines) that is then measured with frequency mode resolved detectors.

of single photons, which we call Frequency-based Gaussian
Boson Sampling (FGBS).

We start from the mathematical analogue of N squeezed
states which are N single photons with a Gaussian spec-
trum. These states undergo Gaussian time-frequency oper-
ations. The time-frequency Gaussian state is a state whose
chronocyclic Wigner distribution is Gaussian and character-
ized by the covariance matrix X (see [30, 45] for more details).
These time-frequency Gaussian operations can be achieved
with linear and non-linear optics (for generating entanglement
with the frequency beam-splitter) [30]. Measurements are
performed with a set of single-photon detectors that have been
frequency filtered. This allows for a mode-number resolved
detection as described in the previous section. The probabil-
ity distribution of detecting a total of N photons (one photon
at each auxiliary mode output) in the spectral configuration
i = (ny,...,ny), where n; labels the frequency modes in the
output , is [3]:

P() = 5ol 28 A7)
i=1 it

(16)

where 2o =X+ Iy and A = (g (]i) I+ (T +1/2)71), with

Aj;; the 2n X 2n submatrix of A obtained by repeating n; times
its rows and columns i and N + i, where n = }}; n; is the sum
of the labels of the detected modes. The function Haf is the
Hafnian: for a 2n X 2n matrix B,

1

Haf(B) = —on Z Bo(yo2) - Bo@n-nyo@ny, (A7)
o€Sy,
where the sum is over the permutations of {1,...,2n}.

Therefore, the FGBS is a non-linear optics scheme to gen-
erate samples extracted from a mode distribution generated
by a time-frequency light source at the output of a multimode
interferometer. The hardness of the classical simulation of this
sampling task is preserved in noisy experimental condition if
the level of photon losses and temporal and frequency broad-
ening (mathematically similar to loss in GBS) are limited.

Using single photons and their continuous-variables spec-
tral distribution in FGBS leads us to a model that "mixes" both
features of Boson sampling and GBS. In Fig. 5, we have rep-
resented the three types of bosonic samplers based on Boson
sampling, GBS and FGBS. The Boson Sampling protocol in-
volves N indistinguishable single photons entering an N-mode
interferometer. Phase interference determines the exit point of
each single photon from the interferometer. If the interferome-
ter is sufficiently deep, each output mode contains only a single



photon. A configuration is identified by the detector that reg-
isters a click. GBS, as previously discussed, is mathematically
equivalent to FGBS.

B. Experimental considerations

Experimentally, implementing the FGBS algorithm could
involve utilizing an integrated circuit designed to take as input
n single photon states with a Gaussian spectrum. It is worth
noting that currently, single photon sources with a frequency
Gaussian spectrum are not readily available; typically, they
exhibit a Lorentzian spectrum, as demonstrated in [58].

However, heralded single-photon sources offer a
workaround, as they can have a Gaussian spectrum when the
initial photon pair also exhibits one. This can be achieved
through techniques such as engineering the spatial poling of the
non-linear crystal [59] or using an integrated AlGaAs circuit
[60]. In contrast to Boson Sampling, where the performance
is limited by the challenge of creating exactly identical single-
photon sources, our protocol is not constrained by the need
for identical photon pair sources. This flexibility arises from
our ability to initiate the process with different time-frequency
squeezed states.

Similar to the preceding sections, a fundamental element for
a multimode interferometer achieving large frequency entan-
glement among single photons is the frequency beam-splitter
[48, 49]. Current implementations are near-deterministic,
so cascading multiple frequency beam-splitters provides a
credible pathway towards the generation of large frequency-
entangled states of single photons. Detection involves the
use of superconducting nanowire single-photon detectors
(SNSPDs) that are resolved in frequency mode number. A
challenge arising from the cryogenic operational conditions
of SNSPDs involves integrating the single-photon source, the
interferometer, and the detection onto a single chip. Such an

integration was recently experimentally accomplished in [61].

VI. CONCLUSION

In this paper, we have used the correspondence between
the quadrature and the frequency degrees of freedom of sin-
gle photons to design an analogue of the HOM effect in the
frequency domain. In this scheme, there is a non-trivial de-
structive effect between different components of the frequency
spectrum of two single photons, leading to a suppression of the
part of the spectrum with first order Hermite—Gauss function.
We have employed a graphical representation that allows us
to understand this destructive interference effect for any type
of continuous variables, instead of using the standard particle-
number representation.

We have discussed a direct application of the correspon-
dence to a quantum metrology protocol that can reach Heisen-
berg scaling for phase estimation using two photons and fre-
quency mode resolving detection.

Finally, we have discussed the equivalent of GBS in
the frequency domain of single photons, established thanks
to the mathematical correspondence between the position-
momentum quadratures of the electromagnetic field into a sin-
gle mode and the time-frequency variables of single photons.

We expect this work to motivate further development of
spectral interferometry experiments. As a perspective, we
note that our results are also valid for other types of continuous
variables, such as the position and momentum of a nanome-
chanical resonator, or the transversal position and momentum
of single photons [62].
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