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EFFECT OF UTTERANCE DURATION AND PHONETIC CONTENT ON SPEAKER IDENTIFICATION USING SECOND-ORDER STATISTICAL METHODS

Second-order statistical methods show very good results for automatic speaker identi cation in controlled recording conditions 2]. These approaches are generally used on the entire speech material available. In this paper, we study the in uence of the content of the test speech material on the performances of such methods, i.e. under a more analytical approach 3 ] . The goal is to investigate on the kind of information which is used by these methods, and where it is located in the speech signal. Liquids and glides together, vowels, and more particularly nasal vowels and nasal consonants, are found to be particularly speaker speci c: test utterances of 1 second, composed in majority of acoustic material from one of these classes provide better speaker identi cation results than phonetically balanced test utterances, even though the training is done, in both cases, with 15 seconds of phonetically balanced speech. Nevertheless, results with other phoneme classes are never dramatically poor. These results tend to show that the speaker-dependent i nformation captured by long-term second-order statistics is consistently common to all phonetic classes, and that the homogeneity of the test material may i m p r o ve the quality of the estimates.

INTRODUCTION

In this paper, the in uence of phonetic content on the performance of a speaker identi cation system is investigated. Second-order statistical methods are chosen because they provide very good results with a low quantity of computations and with a restricted quantity o f s p e e c h material, provided recording conditions and channel distortions are controlled 2]. The goal of this work is to study how t h e performances of this family of approaches vary with the phonetic content of the test material. Several experiments were previously reported on the relative speaker discriminating properties of phonemes. In particular, Eatock et al. 5] used a VQ codebook based approach and concluded that nasals and vowels provided the best performances on an English language database. Le Floch e t a l . 9] investigated the properties of AR-vector models and concluded that vowels, diphtongs and nasals provided the best performances, also on an English language database. The speci city of the work reported in this paper comes from the fact that second-order statistical methods are used and that the training and test material are heterogeneous. The general experimental framework is the following: 15 seconds of training material coming from phonetically balanced sentences, are used to build a reference model for each s p e a k er. Then, speci c speech segments are selected from other phonetically balanced sentences in order to build a test pattern which is strongly biased towards a particular phoneme or phoneme class. The database used for our experiments contains 67 cooperative s p e a k ers recorded in a slightly noisy environment. For each s p e a k er, 50 French phonetically balanced sentences, i.e approximately 3 minutes of speech are recorded in a single session. This volume of speech allows to have a su cient number of occurences for most phonemes. The three second-order statistical measures used in the experiments are described in section 2.. Details on the speech database and on the signal analysis are given in section 3.. Section 4. reports preliminary experiments on utterance duration, and section 5. the experiments on the phonetic content. Finally, section 6. concludes on this work and gives some perspectives.

SPEAKER IDENTIFICATION MEASURES

The 3 speaker identi cation methods used in this work are inspired from statistical tests on covariance matrices 1], computed on acoustic parameters. The rst two speaker similarity measures are directly derived from maximum likelihood Gaussian classi ers 7]. The third one is based on a sphericity test between covariance matrices 8]. The measures, asymmetric in their original form, are symmetrised as a w eighted sum of the asymetric measure and its dual term. In previous work 2], this procedure was shown to improve performances. Let X and Y denote two c o variance matrices of a reference speaker and of a test speaker respectively, corresponding to the covariance of some spectral vectors computed along a sentence. Let x and y denote the means of the spectral vectors. Let M and N denote the number of spectral vectors used to estimate the covariance matrices and mean vectors, and p the dimension of the spectral vectors. The mathematical expression of the three measures that we used in our experiments, are given in Table 1. Note that, once the covariance matrices X and Y are inverted, and that their determinant i s e v aluated, the computation of the measures requires very few operations.

DATABASE AND SIGNAL ANALYSIS 3.1. Database

The corpus is composed of read phonetically balanced sentences 4], the phonetic transcription of which can be found in the BDSON database. The sentences are prompted on a screen. Recording begins and ends automatically using a speech activity detector. Each s e n tence is recorded through a SHURE SM10A microphon, and digitized at a 16 kHz 

Signal Analysis

The speech analysis module extracts lterbank coe cients in the following way: a Winograd Fourier Transform is computed on Hamming windowed signal frames of 31.5 ms (i.e 504 samples) at a frame rate of 10 ms (160 samples). For each frame, spectral vectors of 24 Mel-Scale Triangular-Filter Bank coe cients are then calculated from the Fourier Transform power spectrum, and expressed in logarithmic scale. Covariance matrices and mean vectors are nally computed from these spectral vectors.

UTTERANCE DURATION

The rst set of experiments investigates on the in uence of utterance duration for second-order statistical methods. 

PHONETIC CONTENT 5.1. Segmentation

In order to study the in uence of phonetic content on the performances of the second-order statistical methods, we used an automatic system for segmenting the speech material into speci c phonemes or phonetic classes. This system of automatic localisation is based on a bottom-up acousticphonetic decoder, which i s s p e a k er independent 3], 10], 6]. For each s e n tence, this decoder proposes a set of weighted phonetic hypotheses. These hypotheses are then aligned with the phonetic transcription of the sentence, by a leftright alignment algorithm. In order to obtain a high localisation accuracy, the algorithm is tuned with a high level of rejection for uncertain alignments: in this experiment, 55 % of the sentences were rejected. As a consequence, the phonetic events selected by this procedure can be considered as highly reliable, and quite typical in their category. The localisation algorithm gives a small kernel for a recognized phoneme. So the phoneme segments were extended to 5 frames before and 5 frames after the kernel. Therefore, the segments are not only composed with frames of the given phoneme, as they may a l s o include a small proportion of transitions.

Experimental Protocol

For this set of experiments, training material consists of all speech frames derived from 15 seconds of phonetically balanced sentences, i.e. no speci c phonetic events are selected. It is in fact the exact same material as the one used in the previous experiment on the in uence of utterance duration (see section 4.), with training durations of 15 seconds. For the tests, speci c phonetic classes and phonemes are selected on the rest of the speech material, by the procedure described in section 5.1.. For a particular phoneme, all the frames labeled as this given phoneme are concatenated together, and this material is divided into as many tests of 1 second as possible.

Description of the phoneme classes

Results for all phoneme classes and phonemes are not presented in this article: we c hose to report only on those for which more than 40 tests were carried out. A rst class, refered to as All , c o n tains all the phonemes. The experiments with test data from this class is however slightly di erent from the one in section 4., with 15 seconds for training and 1 second for testing: speech material in the class Allis composed of acoustic material clearly identi ed as a phoneme by the segmentation process, and in particular, it does not contain silences, pauses, or other non-linguistic events. The other classes are: Vowels (which c o n tains oral and nasal vowels but not glides), Oral Vowels, Nasal Vowels, Consonants (which contains also glides), Non-Nasal Consonants (which contains all the consonants except the nasal consonants), Nasal Consonants, Stop Consonants, Fricatives and Liquids+Glides (which form a single class).

Results

Results for various phoneme classes and individual phonemes are given in Table 3 and Table 4 respectively. The percentage of correct identi cations on all the tests is given, as well as the average of the correct identi cations per speaker. The number of tests is also indicated.

Comments

Quite surprisingly, measure G still performs better than Gc and S c : even though the mean vector within a phonetic class is expected to be strongly class dependent (and therefore not to match the training mean vector), it still keeps some consistence across phonetic classes. The results for the class Alloutperform slightly those for the 15 s 1 s experiment of section 4., probably because the speech material is, in the second case, more reliable. A second observation is that the results for each phoneme class is higher than the result of the class All . It is also the case for most of the phonemes. This tends to show that a phonetically homogeneous test material bene ts to the overall speaker identi cation performance, even though the training material does not share the same character. G are obtained with the phonemes /o/, /d/, /"/, and / ~ /, whereas /k/, /`/, /u/, /s/ and /y/ give the poorest performance levels.

CONCLUSION

Our experiments on the e ect of the phonetic content o n speaker identi cation using second-order statistics, tend to show that, on our database, the phonetic homogeneity o f the test material is usually a signi cant factor of improvement, even if the training material is heterogeneous. The phonetic classes that yield particularly good results are Liq-uids+Glides, Vowels (and more particularly Nasal Vowels), and Nasal Consonants, but results for other classes are never dramatically poor. There may therefore exist some kind of speaker-dependent tie between acoustic distributions across phonemes that is captured by the second-order statistical methods. This hypothesis has to be con rmed on other types of speech data, in particular noisy speech a n d non-contemporaneous recordings. 

Table 1 .

 1 Expressions of the three symmetrized second-order statistical measures (\tr" denote the trace and \det" the determinant of a matrix). sampling frequency on 16 bits by a n O R OS AU22 board. The recording equipment was set up in the corridor of a university, i.e with a non-negligible background noise. The recordings are single-session. 67 speakers took part to the experiments, mostly students. They each recorded approximately 3 minutes of speech.
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Table 2 .

 2 chosen to 1 second for two reasons. Firstly, if a longer duration is chosen, the number of tests for a given phoneme is less signi cant. Secondly, if the percentage of correct identi cations is too high, we felt that comparisons may l a c k statistical signi cance. Speaker identi cation: results in percentage of correct identi cations for di erent training and test durations. The numbers of tests for each test duration is indicated i n p arentheses.

	The best measure is always G, which con rms once again that the average of the spectral vectors is a signi cant source of speaker speci c information, for good quality con-temporaneous speech. Even though the measures are symmetric, a clear asym-metry of the results can be observed: for example, with a training of 10 seconds and a test of 2 seconds, the per-centage of correct identi cations with G is 95.3 %, while with a training of 2 seconds and a test of 10 seconds, it only reaches 88.4 %. In fact, if a training of 2 seconds is poorly representative of the speaker (for instance, if it con-tains a lot of silence), this has an e ect on all the tests utterances from this very speaker, which a ects consider-ably the overall score. If, conversely, a test of 2 seconds is

This allowed us to choose meaningful training and test durations for the second part of the work. Several durations for training and test are chosen: 15, 10, 6, 3 and 2 seconds for training 10, 6, 3, 2 and 1 second for testing. For each speaker, all sentences are randomly concatenated together. The silences at the beginning and the end of sentences are not removed, but they generally do not exceed 0.1 second. First, a certain amount of speech is selected for training (for example 15 seconds). Then, the rest is segmented in several test portions, each portion having a predetermined duration, until 20 test portions are obtained unless the speech material is exhausted. As a result of this experimental design, the experiments are text-independent. Percentages of correct identi cations are given in Table

2

. of poor quality, it only causes 1 mistake, which h a s little impact on the global performance. In the second part of our experiments, we c hose a 15 second training duration, which is a guaranty t o h a ve a reliable training and a su cient phonetic coverage. The test dura-tion is

Table 3 .

 3 In more detail, Vowels give better results than Consonants. Nasal Vowels outperform Vowels and Oral Vowels. Non-Nasal Consonants, and more particularly Stop Consonants or Fricatives, g i v e l o wer performances than all Consonants together, whereas Liquids+Glides and Nasal Consonants yield higher scores. Note that the class Liquids+Glides gives the best results altogether, except with S c for which t h e classes Nasal Consonants and Nasal Vowels perform better. In what concerns individual phonemes, the best scores with Speaker identi cation with speech material se-

	Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c	All (1334) 90.6 90.5 97.1 97.0 Vowels (1247) I M I M 80.8 80.6 92.3 92.1 83.5 83.4 92.0 91.7 Oral Vowels Nasal Vowels (1206) (262) I M I M 96.0 95.9 98.1 98.5 91.3 91.2 89.3 90.5 90.5 90.5 93.1 92.9 Consonants Non-Nasal (1247) Cons. (1186) I M I M 96.2 96.2 94.7 94.8 91.1 91.0 89.4 89.3 91.6 91.3 89.0 89.0 Nasal Cons. Stop Cons. (390) (693) I M I M 96.9 97.7 94.2 95.7 85.9 87.6 91.2 92.6 95.1 93.9 91.3 92.7 Fricatives Liquids + (486) Glides (277) I M I M 92.2 92.8 98.9 98.8 83.7 84.8 92.4 92.3 86.2 86.9 92.4 91.4
	lected from speci c phonetic classes. Training is composed of 15 s of phonetically balanced s p eech and test is composed of 1 s of phonetically biased s p eech. I = G l o b al correct iden-ti cation score, M = Average correct identi cation score over all speakers. The number of tests for each test con g-uration is indicated i n p arentheses.

Table 4 .

 4 Speaker identi cation with speech material selected f r om speci c phoneme realisations. Training is composed of 15 s of phonetically balanced s p eech and test is composed o f 1 s o f p h o n e t i c ally biased speech. I = G l o b al correct identi cation score, M = Average correct identi cation score over all speakers. The number of tests for each test con guration is indicated i n p arentheses.

	Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c Phonemes G Gc S c	(174) 92.0 92.2 96.2 97.5 (105) I M I M 79.9 81.3 86.7 88.0 81.0 82.5 87.6 88.9 /"/ /y/ (258) (66) I M I M 97.3 98.2 87.9 90.6 89.9 90.8 84.8 89.8 90.7 93.0 86.4 92.2 / / /a/ (329) (378) I M I M 96.7 97.1 95.8 95.7 91.8 91.8 87.8 86.9 91.2 90.9 90.7 89.3 /o/ /u/ (87) (75) I M I M 97.7 97.3 85.3 87.9 87.4 88.3 73.3 77.4 89.7 89.6 76.0 81.2 / ~ / /p/ (108) (113) I M I M 97.2 97.4 91.2 92.9 89.8 89.4 82.3 84.3 94.4 92.9 87.6 88.7 /t/ /k/ (196) (102) I M I M 90.8 92.3 82.4 86.0 86.7 87.1 78.4 84.4 89.3 90.4 78.4 81.0 /d/ /s/ (111) (194) I M I M 97.3 97.5 87.1 89.0 91.0 91.9 78.9 80.4 92.8 93.8 84.0 84.3 /v/ /`/ (42) (48) I M I M 90.5 89.2 83.3 82.9 76.2 77.0 77.1 76.0 76.2 75.7 75.0 73.6 /m/ /n/ (158) (149) I M I M 95.6 96.4 96.6 94.4 79.7 80.3 87.2 88.0 95.6 94.5 94.6 94.8