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Abstract

Consider a random system f1(x) = 0, . . . , fn(x) = 0 of n random real polynomials in n

variables, where each fk has a prescribed set of exponent vectors in a set Ak ⊆ Z
n of size tk.

Assuming that the coefficients of the fk are independent Gaussian of any variance, we prove
that the expected number of zeros of the random system in the positive orthant is bounded
from above by 4−n

∏
n

k=1
tk(tk − 1). This result is a probabilisitc version of Kushnirenko’s

conjecture; it provides a bound that only depends on the number of terms and is independent
of their degree.

1 Introduction

Instances of polynomial system solving arise in a variety of problems coming from kinematics [70],
dynamical systems [32], mathematical modeling of chemical reaction networks [27], computer vision
[48], and computer aided geometric design [24, 66]. The common thread among these plethora of
applications is that the polynomial systems that occur are structured, and the solutions that are
most useful are the real ones. In this setting, the basic question is: how many real zeros are there?

When we consider zeros over complex numbers, we have the power of intersection theory [30]. In
particular, for sparse polynomial systems the number of complex solutions is given by the celebrated
BKK bound [7, 50] (cf. [71, Chapter 3]). The story becomes more complicated and interesting for
real zeros. Consider the following simple polynomial system:

a1 + b1X + γ1Y + c1XY Z
d = 0

a2 + b2X + γ2Y + c2XY Z
d = 0

a3 + b3X + γ3Y + c3XY Z
d = 0.

where d ∈ N and the ak, bk, ck and dk are real numbers. Although the system has, generically, d
complex zeros, it has at most two real solutions. This example illustrates that the number of real
zeros cannot be estimated using the number of complex solutions.

The above phenomenon is a general one. Khovanskĭı, in his seminal book Fewnomials [44],
showed that the maximum number of real zeros of a polynomial system can be bounded in terms
of the description complexity of the system. The term fewnomial refers to a polynomial with few
monomials, and so to a polynomial with a low description complexity. He showed that independent
of the degree of its monomials, real fewnomial systems have few real zeros.

The work of Khovanskĭı was an answer to several conjectures by Kushnirenko in 1977 [49]: A
regular positive zero of a polynomial system f = (f1, f2, . . . , fn) is a point x ∈ Rn with positive
coordinates (xi > 0) such that the Jacobian matrix of the polynomial system f at x, Dxf , is
full-rank. We denote the set of regular positive real zeros by Zr(f,R

n
+). Among the conjectures of

Kushnirenko, the following one remains widely open:
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Kushnirenko’s Question: Let A1, . . . , An ⊂ Nn be finite sets of sizes t1, . . . , tn and f
the system of fewnomials given by

f1 =
∑

α∈A1
f1,αX

α

...
fn =

∑

α∈An
fn,αX

α

Is there a bound of the form

#Zr(f,R
n
+) ≤ poly(t1, . . . , tn)

n?

It is fair to say that Kushnirenko’s question is one of the most challenging problems in real
algebraic geometry. However, its reach and importance goes far beyond. In complexity theory,
variants of Kushnirenko’s question (where the bound should be explicit in an algebraic complexity
measure), such as the real τ -conjecture [45] or the adelic τ -conjecture [63], imply Valiant’s algebraic
variant of P vs NP (see [19] for details and relation to classical questions in complexity theory, and
[17] for a probabilistic take on the problem).

Specific cases of Kushnirenko’s question play an important role in studying chemical reaction
networks. In that setting, the steady states of the network correspond to positive real zeros of
a certain parameterized polynomial system [27]. Although there exist several methods to decide
whether the system has at least two positive zeros [10, 60, 62, 35, 34], finding (tight) upper bounds
is a hard and open problem. The polynomial system arising from a reaction network is usually
sparse, and the maximum number of its positive zeros is much smaller compared to the number of
complex zeros [39, 61]. Thus techniques from real algebraic geometry are required to have insight
into the number of steady states [33, 37, 10].

Khovanskĭı [44, §3.14, Corollary 4] obtained a bound of the form

2(
t−1

2 )(n+ 1)t−1

where t = #(∪n
k=1Ak) is the number of types of monomials appearing in the system. Later, Bihan

and Sottile [14, 13] would improve this bound to

e2 + 3

4
2(

t−n−1

2 )nt−n−1

and, in a special mixed case in which t =
∑n

k=1 tk − n+ 1, further improved this bound to

e2 + 3

4
2(

t−n−1

2 )
(

t− n− 1

t1 − 2, . . . , tn − 2

)

.

After four decades of hard work, as of today, we are still far from answering Kushnirenko’s question.
We only have precise bounds for special cases [11, 46, 54], and even the bivariate case of Kush-
nirenko’s question remains open [46]. We refer the reader to [71] for a comprehensive exposition,
to [28] for a short survey and to [74, Appendix F, §1] for a historical survey.

Our current inability to answer Kushnirenko’s question, and the pressing need for an answer
in applications, motivates a probabilistic take on the problem. How many zeros of a random real
fewnomial system are real? This question turns out the be harder than it sounds. There is a well-
developed theory (either relying on the kinematic formula [5, 29] or convex bodies [15, 42, 58]) in
random real algebraic geometry. This theory has produced strong results on the expected number
of real zeros of random dense polynomials, that is, random polynomials supported on all monomials
of a given degree [47, 69, 2, 52, 53, 3, 4]. However, in the case of random structured polynomials,
applying the theory becomes more complicated [16, 43], and earlier available results are either for
random polynomials supported on a product of simplices [65] or depend strongly on the degree of
the monomials [57]1. In summary, the aforementioned results in random real algebraic geometry do

1Recently, Malajovich [56, 55] has provided a bound that bridges between the dense and the sparse cases. In a
different direction, there are results on complex zeros of random sparse complex polynomials [6, 67, 68].
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not address Kushnirenko’s question. In [22], we obtained a bound for random fewnomial systems
with fixed support (A = A1 = · · · = An) and centered Gaussian random coefficients with the same
variance structure. In our view, the importance of the bound in [22] relies on two facts:

(1) The bound depends only in the number of distinct monomials.

(2) The bound does not depend on the variance structure of the random coefficients.

This latter point should be stressed, since, for random dense polynomial systems all available
results place strong assumptions on the variance structure.

Recently, Bürgisser [20] generalized the results of [22] to the mixed case (where A1, A2, . . . , An

are not necessarily equal). However, the result in [20] only holds for centered Gaussian fewnomial
systems in which all variances are equal to one. In this paper, we obtain estimates that hold for
arbitrary support sets and arbitrary variances in the same spirit with Kusnirenko’s question.

The simplest form of our result can be seen in the theorem below. In the remainder of the
introduction we explain the consequences of our result in specific cases and state our main theorem
in full technical detail. We also provide side results on the volume of random fewnomial varieties.

Theorem 1.1. Let A1, . . . , An ⊂ Rn be finite sets of sizes t1, . . . , tn, and f the system of n random
fewnomials given by

f1 =
∑

α∈A1
f1,αX

α

...
fn =

∑

α∈An
fn,αX

α

(1.1)

where the fk,α are independent centered Gaussian random variables (with no restrictions placed
on variances). Then we have

Ef#Z(f,Rn
+) ≤

1

4n

n
∏

k=1

tk(tk − 1) (1.2)

where Z(f,Rn
+) is the zero set of f in Rn

+.

Remark 1.2. Observe that if the affine span of
∑n

k=1 Ak is not the whole Rn (or, more generally,
if A1, . . . , An does not contain an independent transversal (see [76, Lemma 1] for the precise
definition)), then Z(f,Rn

+) = ∅ with probability one.

1.1 Random Mixed Fewnomials with Restricted Variances

The following theorem shows that the bound of Theorem 1.1 can be improved when we impose
restrictions on the variances on the random fewnomial system. This result improves the main
theorem of Bürgisser [20, Theorem 1.1] by allowing more flexible assumptions on the variance
structure and a better multiplying factor: 4−n instead of (2π)−n/2. We give the proof in Section 3.

Theorem 1.3. Under the same notations and assumptions of Theorem 1.1, assume that the
variance vectors

vk = (vk,α)α∈Ak

of the fk satisfy the following conditions:

(VM1) for all k and all α ∈ Ak, vk,α ≤ 1.

(VM2) for all k and α ∈ Ak a vertex of the polytope Pk := conv(Ak), vk,α = 1.

Then

Ef#Zr(f,R
n
+) ≤

1

4n
V

(

n
∑

k=1

Pk

)

n
∏

k=1

(tk − 1) (1.3)

where V (
∑n

k=1 Pk) is the number of vertices of the Minkowski sum
∑n

k=1 Pk.

Remark 1.4. Interestingly, in the univariate case (n = 1), the obtained upper bound, (t1 − 1)/2,
agrees with the average value of the bound given by Descartes’ rule of signs [26]. However, optimal
results in the univariate case, when all variances are equal to one, were already obtained in [41].
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1.2 Random Unmixed Fewnomials with Restricted Variances

In the case where the system is unmixed and some restrictions are imposed on the variances we
obtain better bounds. This result improves the main theorem of [22, Theorem 1.2] (see Remark
1.6 for details). We give the proof of this in Section 4.

Theorem 1.5. Under the same notations and assumptions of Theorem 1.1, assume that

A = A1 = · · · = An

for some A ⊂ Rn of size t, and assume that the variance vectors vk of the fk satisfy either the
assumptions (VM1) and (VM2) in Theorem 1.3 or

v1 = · · · = vn. (1.4)

Then

Ef#Z(f,Rn
+) ≤

n+ 1

4n

(

t

n+ 1

)

. (1.5)

Remark 1.6. Theorem 1.5 improves [22, Theorem 1.2] in the following sense: The main result of
[22, Theorem 1.2] only holds under the assumption (1.4) on the variance vectors, whereas Theorem
1.5 has more flexible assumptions. Moreover, the upper bound in [22, Theorem 1.2] is of the form

1
2n−1

(

t
n

)

. Therefore, Theorem 1.5 gives a smaller bound if and only if t− n ≤ 22n−n+1.

A specific case that attracted considerable attention is when #A = n + ℓ and ℓ is a fixed
constant [14], specially when ℓ = 2 [8, 9, 64]. The following corollary (whose proof is at the end of
Section 4) shows that if such systems are generated randomly then it is hard to find any positive
zero at all.

Corollary 1.7. Under the same the same notations and assumption of Theorem 1.5, assume that
for some constant ℓ ∈ N,

#A = n+ ℓ

Then

Pf

(

Z(f,Rn
+) 6= ∅

)

≤ ℓ(n+ 1)ℓ

4n
. (1.6)

Moreover, since ℓ is a fixed constant, we have that limn→∞ Pf

(

Z(f,Rn
+) 6= ∅

)

= 0.

Remark 1.8. If we substitute the constant ℓ by logpolynomial function ℓ(n) = O(loga(n)) with
a > 0 a constant, the limit probability would still be zero.

1.3 Main Result in Full Technical Detail

Recall that given a finite set A ⊂ Rn and a map

l : A→ R,

the upper envelope of A with respect l is the convex polyhedron given by

L(A,l) := conv

{(

l(α)− s
α

)

| α ∈ A, s ≥ 0

}

. (1.7)

Intuitively, this set arises when we lift A according to l and we look at the convex hull of these
lifted points,

P l := conv

{(

l(α)
α

)

| α ∈ A

}

,

from above. We can now state our main theorem, from which Theorems 1.1 and 1.3 will also follow.
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Theorem 1.9. Let A1, . . . , An ⊂ Rn be finite sets of sizes t1, . . . , tn, and f the the system of n
random fewnomials given by

f1 =
∑

α∈A1
f1,αX

α

...
fn =

∑

α∈An
fn,αX

α

where the fk,α are independent centered Gaussian random variables. Consider, for each fk, its
variance vector

vk = (vk,α)α∈Ak

and construct the lifting functions lk : Ak → R given by

lk : α 7→ 1

2
ln vk,α. (1.8)

Then we have

Ef#Zr(f,R
n
+) ≤

1

4n
V

(

n
∑

k=1

L(Ak,lk)

)

n
∏

k=1

(tk − 1) (1.9)

where V (
∑n

k=1 L(Ak,lk)) is the number of vertices of the Minkowski sum
∑n

k=1 L(Ak,lk).

We note that one can interpret the expression

V

(

n
∑

k=1

L(Ak,lk)

)

as the number of elements of
∑n

k=1 Ak that are used in the regular mixed subdivision induced by
the lifting functions l1, . . . ,ln which are defined by the logarithm of the variances. Indeed, we
find the theory of regular (mixed) subdivisions [25] at the core of our development. Subdivisions
have been used earlier in the work of Bihan, Santos, and Spaenlehauer [12] and Sturmfels [73] for
constructing fewnomial systems with many zeros, in the work of Sturmfels on the Newton polytope
of A-resultants [72, Sect. 2], in the seminal work by Gelfand, Kapranov and Zelevinsky [36], and
implicitly in Viro’s patchworking method [75] (see [31, Section 2.2] for an exposition). We don’t
have any good explanation for why mixed regular subdivisions appear in random fewnomial theory,
but there seems to be a deep connection to be uncovered.

1.4 Bounds on Volume of Random Projective Fewnomial Varieties

In complex algebraic geometry, the (normalized) volume of a complex algebraic variety is just the
degree [21, Corollary 20.10]. In real algebraic geometry, we can only talk about the average volume
of a random variety— (normalized) volume is also referred to as “average degree” [23]. Shub and
Smale [69] showed that for a random KSS homogeneous polynomial system f of degrees d1, . . . , dq
in the n+ 1 variables X0, X1, . . . , Xn, we have that

Ef voln−qZ(f,Pn
R) =

voln−qP
n−q
R

volnP
n
R

√

√

√

√

q
∏

k=1

dk, (1.10)

where volkP
k
R

is the volume under the usual Riemannian structure. Moreover, we even have a
central limit theorem in the case that all degrees are equal [4]. The following result shows that,
for random projective varieties given by random fewnomials, the average volume can be bounded
independently of the degree. We give the proof in Section 5.

Theorem 1.10. Let q ≤ n, d1, . . . , dq ∈ N and A1, . . . , Aq ⊂ N
n+1 be finite subsets of sizes

t1, . . . , tq such that for all k,
{dke0, . . . , dken} ⊆ Ak ⊆ dk∆n

5



where {e0, . . . , en} is the standard basis of Rn+1 and ∆n := conv(e0, . . . , en) the n-simplex. Con-
sider the random homogeneous fewnomial system f given by

f1 =
∑

α∈A1
f1,αX

α

...
fq =

∑

α∈Aq
fq,αX

α

where the fk,α are independent centered Gaussian random variables (with no restrictions placed
on the variances). Then, with probability one, Z(f,Pn

R
) is of dimension at most n− q and

Ef voln−qZ(f,Pn
R) ≤

voln−qP
n−q
R

volnP
n
R

(n(n+ 1))n−q

2n

q
∏

k=1

tk(tk − 1) (1.11)

Remark 1.11. In Theorem 1.10, we are imposing conv(Ak) = dk∆n to guarantee that Z(f,Pn
R
) does

not contain a coordinate hyperplane with probability one. Although this can be achieved under
more general conditions, we prioritize a simple statement.

Remark 1.12. By our assumption, we have tk ≥ n+ 1. Hence, when degree is large, for example,
when

tk ≤ 2n/q

(n(n+ 1))n/q−1

√

dk,

(1.11) gives a better bound than (1.10). In particular, the random projective fewnomial hypersur-
face given by

n
∑

i=0

fiX
d
i

has an average volume bounded by

voln−qP
n−q
R

volnP
n
R

(

n(n+ 1)

2

)n

,

which does not depend on the degree.

1.5 Overview and Outline of the Proof

Our proof follows a similar path to the proof in [22]. We first prove an integral-probabilistic
formula for the number of zeros which depends on the determinant of a random matrix. To bound
this complicated integral, we use the Cauchy-Binet formula2 and express the determinant as a
summation of many determinants of n×n matrices. In turn, this splits the integral formula into a
sum of integrals over determinants of n× n matrices. We bound these summands by interpreting
them as expected number of real zeros of a specific system of random polynomials and bounding
these expectations simply by the maximum number of zeros of these special systems.

Expanding the above, we prove the integral-probabilistic formula (2.2) in Section 2 using kine-
matic formulas [23, 40] and a measure theoretic result of Appendix A. After this, in Section 3, we
use the Cauchy-Binet formula [18, Theorem 4.15] to split the integral into several summands. How-
ever, the proof complicates and we need to do a polyhedral subdivision—induced by the normal
fan of

∑n
k=1 L(Ak,lk) in the statement of Theorem 1.9—to perform the reduction of the random

general case to the deterministic case—a binomial system—analyzed in Proposition 3.2.
Although the above reduction from the general random case to special deterministic cases plays

a central role in our proof, a direct analytical proof is possible. We provide a fully analytical proof
of the Proposition 3.2 to show this fact.

2Curiously enough, this formula appears in the proof of many upper bounds in fewnomial theory [14, 20, 22].
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Organization

In Section 2 we obtain a Rice formula for the expected number of real zeros. Section 3 proves our
main result. Section 4 deals with unmixed systems, and Section 5 contains the proof of volume
estimate for random fewnomial varieties.
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2 A Rice Formula for the Expected Number of Zeros

At the center of [20], we find an integral-probabilistic formula for the number of expected zeros
of a random system. This formula is only implicitly stated in a special case (the case where ψ is
injective). We make this formula explicit and prove it in its full generality. We do this by combining
the kinematic formulas [23, 40] used in [20] with standard arguments of measure theory, such as
Dynkin’s lemma [1, p. 4.11]. We note that the formula below is a special case of Rice formula [5,
Theorem 6.2]. We provide a proof using the kinematic formula for completeness and because this
proof is interesting in its own right.

Recall that for f : U ⊆ Rn → Rn with U ⊆ Rn open,

Zr(f, U) := {ζ ∈ U | f(x) = 0, detDxf(x) 6= 0}

is the set of regular zeros of f in U . The following theorem gives the promised integral-probabilistic
formula for the number of zeros of a random system where each equation is generated independently.

Theorem 2.1 (Rice formula). Let Ω ⊆ Rn be an open set and let

ϕk : Ω → R
mk+1

be smooth maps such that the map ψ : Ω →∏n
k=1 S

mk given by

ψ : x 7→







ψ1(x)
...

ψn(x)






:=







ϕ1(x)/‖ϕ1(x)‖
...

ϕn(x)/‖ϕn(x)‖






(2.1)

is well-defined. Consider a random system of equations f1(x) = 0, . . . , fn(x) = 0 given by

fk :=

mk+1
∑

i=0

ck,iϕk,i

7



where the ck,i are i.i.d. standard Gaussian random variables. Then, for every Borel measurable set

Ω̃ ⊆ Ω,

Ec#Zr(f, Ω̃) = (2π)−n/2

∫

Ω̃

Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

dx (2.2)

where the ak are independent standard Gaussian vectors in ψk(x)
⊥ ⊂ Rmk+1, i.e., the subspace

orthogonal to ψk(x).

Corollary 2.2. Under the same assumptions and notations of Theorem 2.1, for every Borel mea-
surable set Ω̃ ⊆ Ω,

Ec#Zr(f, Ω̃) = (2π)−n/2

∫

Ω̃

1
∏n

k=1 ‖ϕk(x)‖
Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxϕ1

...
aTnDxϕn







∣

∣

∣

∣

∣

∣

∣

dx (2.3)

where the ak are independent standard Gaussian vectors in the subspace ϕk(x)
⊥.

Corollary 2.3. Under the same assumptions and notations of Theorem 2.1, if

m1 = m2 = · · · = mn = 1

and, for some ξ : Ω → Rn,

ϕ1 =

(

1
ξ1(x)

)

, . . . , ϕn =

(

1
ξn(x)

)

then, for every Borel measurable set Ω̃ ⊆ Ω,

Ec#Zr(f, Ω̃) =
1

πn

∫

Ω̃

|detDxξ|
∏n

k=1(1 + ξk(x)2)
dx (2.4)

Proof of Theorem 2.1. We will show later that without loss of generality we can assume that
ψ : Ω →∏n

k=1 S
mk is an embedding, i.e., it satisfies:

(I1) ψ is an immersion, i.e., for all x ∈ Ω, rankDxψ = n.

(I2) ψ is injective.

Moreover, we can further assume that

(O) Ω̃ = Ω.

Under these assumptions, ψ(Ω) is an open embedded submanifold of
∏n

k=1 S
mk . Now, consider the

random hyperplanes

Hk :=

{

x ∈ R
mk+1 |

mk
∑

i=0

ck,ixk,i = 0

}

which are uniformly distributed in the corresponding Grassmannian (because the ck,i are i.i.d.
standard Gaussians). Observe that

#Z(f,Ω) = #ψ(Ω) ∩ (H1 × · · · × Hn) , (2.5)

since ψ(x) ∈ H1 × · · · × Hn if and only if x ∈ Z(f,Ω). Moreover, by Sard’s Theorem [59, §2] (cf.
[21, Proposition A.18]), the intersection

ψ(Ω) ∩ (H1 × · · · × Hn)

is transversal with probability one, and hence it is zero-dimensional almost surely. Hence, with
probability one,

#Zr(f,Ω) = #Z(f,Ω) = #ψ(Ω) ∩ (H1 × · · · × Hn) ,

8



and so
Ec#Zr(f,Ω) = EH1,...,Hn

#ψ(Ω) ∩ (H1 × · · · × Hn) .

Now, by the kinematic formula stated in [20, Theorem 3.2] (cf. [23, 40]) and [20, Lemma 3.4.], the
equation (2.2) holds for Ω̃ = Ω.

We now show that we can assume (I1), (I2) and (O) without loss of generality. If (I1) does not
hold, then the set

V := {x ∈ Ω | rankDxψ < n}
is non-empty. Now for a given x ∈ V , note that

Dxψk =
1

‖ϕk(x)‖
(I− ψk(x)ψk(x)

T )Dxϕk. (2.6)

So, to have Dxψ < n we have to have a vx ∈ Rn \ 0 in the kernel of Dxψ for which we have that
for all k

Dxϕk(vx) ∈ Rϕk(x).

That is there exist vx ∈ Rn \ 0 and t1, . . . , tn ∈ R such that for all k,

Dxϕk(vx) = tkϕk(x).

Translating this into Dxf we conclude that there are tk ∈ R that satisfies

Dxf(vx) =







cT1 Dxϕ1(vx)
...

cTnDxϕn(vx)






=







t1c
T
1 ϕ1(x)
...

tnc
T
nϕn(x)






=







t1f1(x)
...

tnfn(x)






.

This means f cannot have regular zeros at x for any x ∈ V . Hence,

#Zr(f, V ) = 0 and #Zr(f, Ω̃) = #Zr(f, Ω̃ \ V ).

Moreover, since for all x ∈ V , rankDxψ < n, we have that for all a1 ∈ Rm1+1, . . . , an ∈ Rmn+1,

det







aT1 Dxψ1

...
aTnDxψn






= 0

and so
∫

Ω̃

Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

dx =

∫

Ω̃\V

Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

dx.

Hence, taking Ω \ V instead of Ω, we can assume, without loss of generality, that (I1) holds.
Assume now that (I1) holds. We will show how we can assume (I2) and (O) without loss of

generality. We will make use of Theorem A.4, which relies on standard arguments in measure
theory and which we prove in Appendix A. By (I1), the map ψ : Ω → Sn is an immersion and so,
by [51, Proposition 5.22], it is a local embedding, i.e., for each x ∈ Ω, there is rx > 0 such that
ψ : B(x, rx) ⊆ Ω →∏n

k=1 S
mk is injective. Therefore the collection of open sets

U := {U ⊆ Ω | U open, U ⊆ Ω, U compact and ψ|U injective}. (2.7)

satisfies that for all x ∈ Ω, there is rx > 0 such that for all r < rx, B(x, r) ∈ U . Hence U is a base
for the topology of Ω—assumption (U0) of Theorem A.4. Moreover, U is closed under containment
of open sets—assumption (U1) of Theorem A.4.

Consider the following two Borel measures:

µ : B 7→ Ec#Zr(f, B)
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and

ν : B 7→ (2π)−n/2

∫

B

Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

dx.

We only need to show that µ = ν. Once this is done, (2.2) holds in the desired generality.
For each U ∈ U , (I2) holds. Thus we have that (2.2) holds with Ω̃ = U , and so

µ(U) = ν(U)

—assumption (U4) of Theorem A.4. Moreover, this quantity is finite—assumption (U3) of Theo-
rem A.4. To see this, note that

Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

≤

√

√

√

√Ea

n
∏

k=1

‖ak‖2

√

√

√

√

√

√

Ea

∣

∣

∣

∣

∣

∣

∣

det







âT1 Dxψ1

...
âTnDxψn







∣

∣

∣

∣

∣

∣

∣

2

where âk := ak/‖ak‖ is uniformly distributed in S
mk ∩ψk(x)

⊥., and so, by compactness, for x ∈ U ,

Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

≤

√

√

√

√Ea

n
∏

k=1

‖ak‖2 max
âk∈S

mk

x∈U

∣

∣

∣

∣

∣

∣

∣

det







âT1 Dxψ1

...
âTnDxψn







∣

∣

∣

∣

∣

∣

∣

<∞.

Thus the integral of the left-hand side over U ⊂ U , and so ν(U), must be finite.
Now, Ω is σ-compact, because it is an open subset of Rn and all hypothesis of Theorem A.4

((U0), (U1), (U2) and (U3)) are satisfied, so µ = ν as we wanted to show.

Remark 2.4. The above proof can be applied to extend [22] to functions that are not semialgebraic
and this immediately extends the result in [22] to arbitrary real exponents.

Proof of Corollary 2.2. This follows from Theorem 2.1 using (2.6), the properties of the determi-
nant and that ak(I− ψk(x)ψk(x)

T ) = ak due to ak ∈ ψk(x)
⊥ = ϕk(x)

⊥.

Proof of Corollary 2.3. We just have to apply Corollary 2.2. Fix x ∈ Ω, we only have to show that

(2π)−
n
2 Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxϕ1

...
aTnDxϕn







∣

∣

∣

∣

∣

∣

∣

=
1

πn

| detDxξ|
∏n

k=1

√

1 + ξk(x)2)

where the ak ∈ ψk(x)
⊥ are independent standard Gaussian random vectors.

Since we are in R
2, we have that

ϕk(x)
⊥ = span

(

1√
1+ξk(x)

(

−ξk(x)
1

))

and so we can write

ak =
zk

√

1 + ξk(x)

(

−ξk(x)
1

)

with the zk ∈ R i.i.d. standard Gaussians. Moreover, because of this, akDxϕk = zk√
1+ξk(x)2

Dxξk,

and so
∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxψ1

...
aTnDxψn







∣

∣

∣

∣

∣

∣

∣

=

n
∏

k=1

|zk|
| detDxξ|

∏n
k=1(1 + ξk(x)2)

.

Now, an easy computation shows that Ez

∏n
k=1 |zk| = (2/π)n/2, and the claim follows.
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We finish this section with the following two propositions which will allow us to drop the
regularity assumption from our theorems.

Proposition 2.5. Under the same assumptions and notations of Theorem 2.1, if for all x ∈ Ω,

rankDxψ = n,

then, for every Borel measurable set Ω̃ ⊆ Ω,

Z(f, Ω̃) = Zr(f, Ω̃)

with probability one.

Proposition 2.6. Under the same analogous notations of Theorem 2.1, assume that the map the
map ψ : Ω →

∏q
k=1 S

mk , with q > n, given by

ψ : x 7→







ψ1(x)
...

ψn(x)






:=







ϕ1(x)/‖ϕ1(x)‖
...

ϕq(x)/‖ϕq(x)‖






(2.8)

is well-defined and that for all x ∈ Ω,

rankDxψ = n.

Consider the random overdetermined system f1(x) = 0, . . . , fq(x) = 0 given by

fk :=

mk+1
∑

i=0

ck,iϕk,i

where the ck,i are i.i.d. standard Gaussian random variables. Then

Z(f,Ω) = ∅

with probability one.

Proof of Proposition 2.5. The proof is as the proof of Theorem 2.1, but now we don’t need to
remove any subset from Ω so that that (I1) holds. Hence, arguing as before using (2.5) with the
cover U , we have, by Sard’s Theorem [59, §2] (cf. [21, Proposition A.18]), that for all U ∈ U ,

Z(f, U) = Zr(f, U)

with probability one. Since this holds for all open sets in an open cover of Ω, it holds for Ω too.

Proof of Proposition 2.6. The proof is analogous to that of Proposition 2.5. However, when writing
down the analogous of (2.5), we have that we are intersecting q > n hyperplanes with an n-
dimensional submanifold in

∏q
k=1 S

mk . By Sard’s Theorem [59, §2] (cf. [21, Proposition A.18]), this
intersection is almost surely transversal which implies that this intersection is empty as desired.

3 Proof of the Main Theorem

We now prove Theorem 1.9 which yields Theorems 1.1 and 1.3 as direct corollaries. We also prove
Proposition 3.1, which allows us to remove the regularity from our statements for random fewnomial
systems; and the key Proposition 3.2 that plays a central role in the proof of the main theorem.

Proposition 3.1. Under the notations and assumptions of Theorem 1.9,

Z(f,Rn
+) = Zr(f,R

n
+)

with probability one.
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Proposition 3.2. Let γ1, . . . , γn ∈ Rn, s1, . . . , sn ∈ R and consider the following the random
binomial system h given by the equations

h1 = a1 exp(γ
t
1X + s1) + b1

...
hn = an exp(γ

t
nX + sn) + bn

(3.1)

where the ak and bk are i.i.d. standard Gaussian random variables, and the following Borel-
measurable set

B := {x ∈ R
n | for all k, γTk x+ sk ≤ 0}.

Then
1

πn

∫

B

∏n
k=1 exp(γ

T
k x+ sk)

∏n
k=1(1 + exp(2γTk x+ 2sk))

|det(γ1 · · · γn)| dx = Eh#Zr(h, B) ≤ 1

4n
.

Remark 3.3. If the γk are linearly independent, then the inequality in Proposition 3.2 is an equality.

Proof of Theorem 1.9. By Proposition 3.1, we can just bound the number of expected regular
zeros. Instead of a system of fewnomials, we consider the equivalent system of exponential sums
g = (g1, . . . , gn) defined as

g1 =
∑

α∈A1
c1,α exp(αTX + l1(α))

...
gn =

∑

α∈An
cn,α exp(αTX + ln(α))

(3.2)

where the ck,α are i.d.d. standard Gaussian variables. Observe that

Ec#Zr(g,R
n) = Ef#Zr(f,R

n
+).

So we will need to bound the expected number zeros of g on Rn. We do this by decomposing Rn

into a collection of polyhedral cells, and bounding the number the number zeros on each of these
polyhedral cells.

To define the polyhedral cell, for α1 ∈ A1, . . . , αn ∈ An, consider

M(α1, . . . , αn) := {x ∈ R
n | for all k and for all α ∈ Ak, α

Tx+ lk(α) ≤ αT
k x+ lk(αk)}. (3.3)

Observe that z ∈M(α1, . . . , αn) if and only if the map

(

s
x

)

7→
(

1
z

)T (
s
x

)

= s+ ztx

attains, for each k, its maximum value inside L(Ak,lk) at

(

lk(αk)
αk

)

,

i.e.,

if

(

1
z

)

is, for each k, in the normal cone of Lk(Ak,lk) at

(

lk(αk)
αk

)

.

This shows that M(α1, . . . , αn) is a full-dimensional polyhedral cell if and only if

n
∑

k=1

(

lk(αk)
αk

)

is a vertex of the Minkowski sum
∑n

k=1 L(Ak,lk). Moreover, since M(α1, . . . , αn) is obtained by
maximizing the value of linear functional over a finite collection of points, we have

R
n =

⋃

{M(α1, . . . , αn) | α1 ∈ A1, . . . , αn ∈ An}. (3.4)
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So, by subadditivity of the zero counting function, we only need to prove that for all α1 ∈
A1, . . . , αn ∈ An the following bound holds

Ec#Zr(g,M(α1, . . . , αn)) ≤
1

4n

n
∏

k=1

(tk − 1). (3.5)

Observe that the solutions of g in any region do not change if we multiply each equation by
exp

(

−αT
k x− lk(αk)

)

. Thus, without loss of generality, we can assume that α1 = · · · = αn = 0

and that lk(αk) = 0. Thus by considering M := M(0, . . . , 0), ϕk(x) =
(

exp(αTx+ li(α))
)

α∈Ak
,

and applying Corollary 2.2, we get

Ec#Zr(g,M) = (2π)−
n
2

∫

M

1
∏n

k=1 ‖ϕk(x)‖
Ea

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxϕ1

...
aTnDxϕn







∣

∣

∣

∣

∣

∣

∣

dx (3.6)

where the ak ∈ ϕk(x)
⊥ are independent standard Gaussian random vectors. Observe that Dxϕk,0 =

0 since ϕk,0 = 1. Thus, by the Cauchy-Binet formula [18, Theorem 4.15] applied to






aT1 Dxϕ1

...
aTnDxϕn






=







aT1
. . .

aTn






Dxϕ,

we obtain

det







aT1 Dxϕ1

...
aTnDxϕn






=

∑

β1∈A1\{0},...,βn∈An\{0}

n
∏

k=1

ak,βk
det







Dxϕ1,β1

...
Dxϕn,βn






,

since, to get a full-rank minor of diag(aTk ), we need to pick a column corresponding to each aTk . So,
by the triangle inequality we have

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxϕ1

...
aTnDxϕn







∣

∣

∣

∣

∣

∣

∣

≤
∑

β1∈A1\{0},...,βn∈An\{0}

n
∏

k=1

|ak,βk
|

∣

∣

∣

∣

∣

∣

∣

det







Dxϕ1,β1

...
Dxϕn,βn







∣

∣

∣

∣

∣

∣

∣

. (3.7)

Now we use following observation: The coordinate projection

R
Ak → R

x 7→ xβk

induces a linear functional λk : ϕk(x)
⊥ → R which has the norm

‖λk‖ =

√

1− ϕk,βk
(x)2

‖ϕk(x)‖2
=

√

‖ϕk(x)‖2 − ϕk,βk
(x)2

‖ϕk(x)‖
.

Thus ak,βk
= λβk

(ak) is a centered Gaussian random variable with variance ‖λk‖2, because it is the
result of projecting the standard Gaussian random vector ak ∈ ϕk(x)

⊥ with the linear functional
λk of norm ‖λk‖. Therefore

Ea|ak,βk
| =

√

‖ϕk(x)‖2 − ϕk,βk
(x)2

‖ϕk(x)‖

√

2

π
. (3.8)

Substituting (3.8) and Dxϕk,βk
= exp(βT

k x+ lk(βk))β
T
k back in (3.6) combined with (3.7), we get

Ec#Zr(g,M)

≤
∑

βk∈Ak\{0}

1

πn

∫

M

n
∏

k=1

√

‖ϕk(x)‖2 − ϕk,βk
(x)2 exp(βT

k x+ lk(βk))

‖ϕk(x)‖2
| det(β1 · · · βn)| dx.
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If we bound each of the summands in the right-hand side by 1/4n, we are done, since there are at
most

∏n
k=1(tk − 1) many summands.

We will use Proposition 3.2 with γk = βk and sk = lk(βk) to bound each summand by 1/4n.
To do this, we only need to show that

n
∏

k=1

√

‖ϕk(x)‖2 − ϕk,βk
(x)2

‖ϕk(x)‖2
≤ 1
∏n

k=1(1 + exp(2βT
k x+ 2lk(βk)))

. (3.9)

So, it suffices to show that for each k we have

√

‖ϕk(x)‖2 − ϕk,βk
(x)2

‖ϕk(x)‖2
≤ 1

(1 + exp(2βT
k x+ 2lk(βk)))

. (3.10)

We define
uk(x) := ϕk,βk

(x) = exp(βT
k x+ lk(βk))

and

vk(x) =
√

‖ϕk(x)‖2 − ϕk,βk
(x)2 =

√

∑

α∈Ak\{0,βk}

exp(2αTx+ 2lk(α)).

We only need to show then that

√

1 + vk(x)2

1 + uk(x)2 + vk(x)2
≤ 1

1 + uk(x)2
,

which is equivalent to

(

√

1 + vk(x)2
)2

− (1 + uk(x)
2)
√

1 + vk(x)2 + uk(x)
2 ≥ 0.

Observe that the polynomial T 2 − (1 + uk(x)
2)T + uk(x)

2 has two roots: 1 and uk(x)
2. Since

√

1 + vk(x)2 ≥ 1, the above inequality is valid independently of vk(x) as long as uk(x) ≤ 1, which
is precisely what happens for x ∈M since

M =M(0, . . . , 0) = {x ∈ R
n | for all k, for any βk ∈ Ak, β

T
k x+ lk(βk) ≤ 0}.

Hence, (3.9) holds in M , and by Proposition 3.2,

1

πn

∫

M

n
∏

k=1

√

‖ϕk(x)‖2 − ϕk,βk
(x)2 exp(βT

k x+ lk(βk))

‖ϕk(x)‖2
| det(β1 · · · βn)| dx ≤ 1

4n
.

which completes the proof.

Proof of Proposition 3.1. Assume that the affine span of
∑n

k=1 Ak is the whole of Rn. By Propo-
sitions 2.5, we only need to show that for the map

ψ = (ϕ1/‖ϕ1‖, . . . , ϕn/‖ϕn‖)

where
ϕk(x) = (exp(αTx+ lk(α)))α∈Ak

,

satisfies that for all x ∈ Rn, rankDxψ = n. Note that working with this exponential formulation
is enough as it does not affect the regularity of the zeros of a fewnomial system.

Now, by (2.6), we have that rankDxψ < n if and only if there is vx ∈ Rn \ {0} such that for all
k, Dxϕ(vx) ∈ Rϕ(x). Thus rankDxψ < n if and only if there is vx ∈ Rn \ {0} and t1, . . . , tn ∈ Rn

such that for all k, Dxϕ(vx) = tkϕk(x). For all k and αk ∈ Ak,

Dxϕk,αk
= ϕk,αk

αT
k .
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Hence rankDxψ < n if and only if there is vx ∈ Rn \ {0} and t1, . . . , tn ∈ Rn such that for all k
and all αk ∈ Ak, α

T
k vx = tk. In other words, rankDxψ < n if and only if the Ak are contained

in parallel (affine) hyperplanes. If the affine span of
∑n

k=1Ak is Rn, as we are assuming, then the
latter is not possible and so Dxψ is injective, as desired.

Now, assume that the affine span of
∑n

k=1Ak is not the entire Rn. After a change of variables
of the form x 7→ exp(A log(x) + b), we can assume, without loss of generality, that the affine span
of
∑n

k=1 Ak is
R

m × 0 ⊂ R
n

with m < n. In this case we have that f is a random overdetermined system in the variables
X1, . . . , Xm. Moreover, arguing as before, we have that for all x ∈ Rm, rankDxψ = m. Hence, by
Proposition 2.6, we have

Z(f,Rm
+ × {1}) = ∅

with probability one. This implies that if the affine span of
∑n

k=1 Ak is not the entire Rn we have
∅ = Z(f,Rn

+) with probability one, and so Z(f,Rn
+) = Zr(f,R

n
+) with probability one.

Geometric Proof of Proposition 3.2. Without loss of generality, assume that the γk are linearly
independent. Otherwise the proposition is immediate, with both the integral and the expectation
being zero.

Note that the the left-hand side equality follows from Corollary 2.3, after taking ξk(x) =
exp(γTk x + sk) and observing that Dxξk = exp(γTk x + sk)γ

T
k . Hence we only need to bound the

expectation of the number of real zeros.
Observe that the system (3.1) have a solution if and only if for all k, ak and bk have opposite

signs. Moreover, in that case, the system is equivalent to the following linear system

γt1X = −s1 + ln(−b1/a1)
...

γtnX = −sn + ln(−bn/an)

(3.11)

which has exactly one regular real solution. This system has this unique solution inside B if and
only if the ln(−bk/ak) are non-positive, which happens with probability 1/4n. Hence

Eh#Zr(h, B) = P(#Zr(h, B) 6= 0) =
1

4n
,

as we wanted to show.

Analytical Proof of Proposition 3.2. The analytical proof is like the geometric one, but we compute
directly now the left-hand side integral. Under the change of variables yk = −(γTk xk + sk), the
left-hand side integral becomes

1

πn

∫

Rn
+

∏n
k=1 exp(−yk)

∏n
k=1(1 + exp(−2yk))

dy.

Under the further change of variables zk = exp(−yk), this integral becomes

1

πn

∫

[0,1]n

1
∏n

k=1(1 + z2k)
dz.

Now, separating variables, this integral equals

(

1

π

∫ 1

0

1

1 + t2
dt

)n

=
1

4n
,

where the last equality follows from arctan′(t) = 1/(1 + t2).
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4 Zeros of Random Unmixed Fewnomials

We now prove Theorem 1.5. We will actually prove a more general result, and then show that
Theorem 1.5 is obtained as a corollary.

Theorem 4.1. Under the same notations and assumptions of Theorem 1.9, assume that

A = A1 = · · · = An

and that the Minkowski sum
∑n

k=1 L(A,lk) satisfies

(MV) for some l : A→ R,
∑n

k=1 L(A,lk) = nL(A,l).

Then

Ef#Zr(f,R
n
+) ≤

n+ 1

4n

(

V (L(A,l))
n+ 1

)

(4.1)

where V (L(A,l)) ≤ #A is the number of vertices of L(A,l).

Proof of Theorem 4.1. The proof is the same as that of Theorem 1.9, but it differs in the combi-
natorics at two points:

1st point : When we write the decomposition (3.4), we only care about those α1, . . . , αn such
that

n
∑

k=1

(

lk(αk)
αk

)

is a vertex of
∑n

k=1 L(A,lk). However, due to the assumption (MV), we necessarily have that
α1 = · · · = αn, since those are the vertices of L(A,l). Hence we only need to look at polyhedral
cells of the form M(α, . . . , α) where α ∈ A is a vertex of L(A,l)—and so nα a vertex of nL(A,l).
Moreover, as we did in the proof of Theorem 1.9, we can assume, without loss of generality, that
α = 0 and that for all k, lk(α) = 0.

2nd point : When we apply the Cauchy-Binet formula to obtain our decomposition. Since we
use the same functions but different variances, we can write for each k,

ϕk = Σkϕ̃

where ϕ̃(x) =
(

xα
)

α∈A
and Σk is a diagonal positive matrix with entries given by exp(lk(α)).

It is important to note that the claim “we use the same function but different variances” really
requires the extra assumption α = α1 = · · · = αn. Otherwise, when doing the translation to put
α1, . . . , αn at the origin, we will end up with ϕ1, . . . , ϕn being different not only up to multiplication
by a diagonal positive matrix. However, we do not need the lk(α) being independent of k, since
turning them into zero only requires multiplying the ϕk by positive diagonal matrices. Now,







aT1 Dxϕ1

...
aTnDxϕn






=







aT1
. . .

aTn













Σ1

...
Σn






Dxϕ̃ =







(Σ1a1)
T

...
(Σnan)

T






Dxϕ̃,

and so, by the Cauchy-Binet formula [18, Theorem 4.15] and the triangle inequality,

∣

∣

∣

∣

∣

∣

∣

det







aT1 Dxϕ1

...
aTnDxϕn







∣

∣

∣

∣

∣

∣

∣

≤
∑

{β1,...,βn}⊂∈A\{0}

n
∏

k=1

exp(lk(βk))|ak,βk
|

∣

∣

∣

∣

∣

∣

∣

det







Dxϕ̃β1

...
Dxϕ̃βn







∣

∣

∣

∣

∣

∣

∣

,

where the sum runs over subsets of size n. Hence we get

(

t− 1

n

)
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summands at most, instead of (t− 1)n. Now, for each summand, the same computation as before
gives us that each summand becomes

1

πn

∫

M

n
∏

k=1

√

‖ϕk(x)‖2 − ϕk,βk
(x)2 exp(βT

k x+ lk(βk))

‖ϕk(x)‖2
| det(β1 · · · βn)| dx

and so the proof ends as it did in the proof of Theorem 1.9.

The following lemma shows that Theorem 1.5 is a corollary of Theorem 4.1.

Lemma 4.2. Under the same notations and assumptions of Theorem 1.9, assume that A = A1 =
· · · = An. Then the following holds:

(1) If l = l1 = . . . = ln then L(A,l1) = · · · = L(A,ln) and
∑n

k=1 L(A,lk) = nL(A,l)

(2) If for all k and all α ∈ A we have lk(α) ≤ 0 with equality whenever α is a vertex of
P := conv(A), then, for all k,

L(A,lk) = (−∞, 0]× P

and so
∑n

k=1 L(A,lk) = (−∞, 0]× (n conv(A)) = nL(A, 0).

Proof of Lemma 4.2. (1) For a convex set K ⊆ Rn and α1, α2, . . . , αn ∈ K

α1 + · · ·+ αn =
1

n
(nα1 + · · ·+ nαn) ∈ nK,

and so taking Minkowski sums of K with itself is the same as taking integer dilations of K. This
is essentially the first claim.

(2) For second claim, we have that, for all k, lk ≤ 0 and equality happens at the vertices of P .
Thus, for all k, L(A,lk) = (−∞, 0]× P . The rest follows as in (1).

We finish with a proof of Corollary 1.7.

Proof of Corollary 1.7. By Markov’s inequality [21, Corollary 2.9] and Theorem 1.5,

Pf

(

Z(f,Rn
+) 6= ∅

)

= Pf

(

#Z(f,Rn
+) ≥ 1

)

≤ Ef#Z(f,Rn
+) ≤

n+ 1

4n

(

n+ ℓ

n+ 1

)

,

since #Z(f,Rn
+) is a random variable with integer values. Now,

(n+ 1)

(

n+ ℓ

n+ 1

)

= ℓ

(

n+ ℓ

ℓ

)

= ℓ

ℓ
∏

k=1

(n

k
+ 1
)

≤ ℓ(n+ ℓ)ℓ.

Hence the claim follows.

5 Volume of Random Projective Fewnomial Varieties

We prove Theorem 1.10, we will need the following proposition.

Proposition 5.1. Let d1, . . . , dn+1 ∈ N and A1, . . . , An+1 ⊂ Nn+1 be finite subsets such that for
all k,

{dke0, . . . , dken} ⊆ Ak ⊆ dk∆n

where {e0, . . . , en} is the standard basis of Rn+1 and ∆n := conv(e0, . . . , en) the n-simplex. Con-
sider the random overdetermined homogeneous fewnomial system g given by

g1 =
∑

α∈A1
g1,αX

α

...
gn+1 =

∑

α∈An+1
gn+1,αX

α
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where the gk,α are independent continuous random variables. Then

Z(g,Pn
R) = ∅

with probability one.

Proof of Theorem 1.10. Consider an homogeneous fewnomial system f given by

f1 =
∑

α∈A1
f1,αX

α

...
fq =

∑

α∈Aq
fq,αX

α

Then, by [38, (2.7)], Z(f,Pn
R
) admits a finite Whitney stratification. Thus, we can consider a

partition of Z(f,Pn
R
) into disjoint subsets

Z0(f,P
n
R), . . . ,Zn(f,P

n
R) ⊂ P

n
R

such that that Zℓ(f,P
n
R
) is an ℓ-dimensional smooth submanifold of Z(f,Pn

R
) or empty.

Let H1, . . . ,Hn−q be random hyperplanes of Pn
R
given by

lk =

n
∑

i=0

ak,iXi

with the ak,i i.i.d. standard Gaussians—one can easily see that this is equivalent to moving by a
random g ∈ O(n + 1) (with respect the Haar probability measure) a fixed (n − q)-plane L in Pn

R
.

By [21, Proposition A.18], all the intersections

Zℓ(f,P
n
R) ∩ H1 ∩ · · · ∩ Hn−q (5.1)

are transversal with probability one. Hence, for ℓ < n− q, (5.1) is empty with probability one; and
for ℓ ≥ n − q, (5.1) is, with probability one, either empty or a smooth submanifold of dimension
ℓ− (n− q). By Poincaré’s kinematic formula [21, Theorem A.55], we have that

voln−qZn−q(f,P
n
R) =

voln−qP
n−q
R

volnP
n
R

EH1,...,Hn−q
#(Zn−q(f,P

n
R) ∩H1 ∩ · · · ∩ Hn−q).

Now, set the convention that voln−q(Z(f,Pn
R
)) = ∞, if for some ℓ > n − q, Zℓ(f,P

n
R
) 6= ∅; and

Zn−q(f,P
n
R
) = 0, if for all ℓ ≥ n− q, Zℓ(f,P

n
R
) = ∅. Then, we have that

voln−qZ(f,Pn
R) =

voln−qP
n−q
R

volnP
n
R

EH1,...,Hn−q
#(Z(f,Pn

R) ∩H1 ∩ · · · ∩ Hn−q),

since if some for some ℓ > n− q, Zℓ(f,P
n
R
) is non-empty, then the right-hand side will be infinite—

(5.1) will be a non-empty positive dimensional smooth submanifold with probability one—and if
for all ℓ ≥ n − q, Zℓ(f,P

n
R
) is empty, then the right-hand side will be zero—(5.1) will be empty

with probability one.
By the above discussion, we have that

Efvoln−qZ(f,Pn
R) =

voln−qP
n−q
R

volnP
n
R

EfEH1,...,Hn−q
#(Z(f,Pn

R) ∩ H1 ∩ · · · ∩Hn−q),

and so, by Tonelli’s theorem,

Efvoln−qZ(f,Pn
R) =

voln−qP
n−q
R

volnP
n
R

E(f,l1,...,ln−q)#Z((f, l1, . . . , ln−q),P
n
R). (5.2)

Assume (we prove this at the end) that, for all i,

#Z((f, l1, . . . , ln−q), Hi) = 0,
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where Hi := Z(Xi,P
n
R
) is the ith coordinate hyperplane in Pn

R
, with probability one. Then

Z((f, l1, . . . , ln−q),P
n
R) =

⋃

{Z((f, l1, . . . , ln−q), SP
n
+) | S = diag(±1, . . . ,±1)},

where Pn
+ := {x ∈ Pn | x0 > 0, . . . , xn > 0}, with probability one; and therefore, by symmetry,

Ef voln−qZ(f,Pn
R) = 2n

voln−qP
n−q
R

volnP
n
R

Ef,l1,...,ln−q
#Z((f, l1, . . . , ln−q),P

n
+). (5.3)

Now, by Theorem 1.1,

Ef voln−qZ(f,Pn
+) ≤

1

4n
voln−qP

n−q
R

volnP
n
R

(n(n+ 1))n−q

q
∏

k=1

tk(tk − 1),

since the lk have support of size n+ 1, and we obtain the desired upper bound.
We now prove our claim regarding coordinate hyperplanes. Without loss of generality assume

that i = n. To show that
Z((f, l1, . . . , ln−q), Hn)

is empty, it is enough to show that the random overdetermined system

g := (f, l1, . . . , ln−q)(X0, . . . , Xn−1, 0),

obtained by setting Xn equal to 0, has no zeros in P
n−1
R

. But this is precisely what Proposition 5.1
states.

Proof of Proposition 5.1. We will prove this by induction on n. The statement is obvious for n = 0.
Consider the system

g1(X0, . . . , Xn−1, 0), . . . , gn(X0, . . . , Xn−1, 0),

then, by the induction hypothesis, this system does not have any zero in P
n−1
R

with probability
one. In other words, as adding equations can only reduce the number of zeros,

Z(g,Pn
R) ∩ Z(Xn,P

n
R) = ∅

with probability one. Now, the same argument works, if instead of Xn we consider Xi. Therefore,
for all i,

Z(g,Pn
R) ∩ Z(Xi,P

n
R) = ∅

with probability one. Now, we only need to show that

⋃

{Z(g, SPn
+) | S = diag(±1, . . . ,±1)} = ∅,

with probability one, where Pn
+ := {x ∈ Pn | x0 > 0, . . . , xn > 0}. Now, by symmetry, it is enough

to show that, with probability one,
Z(g,Pn

+) = ∅.

However, the latter follows from the fact that a generic overdetermined system of Laurent poly-
nomials does not have zeros in (C∗)n [76, Lemma 1]. This is not explicitly stated in [76, Lemma
1], but it can be easily seen by considering the overdetermined system of q > n equations in n
variables as a system in q variables after adding q − n dummy variables—then, by [76, Lemma 1],
the corresponding ideal is not propper for generic polynomials and, by evaluating to 1 the dummy
variables, so it was not the original ideal.
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A Borel measures and Dynkin’s lemma

The point of this appendix is to make clearer, for readers unfamiliar with measure theory, the
measure-theoretic arguments underlying the proof of Theorem 2.1.

Recall the following definitions for families of sets.
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Definition A.1. Let X be a set and S ⊂ P(X) a non-empty collection of subsets of X . We say
that:

(σ) [1, 4.1 Definition] S is a σ-algebra if S contains the empty set and it is closed under comple-
ments and countable pairwise disjoint unions, i.e.,

• ∅ ∈ S.
• for all A ∈ S, X \A ∈ S.
• for every pairwise disjoint numerable subfamily {An}n∈N of S, ⋃n∈N

An ∈ S.

(λ) [1, 4.9 Definition] S is a λ-system if S contains X , relative complements and monotone
numerable unions, i.e.,

• X ∈ S.
• for all A,B ∈ S such that B ⊆ A, A \B ∈ S.
• for every numerable subfamily {An}n∈N of S that is increasing (for all n, An ⊆ An+1),
⋃

n∈N
An ∈ S.

(π) [1, 4.9 Definition] S is a π-system if S is closed under finite intersections, i.e., for every
A,B ∈ S, A ∩B ∈ S.

Given any collection of sets, we can consider the σ-algebra, λ-system and π-system that it
generates, by considering the smallest σ-algebra, λ-system or π-system that contains it. For a
topological space, the following σ-algebra is essential.

Definition A.2. [1, 4.14 Definition] Let X be a topological space, its Borel σ-algebra, B(X), is
the σ-algebra generated by the collection of its open subsets.

The Dynkin’s lemma allows us to extend statements from π-systems to the σ-algebra they
generate by checking that they are satisfied at a λ-system.

Theorem A.3 (Dynkin’s lemma). [1, 4.11 Dynkin’s Lemma] Let X be a set and S collection
of subsets of X . If S is a π-system, then the λ-system it generates is a σ-algebra.

Recall that a topological space X is σ-compact if we can write X as a countable monotone
union of compact sets and that a Borel measure of X is a measure of the form

µ : B(X) → [0,∞].

The following theorem lies at the core of the proof of Theorem 2.1.

Theorem A.4. Let X be a σ-compact topological space and µ and ν Borel measures on X .
Assume that there is a collection of open subsets U such that:

(U0) U is a base for the topology of X , i.e., every open set in X is an union of open sets in U .

(U1) U is closed under containment, i.e., if U and V are open sets, V ⊆ U and U ∈ U , then V ∈ U .

(U2) for all U ∈ U , µ(U) and ν(U) are finite.

(U3) µ and ν agree on U , i.e., for all U ∈ U , µ(U) = ν(U).

Then
µ = ν.

Proof. By assumption, there is an increasing sequence of compact subsets {Xn}n∈N such that
X =

⋃

n∈N
Xn. Assume without loss of generality that X0 = ∅. For each n ∈ N, let

µn := µ|B(Xn) and νn := ν|B(Xn)
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be the restriction of the Borel-measures µ and ν to Xn. If for all n ∈ N, µn = νn, then µ = ν. To
see this, take B ∈ B(X) and observe that

µ(B) =

∞
∑

k=0

µ(B ∩ (Xk+1 \Xk)) =

∞
∑

k=0

µn(B ∩ (Xk+1 \Xk))

and

ν(B) =

∞
∑

k=0

ν(B ∩ (Xk+1 \Xk)) =

∞
∑

k=0

νn(B ∩ (Xk+1 \Xk)).

Fix arbitrary n ∈ N. We consider

Un := {U ∩Xn | U ∈ U},

which is a collection of open subsets of Xn, and

Λn := {B ∈ B(Xn) | µn(B) = νn(B)}.

If we show that Un satisfies (U0), (U1), (U3) and (U4) for µn and νn, then Un is a π-system
contained in Λn whose generated σ-algebra is B(Xn). If we show, moreover, that Λn is a λ-system,
then, by Dynkin’s lemma (Theorem A.3),

Λn = B(Xn)

and we are done, since then µn = νn.
We show now that Un satisfies (U0), (U1), (U3) and (U4) for µn and νn:

• Un satisfies (U0) and (U1), by the definition of the subspace topology and the construction
of Un.

• For checking (U2) and (U3) for Un, we only need to write for U ∈ U ,

µ(U ∩Xn) = µ(U)− µ(U \Xn) = ν(U)− ν(U \Xn) = µ(U ∩Xn).

This is possible, because U \ Xn ∈ U , by (U1); µ(U), ν(U), µ(U \ Xn) and ν(U \ Xn) are
finite, by (U2); and µ(U) = ν(U) and µ(U \Xn) = ν(U \Xn), by (U3).

We show now that Λn is a λ-system:

• Since Xn is compact and Un is an open cover, we have that there are U1, . . . , Uℓ ∈ Un such
that

Xn = U1 ∪ · · · ∪ Uℓ.

But then, by the inclusion-exclusion principle, (U2) and (U3), µn(Xn) = ν(Xn). Hence
Xn ∈ Λn.

Moreover, this argument shows that µn(Xn) = ν(Xn) is finite, and so µn(A) and νn(A) are
finite for all A ∈ B(Xn).

• If A,B ∈ Λn and B ⊆ A, then

µn(A \B) = µn(A) − µn(B) = νn(A)− νn(B) = νn(A \B),

where the middle equality follows from A,B ∈ Λn, since µn(A), µn(B), νn(A) and νn(B) are
finite. Hence A \B ∈ Λn.

• Let {Ak}k∈N ⊂ Λn is an increasing family of subsets. Without loss of generality, assume that
A0 = ∅. Then

µn

(

⋃

k∈N

Ak

)

=
∑

k∈N

µn(Ak+1 \Ak)
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and

νn

(

⋃

k∈N

Ak

)

=
∑

k∈N

νn(Ak+1 \Ak).

By the previous paragraph and the assumption {Ak} ⊂ Λn, the right-hand sides are equal.
Therefore the left-hand sides are so, and

⋃

k∈N
Ak ∈ Λn.

Now, the proof is complete.
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