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ABSTRACT

Second-order statistical methods show very good results
for automatic speaker identi�cation in controlled recording
conditions [2]. These approaches are generally used on the
entire speech material available. In this paper, we study the
in
uence of the content of the test speech material on the
performances of such methods, i.e. under a more analyti-
cal approach [3]. The goal is to investigate on the kind of
information which is used by these methods, and where it
is located in the speech signal. Liquids and glides together,
vowels, and more particularly nasal vowels and nasal conso-
nants, are found to be particularly speaker speci�c: test ut-
terances of 1 second, composed in majority of acoustic ma-
terial from one of these classes provide better speaker iden-
ti�cation results than phonetically balanced test utterances,
even though the training is done, in both cases, with 15 sec-
onds of phonetically balanced speech. Nevertheless, results
with other phoneme classes are never dramatically poor.
These results tend to show that the speaker-dependent in-
formation captured by long-term second-order statistics is
consistently common to all phonetic classes, and that the
homogeneity of the test material may improve the quality
of the estimates.

1. INTRODUCTION

In this paper, the in
uence of phonetic content on the per-
formance of a speaker identi�cation system is investigated.
Second-order statistical methods are chosen because they
provide very good results with a low quantity of compu-
tations and with a restricted quantity of speech material,
provided recording conditions and channel distortions are
controlled [2]. The goal of this work is to study how the
performances of this family of approaches vary with the
phonetic content of the test material.
Several experiments were previously reported on the rel-
ative speaker discriminating properties of phonemes. In
particular, Eatock et al. [5] used a VQ codebook based
approach and concluded that nasals and vowels provided
the best performances on an English language database.
Le Floch et al. [9] investigated the properties of AR-vector
models and concluded that vowels, diphtongs and nasals
provided the best performances, also on an English lan-
guage database.
The speci�city of the work reported in this paper comes
from the fact that second-order statistical methods are used
and that the training and test material are heterogeneous.
The general experimental framework is the following: 15
seconds of training material coming from phonetically bal-
anced sentences, are used to build a reference model for

each speaker. Then, speci�c speech segments are selected
from other phonetically balanced sentences in order to build
a test pattern which is strongly biased towards a particular
phoneme or phoneme class.
The database used for our experiments contains 67 cooper-
ative speakers recorded in a slightly noisy environment. For
each speaker, 50 French phonetically balanced sentences, i.e
approximately 3 minutes of speech are recorded in a single
session. This volume of speech allows to have a su�cient
number of occurences for most phonemes.
The three second-order statistical measures used in the ex-
periments are described in section 2.. Details on the speech
database and on the signal analysis are given in section 3..
Section 4. reports preliminary experiments on utterance du-
ration, and section 5. the experiments on the phonetic con-
tent. Finally, section 6. concludes on this work and gives
some perspectives.

2. SPEAKER IDENTIFICATION MEASURES

The 3 speaker identi�cation methods used in this work are
inspired from statistical tests on covariance matrices [1],
computed on acoustic parameters. The �rst two speaker
similarity measures are directly derived from maximum like-
lihood Gaussian classi�ers [7]. The third one is based on a
sphericity test between covariance matrices [8]. The mea-
sures, asymmetric in their original form, are symmetrised
as a weighted sum of the asymetric measure and its dual
term. In previous work [2], this procedure was shown to
improve performances.
Let X and Y denote two covariance matrices of a reference
speaker and of a test speaker respectively, corresponding to
the covariance of some spectral vectors computed along a
sentence. Let �x and �y denote the means of the spectral vec-
tors. Let M and N denote the number of spectral vectors
used to estimate the covariance matrices and mean vectors,
and p the dimension of the spectral vectors. The mathe-
matical expression of the three measures that we used in
our experiments, are given in Table 1. Note that, once the
covariance matrices X and Y are inverted, and that their
determinant is evaluated, the computation of the measures
requires very few operations.

3. DATABASE AND SIGNAL ANALYSIS

3.1. Database

The corpus is composed of read phonetically balanced sen-
tences [4], the phonetic transcription of which can be found
in the BDSON database. The sentences are prompted on
a screen. Recording begins and ends automatically using a
speech activity detector. Each sentence is recorded through
a SHURE SM10A microphon, and digitized at a 16 kHz
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Table 1. Expressions of the three symmetrized second-order statistical measures (\tr" denote the trace and \det" the
determinant of a matrix).

sampling frequency on 16 bits by an OROS AU22 board.
The recording equipment was set up in the corridor of a
university, i.e with a non-negligible background noise. The
recordings are single-session. 67 speakers took part to the
experiments, mostly students. They each recorded approx-
imately 3 minutes of speech.

3.2. Signal Analysis

The speech analysis module extracts �lterbank coe�cients
in the following way: a Winograd Fourier Transform is com-
puted on Hamming windowed signal frames of 31.5 ms (i.e
504 samples) at a frame rate of 10 ms (160 samples). For
each frame, spectral vectors of 24 Mel-Scale Triangular-
Filter Bank coe�cients are then calculated from the Fourier
Transform power spectrum, and expressed in logarithmic
scale. Covariance matrices and mean vectors are �nally
computed from these spectral vectors.

4. UTTERANCE DURATION

The �rst set of experiments investigates on the in
uence
of utterance duration for second-order statistical methods.
This allowed us to choose meaningful training and test du-
rations for the second part of the work. Several durations
for training and test are chosen: 15, 10, 6, 3 and 2 seconds
for training; 10, 6, 3, 2 and 1 second for testing. For each
speaker, all sentences are randomly concatenated together.
The silences at the beginning and the end of sentences are
not removed, but they generally do not exceed 0.1 second.
First, a certain amount of speech is selected for training (for
example 15 seconds). Then, the rest is segmented in several
test portions, each portion having a predetermined dura-
tion, until 20 test portions are obtained unless the speech
material is exhausted. As a result of this experimental de-
sign, the experiments are text-independent.
Percentages of correct identi�cations are given in Table 2.
The best measure is always �G, which con�rms once again
that the average of the spectral vectors is a signi�cant
source of speaker speci�c information, for good quality con-
temporaneous speech.
Even though the measures are symmetric, a clear asym-
metry of the results can be observed: for example, with
a training of 10 seconds and a test of 2 seconds, the per-
centage of correct identi�cations with �G is 95.3 %, while
with a training of 2 seconds and a test of 10 seconds, it
only reaches 88.4 %. In fact, if a training of 2 seconds is
poorly representative of the speaker (for instance, if it con-
tains a lot of silence), this has an e�ect on all the tests
utterances from this very speaker, which a�ects consider-
ably the overall score. If, conversely, a test of 2 seconds is
of poor quality, it only causes 1 mistake, which has little
impact on the global performance.
In the second part of our experiments, we chose a 15 sec-
ond training duration, which is a guaranty to have a reliable
training and a su�cient phonetic coverage. The test dura-

tion is chosen to 1 second for two reasons. Firstly, if a
longer duration is chosen, the number of tests for a given
phoneme is less signi�cant. Secondly, if the percentage of
correct identi�cations is too high, we felt that comparisons
may lack statistical signi�cance.

Test Training Duration
Duration 15 s 10 s 6 s 3 s 2 s

�G 99.9 99.7 99.3 94.3 88.4
10 s �Gc 99.8 99.7 98.1 92.0 85.5

(1095) �Sc 99.8 99.7 98.3 91.1 85.3
�G 99.9 99.5 98.8 93.0 87.2

6 s �Gc 99.6 99.0 96.8 88.6 82.6
(1294) �Sc 99.5 99.1 97.0 88.5 82.2

�G 98.7 97.3 95.3 87.0 80.2
3 s �Gc 97.8 96.0 92.0 82.5 74.8

(1340) �Sc 98.1 96.5 93.0 82.4 74.0
�G 97.5 95.3 91.7 83.3 74.3

2 s �Gc 94.8 92.9 86.3 75.6 66.1
(1340) �Sc 95.7 92.9 86.8 76.3 66.0

�G 87.5 83.9 76.0 65.3 57.0
1 s �Gc 79.5 73.5 65.1 53.3 47.8

(1340) �Sc 83.6 79.0 71.7 57.9 50.7

Table 2. Speaker identi�cation: results in percentage of
correct identi�cations for di�erent training and test dura-
tions. The numbers of tests for each test duration is indi-
cated in parentheses.

5. PHONETIC CONTENT

5.1. Segmentation

In order to study the in
uence of phonetic content on the
performances of the second-order statistical methods, we
used an automatic system for segmenting the speech mate-
rial into speci�c phonemes or phonetic classes. This system
of automatic localisation is based on a bottom-up acoustic-
phonetic decoder, which is speaker independent [3], [10], [6].
For each sentence, this decoder proposes a set of weighted
phonetic hypotheses. These hypotheses are then aligned
with the phonetic transcription of the sentence, by a left-
right alignment algorithm. In order to obtain a high local-
isation accuracy, the algorithm is tuned with a high level
of rejection for uncertain alignments: in this experiment,
55 % of the sentences were rejected. As a consequence, the
phonetic events selected by this procedure can be consid-
ered as highly reliable, and quite typical in their category.
The localisation algorithm gives a small kernel for a recog-
nized phoneme. So the phoneme segments were extended to
5 frames before and 5 frames after the kernel. Therefore, the
segments are not only composed with frames of the given
phoneme, as they may also include a small proportion of
transitions.
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5.2. Experimental Protocol

For this set of experiments, training material consists of
all speech frames derived from 15 seconds of phonetically
balanced sentences, i.e. no speci�c phonetic events are se-
lected. It is in fact the exact same material as the one used
in the previous experiment on the in
uence of utterance
duration (see section 4.), with training durations of 15 sec-
onds.
For the tests, speci�c phonetic classes and phonemes are se-
lected on the rest of the speech material, by the procedure
described in section 5.1.. For a particular phoneme, all the
frames labeled as this given phoneme are concatenated to-
gether, and this material is divided into as many tests of 1
second as possible.

5.3. Description of the phoneme classes

Results for all phoneme classes and phonemes are not pre-
sented in this article: we chose to report only on those for
which more than 40 tests were carried out.
A �rst class, refered to as All, contains all the phonemes.
The experiments with test data from this class is however
slightly di�erent from the one in section 4., with 15 sec-
onds for training and 1 second for testing: speech material
in the class All is composed of acoustic material clearly
identi�ed as a phoneme by the segmentation process, and
in particular, it does not contain silences, pauses, or other
non-linguistic events.
The other classes are: Vowels (which contains oral and nasal
vowels but not glides), Oral Vowels, Nasal Vowels, Conso-
nants (which contains also glides), Non-Nasal Consonants
(which contains all the consonants except the nasal conso-
nants), Nasal Consonants, Stop Consonants, Fricatives and
Liquids+Glides (which form a single class).

5.4. Results

Results for various phoneme classes and individual phone-
mes are given in Table 3 and Table 4 respectively. The per-
centage of correct identi�cations on all the tests is given, as
well as the average of the correct identi�cations per speaker.
The number of tests is also indicated.

5.5. Comments

Quite surprisingly, measure �G still performs better than
�Gc and �Sc: even though the mean vector within a pho-
netic class is expected to be strongly class dependent (and
therefore not to match the training mean vector), it still
keeps some consistence across phonetic classes.
The results for the class All outperform slightly those for
the 15 s � 1 s experiment of section 4., probably because
the speech material is, in the second case, more reliable.
A second observation is that the results for each phoneme
class is higher than the result of the class All. It is also the
case for most of the phonemes. This tends to show that
a phonetically homogeneous test material bene�ts to the
overall speaker identi�cation performance, even though the
training material does not share the same character.
In more detail, Vowels give better results than Consonants.
Nasal Vowels outperform Vowels and Oral Vowels. Non-
Nasal Consonants, and more particularly Stop Consonants
or Fricatives, give lower performances than all Consonants
together, whereas Liquids+Glides and Nasal Consonants
yield higher scores. Note that the class Liquids+Glides gives
the best results altogether, except with �Sc for which the
classes Nasal Consonants and Nasal Vowels perform better.
In what concerns individual phonemes, the best scores with

All Vowels

Phonemes (1334) (1247)
I M I M

�G 90.6 90.5 97.1 97.0
�Gc 80.8 80.6 92.3 92.1
�Sc 83.5 83.4 92.0 91.7

Oral Vowels Nasal Vowels
Phonemes (1206) (262)

I M I M

�G 96.0 95.9 98.1 98.5
�Gc 91.3 91.2 89.3 90.5
�Sc 90.5 90.5 93.1 92.9

Consonants Non-Nasal

Phonemes (1247) Cons. (1186)
I M I M

�G 96.2 96.2 94.7 94.8
�Gc 91.1 91.0 89.4 89.3
�Sc 91.6 91.3 89.0 89.0

Nasal Cons. Stop Cons.

Phonemes (390) (693)
I M I M

�G 96.9 97.7 94.2 95.7
�Gc 85.9 87.6 91.2 92.6
�Sc 95.1 93.9 91.3 92.7

Fricatives Liquids +
Phonemes (486) Glides (277)

I M I M

�G 92.2 92.8 98.9 98.8
�Gc 83.7 84.8 92.4 92.3
�Sc 86.2 86.9 92.4 91.4

Table 3. Speaker identi�cation with speech material se-
lected from speci�c phonetic classes. Training is composed
of 15 s of phonetically balanced speech and test is composed
of 1 s of phonetically biased speech. I = Global correct iden-
ti�cation score, M = Average correct identi�cation score
over all speakers. The number of tests for each test con�g-
uration is indicated in parentheses.

�G are obtained with the phonemes /o/, /d/, /"/, and /~�/,
whereas /k/, /`/, /u/, /s/ and /y/ give the poorest perfor-
mance levels.

6. CONCLUSION

Our experiments on the e�ect of the phonetic content on
speaker identi�cation using second-order statistics, tend to
show that, on our database, the phonetic homogeneity of
the test material is usually a signi�cant factor of improve-
ment, even if the training material is heterogeneous. The
phonetic classes that yield particularly good results are Liq-
uids+Glides, Vowels (and more particularly Nasal Vowels),
and Nasal Consonants, but results for other classes are
never dramatically poor. There may therefore exist some
kind of speaker-dependent tie between acoustic distribu-
tions across phonemes that is captured by the second-order
statistical methods. This hypothesis has to be con�rmed on
other types of speech data, in particular noisy speech and
non-contemporaneous recordings.
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/i/ /e/
Phonemes (174) (105)

I M I M

�G 92.0 92.2 96.2 97.5
�Gc 79.9 81.3 86.7 88.0
�Sc 81.0 82.5 87.6 88.9

/"/ /y/
Phonemes (258) (66)

I M I M

�G 97.3 98.2 87.9 90.6
�Gc 89.9 90.8 84.8 89.8
�Sc 90.7 93.0 86.4 92.2

/�/ /a/
Phonemes (329) (378)

I M I M

�G 96.7 97.1 95.8 95.7
�Gc 91.8 91.8 87.8 86.9
�Sc 91.2 90.9 90.7 89.3

/o/ /u/
Phonemes (87) (75)

I M I M

�G 97.7 97.3 85.3 87.9
�Gc 87.4 88.3 73.3 77.4
�Sc 89.7 89.6 76.0 81.2

/~�/ /p/
Phonemes (108) (113)

I M I M

�G 97.2 97.4 91.2 92.9
�Gc 89.8 89.4 82.3 84.3
�Sc 94.4 92.9 87.6 88.7

/t/ /k/
Phonemes (196) (102)

I M I M

�G 90.8 92.3 82.4 86.0
�Gc 86.7 87.1 78.4 84.4
�Sc 89.3 90.4 78.4 81.0

/d/ /s/
Phonemes (111) (194)

I M I M

�G 97.3 97.5 87.1 89.0
�Gc 91.0 91.9 78.9 80.4
�Sc 92.8 93.8 84.0 84.3

/v/ /`/
Phonemes (42) (48)

I M I M

�G 90.5 89.2 83.3 82.9
�Gc 76.2 77.0 77.1 76.0
�Sc 76.2 75.7 75.0 73.6

/m/ /n/
Phonemes (158) (149)

I M I M

�G 95.6 96.4 96.6 94.4
�Gc 79.7 80.3 87.2 88.0
�Sc 95.6 94.5 94.6 94.8

Table 4. Speaker identi�cation with speech material se-
lected from speci�c phoneme realisations. Training is com-
posed of 15 s of phonetically balanced speech and test is com-
posed of 1 s of phonetically biased speech. I = Global cor-
rect identi�cation score, M = Average correct identi�cation
score over all speakers. The number of tests for each test
con�guration is indicated in parentheses.
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