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Abstract. We present new two-party protocols for the Unbalanced Pri-
vate Set Union (UPSU) problem. Here, the Sender holds a set of data
points, and the Receiver holds another (possibly much larger) set, and
they would like for the Receiver to learn the union of the two sets and
nothing else. Furthermore, the Sender’s computational cost, along with
the communication complexity, should be smaller when the Sender has a
smaller set. While the UPSU problem has numerous applications and has
seen considerable recent attention in the literature, our protocols are the
first where the Sender’s computational cost and communication volume
are linear in the size of the Sender’s set only, and do not depend on the
size of the Receiver’s set. Our constructions combine linearly homomor-
phic encryption (LHE) with fully homomorphic encryption (FHE). The
first construction uses multi-point polynomial evaluation (MEv) on FHE,
and achieves optimal linear cost for the Sender, but has higher quadratic
computational cost for the Receiver. In the second construction we ex-
plore another trade-off: the Receiver computes fast polynomial Euclidean
remainder in FHE while the Sender computes a fast MEv, in LHE only.
This reduces the Receiver’s cost to quasi-linear, with a modest increase in
the computational cost for the Sender. Preliminary experimental results
using HElib indicate that, for example, a Sender holding 1000 elements
can complete our first protocol using less than 2s of computation time
and less than 10MB of communication volume, independently of the Re-
ceiver’s set size.

1 Introduction

A private set union (PSU) protocol is a cryptographic protocol involving two
parties. The receiver, denoted R, owns a set X, and the sender, denoted S,
owns a set Y. The desired functionality of such a protocol is that the receiver
R receives only the union X ∪Y, and the sender S learns nothing. (Note that
this is equivalent to the receiver learning the set difference Y \X.) The protocol
is parameterized with (upper bounds on) the set sizes |X| and |Y|, which are
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therefore implicitly revealed to both parties as well. However, the sender S learns
nothing about the content of X and the receiver R learns nothing about X∩Y.

PSU protocols have been widely studied in the case of balanced input set
size [4, 7, 9, 10, 14–16, 25], motivated by numerous practical applications such as
disease data collection from hospitals.

Our interest lies in the unbalanced setting, in particular where the sender’s
input set is (quite) smaller than the receiver’s. This setting has received less
attention, but we note two recent works on UPSU [21,24] which were developed
independently from ours. The motivation here is data aggregation from multiple
sources which may have different sizes and computational capabilities, and where
the set intersections may reveal private relationships, such as IP blacklists [20].

As an illustrative example, consider a whistleblower which has some confi-
dential and compromising data they would like to share with some institution. If
the institution obtains some data that was already in its set, it could leak some
relationship between different whistleblowers and compromise their anonymity.
Similarly, if the whistleblower learns anything, this could tell them about the
presence (or not) of other previous whistleblowers. Furthermore, it is expected
that one whistleblower’s amount of data as well as their computational resources
are smaller than the institution’s, so their computational cost and communica-
tion size should be as small as possible; hence UPSU.

If m and n denote the respective sizes of the sets owned by the sender S and
the receiver R, we thus assume n ≥ m and focus on the case where n≫ m. The
communication volume, that is, the least number of elements exchanged during
the protocol, must be Ω(m) asymptotically, since in the worst case, the whole
set of the sender must be sent to the receiver. (This also explains why the other
unbalanced case of m ≥ n is not promising for improvements.) Also, the optimal
arithmetic cost, that is the number of arithmetic operations performed by each
party, must be at least linear in the size of their set.

In Table 1, we present the asymptotic costs of three PSU protocols [7, 9, 25]
adapted in the unbalanced setting. We also include the two recent PSU protocols
focused on the unbalanced case [21, 24] and developed independently of ours.
Up to our knowledge, those are the only two protocols whose communication
volume is sub-linear in the size of the receiver’s set. In the table, we compare
the arithmetic costs for each party and the communication volume, but we also
distinguish the protocols through their number of rounds, their compatibility
with the security assumptions and, for those that are using fully homomorphic
encryption (FHE), as ours, the multiplicative depth of their algorithms, as it has
a huge impact of the practical performance. A green value satisfies our goals,
while an orange is expected to be improved and a red is not appropriate.

Related Work. In [9] and in [7], the receiver’s set is represented respectively
with a polynomial and with a Bloom filter [1] (evaluating to zero exactly in
its element’s set). Note that for the Bloom filter case, there is a probability of
false-positive, where an element that is not in the receiver’s set evaluates to zero,
that has to be controlled with a supplementary statistical security parameter.
The representation is sent encrypted under a linearly homomorphic encryption
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(LHE) [23], and evaluated homomorphically by the sender in all its element’s
set. Upon reception and decryption of the evaluations, the receiver obtains ei-
ther zero and learns nothing, or a non-zero value from which it computes the
evaluation point. In [25], the receiver represents its set X as a database called
an oblivious key-value store (OKVS) [11] in which the elements of X are viewed
as keys, all associated to encryptions of a same secret value. Upon reception, the
sender queries the OKVS using its elements as keys. By design, the sender gets
encryptions of the secret value for elements in the intersection and random values
for elements not in the intersection. Through a sub-protocol, the parties obliv-
iously compare the sender’s values with the receiver’s secret, and the receiver
obtains a bit vector where the ones indicate a match. Finally, the parties perform
an oblivious transfer [6] in order for the receiver to learn exactly the elements of
Y that are not in X. This protocol has been recently translated into two versions
of an UPSU [24]. Both versions use the fact that an OKVS can be structured
into a sparse and a dense parts. The sparse part is decodable with low arithmetic
cost and communication, and only the small dense part has to be communicated.
For efficiency, the first version requires both parties to store their sets into hash
tables, with cuckoo hashing for the sender, in order to reduce the union protocol
between sets of sizes n and m to about m union protocols between sets of sizes
approximately n/m (partitioning). The second version uses a re-randomizable
public-key encryption (ReRand-PKE) to skip the sub-protocol step from [25],
which compares the secret and the decoded values. In [21], the global idea is to
evaluate a polynomial representing the receiver’s set in the sender’s elements as
in [9], but unlike in the latter, the receiver performs the evaluation. Indeed in
an unbalanced context, the large polynomial of the receiver cannot be commu-
nicated. To do so, the sender’s elements are sent encrypted under FHE, since
polynomial evaluation requires both additions and multiplications. Following the
ideas from a PSI protocol [5] to reduce the multiplicative depth, the protocol
uses batching, windowing, oblivious transfer and partitioning with hash tables.
However, as mentioned in [16] and as we show in Section 3, the usage of hash
tables to partition the sets, used in [21] and the first protocol of [24], undesirably
leaks some information on the intersection set X∩Y. The respective asymptotic
complexity bounds of these protocols, as well as our propositions, are detailed
in Table 1.

Our contributions. We present two new UPSU protocols (the second one with a
variant), proven secured under the honest-but-curious adversary model. All our
protocols have a communication volume linear in the size of the sender’s set and
independent of the size of the receiver’s set. We also have an optimal number of
rounds and a sender’s arithmetic cost which is independent of the receiver’s set
size. Our protocols combine two encryption schemes, namely a linearly homo-
morphic one and a fully homomorphic one. We then need to introduce several
homomorphic algorithms on polynomials, which can be of independent interest.
Our main tool is to use a polynomial representing the receiver’s set (its roots are
the receiver’s elements) and evaluate it homomorphically in each of the sender’s
elements, but without communicating the whole polynomial. We optimize here
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Table 1: Protocol Comparison Table: receiver R set size n, sender S set size m,
with n > m

Protocol Cost for R Cost for S Comm. Vol. # rounds Depth Security

[9] O(n1+ǫ) O(nm) O(n) 2 ✓

[7] O(n) O(m log n) O(n) 2 ✓

[25] O(n) O(m log n) O(n) ≥ 1+OT ✓

[21] O(n) O(m log n) O(m log n) ≥ 4+OT ≤ log log(n/m) ✗

Partitioned [24] O(n) O(m log n) O(m log n) ≥ 6+OT ✗

ReRand-PKE [24] O(n) O(m log n) O(m log n) ≥ 2+OT ✓

Protocol 1 O(mn) O(m) O(m) 3 log n+ 1 ✓

Protocol 2 O(n1+ǫ) O(m1+ǫ) O(m) 3 2(log n− logm) + 1 ✓

a trade-off between communication volume and FHE multiplicative depth. For
security and correctness purposes, we need the FHE scheme to allow exact poly-
nomial evaluation, so we need the plaintext space to be an integral subdomain of
the rationals. The BGV cryptosystem [3] can for instance satisfy this condition
as its plaintext space is a finite field.

– Our first protocol is built from an FHE multi-point evaluation, with homo-
morphic scalar products, low multiplicative depth and large parallelism. We
use a few FHE optimizations, namely batching and modulus switching, in
order to reduce the time computation and the communication volume. We
propose an implementation of this protocol with low communication, using
the HElib3 instantiation of BGV.

– Our second protocol relies on efficient fully homomorphic Euclidean remain-
der but its multi-point evaluation is only linearly homomorphic. This dras-
tically reduces the arithmetic cost for the receiver, but increases the multi-
plicative depth and the sender’s cost. Some other trade-offs can be considered
and, as a variant, we for instance consider a third protocol, with a slightly
worse depth, but a better sender’s cost.

Outline. In Section 2, we introduce the adversary model and the formal security
definitions. We then propose in Section 3 a privacy attack on the partitioned
constructions with hash tables of [21, 24]. Section 4 contains the linear and
fully homomorphic encryption schemes formalization with some practical as-
pects. From this, in Section 5, we present our optimal communication protocol,
using homomorphic batched scalar multi-point evaluation. We also present an
implementation with computational timings and communication volume. Finally,
in Section 6 we present a protocol (and a variant), using efficient homomorphic
algorithms on polynomials, that improve on the asymptotic complexity bounds.

3 https://github.com/homenc/HElib

https://github.com/homenc/HElib
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2 Adversary Model and UPSU Security Definition

Honest-But-Curious Adversaries. Our protocols are secure under the honest-
but-curious adversary model, where the participants must follow the protocol but
try to learn as much additional information as possible. The security proofs of
our protocols, presented in Appendix B, are by simulation, following the frame-
work of [17], where a probabilistic polynomial time (PPT) simulator can generate
computationally indistinguishable transcripts [12].

Unbalanced Private Set Union Definition. We propose a formal definition
of an UPSU protocol divided into five algorithms, namely Setup, Encode,
Reduce, Map and Union. For a sender S that owns a set Y and a receiver R
that owns a set X:

– {keysR, keysS} ← Setup(κ, λ): On input of a computational security pa-
rameter κ and optionally a statistical security parameter λ, set up a context
(encryption schemes, hash functions, ...) with respect to κ and λ, and outputs
keysR to the receiver and keysS to the sender;

– EY ← Encode(Y, keysS): Given the set Y and keysS , outputs EY to the
receiver, an encoding of the set Y;

– RX|EY
← Reduce(X, EY, keysR): As input, takes the set X, keysR and

EY. Outputs RX|EY
to the sender, an encoding of the set X, reduced in size

depending on EY;
– MY |RX

←Map(Y, RX|EY
, keysS): On input of a set Y, an encoding RX|EY

and keysS , outputs to the receiver an encoded data set MY |RX
representing

the set Y \X, depending on Y and RX|EY
;

– Z← Union(X,MY |RX
, keysR): On input of the set X, an encoded data set

MY |RX
and keysR, outputs the union set Z = X ∪Y to the receiver.

Definition 1. (Setup, Encode, Reduce, Map, Union) is an unbalanced pri-
vate set union scheme if it satisfies the following three properties:

1. Correctness. For security parameters κ and λ and any sets X,Y, for

{keysR, keysS} ← Setup(κ, λ),

EY ← Encode(Y, keysS),

RX|EY
← Reduce(X, EY, keysR),

then the scheme is correct if

Union(X,Map(Y, RX|EY
, keysS), keysR) = X ∪Y. (1)

2. Privacy. The scheme is secure under the honest-but-curious adversary model.
In particular, the receiver learns X ∪Y but nothing about X ∩ Y, and the
sender learns nothing.

3. Unbalanced efficiency. For input sets X for the receiver and Y for the
sender, if |Y| = o(|X|), then the total communication volume of the scheme,
as well as the sender’s arithmetic cost, are o(|X|).
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Remark 1. Note that a non-unbalanced PSU protocol can be described with
those algorithms, considering that Encode outputs ∅. However, generally such
a protocol will not satisfy the Unbalanced efficiency of the definition, in
particular because usually the receiver sends the first message that has a size
proportional to its set size, even if |Y| = o(|X|). This justifies the fact that
the sender has to send the first message in Encode. Then, the receiver uses
that message to Reduce the representation of its set to a smaller size. A third
message is then mandatory for the receiver’s to get the final information about
the union. Up to our knowledge, only [21] and [24] are focused on the unbalanced
situation, and their protocols also fit this definition.

3 Polynomial-time Attack on the Partitioning of [21, 24]

We show here that there is a leaky Construction in [21] that is reused in the
first protocol of [24]. We do not delve into the full constructions, as the leaks
actually occur already in the setup phase for both of them. In both protocols
indeed, the sender arranges its small set in a cuckoo hash table [8], and the
receiver uses the same hash functions to arrange its large set in a simple hash
table [19]. A required property of both protocols is that the cuckoo hashing
must limit the hash table to have at most one of the sender’s elements per bin.
Their protocols, taking as inputs the two sets can now be partitioned into smaller
protocols for each bin, taking as inputs the one sender’s element and the reduced
amount of receiver’s elements in that bin. This trick is widely used in private
set intersection (PSI) protocols for efficiency purposes but, as already mentioned
in [16], it cannot be used directly in PSU protocols: there it can leak some clues
on the set intersection. We further show in this section that the leaks increase
with the unbalancedness. It is therefore always dangerous to use this trick in
UPSU protocols. In the following, the sender S got a set Y of m elements and
the receiver R owns a set X of n elements.

Hashing Table Procedure. For a statistical security parameter λ, S selects
publicly i hash functions hi : {0, 1}∗ −→ [k], where k = k(λ) ≈ m and i = 3
for cost efficiency. Those hash functions are chosen such that, with a failure
probability bellow 2−λ, the set Y can fit in a cuckoo hash table of k bins, without
stash. The cuckoo hashing of Y with h1, h2, h3 then places each element y ∈ Y

in exactly one bin between h1(y), h2(y) or h3(y), such that at the end of the
procedure, each bin contains at most 1 element. On the other side, R hashes its
set X with a simple hash table, and each element x ∈ X is sent in all three bins
h1(x), h2(x) and h3(x).

Leakage on the Intersection. By definition, a (U)PSU protocol should not
leak any clue about the intersection set X∩Y to the receiver. Now, let R use the
three hash functions h1, h2, h3 given by S, to hash X in the simple hash table
XS ; this hash table thus contains 3n elements in k bins. If there are 4 distinct
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elements x1, x2, x3, x4 ∈ X in at most 3 bins b1, b2, b3 ∈ [k], then the receiver
learns that {x1, x2, x3, x4} 6⊂ Y: indeed, the hash functions are chosen by S such
that each bin in the sender’s cuckoo hash table contains at most 1 element of
Y. Therefore, if x1, x2, x3, x4 ∈ Y, then those elements would have been sent in
4 different bins, not 3.

Modelization. We consider that the three hash functions are independent and
send any element uniformly at random in [k]. Let (b1, b2, b3) ∈ [k]3 be a bin
triplet, with distinct b1, b2, b3. The probability that an element x is sent in bins
{b1, b2, b3} using one hash function is thus 3

k
. This implies, with independence,

that an element x is sent, resp., in bins {b1, b2, b3}, resp. with h1, h2 and h3,

with probability p :=
(
3
k

)3
. If n elements are all sent in bins using h1, h2 and h3,

we want to compute the probability that at least 4 of these elements are sent in
{b1, b2, b3}. We thus model this with a random variable V following a binomial
distribution B(n, p). Now P(V ≥ 4) represents the sought probability with:

P(V ≥ 4) = 1−
3∑

i=0

(
n

i

)
pi(1− p)n−i. (2)

Probability of leakage. In both papers, the statistical security parameter
is λ = 40 and the size of the hash table is k ≈ m + logm. In Table 2, we
instantiate Eq. (2) for some realistic unbalanced parameters n,m. Table 2 shows

Table 2: Leaky situation probability when n > m
n m P(V ≥ 4)

220 210 ≈ 2−26

210 10 ≈ 2−0,0138

220 10 ≈ 1− 10(−4492)

that this crude lower bound on the probability of leak is actually way larger than
the statistical security parameter, already for a single triplet of bins (while there
are in fact

(
n
3

)
, not independent, triplets).

Polynomial-time Attack To prevent these leaks, one could increase the pa-
rameter k, viz. k > 3

3
√
2λn, but this brings an overhead in communication volume

and arithmetic cost for the sender that is no longer sustainable in the unbalanced
context. Note also that the leaky situation occurs in fact with probability 1 if
n > 3k3 + 1: by the pigeonhole principle there must then be at least one set
of 3 bins with 4 distinct elements of X. This is the root for an always possible
polynomial-time attack: in this case, an honest-but-curious attacker with an in-
put set X, of size n, knowing the three hash functions h1, h2, h3 : {0, 1}∗ −→ [k],
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can compute its simple hash table XS . The attacker can check if 4 of distinct
elements fall in a set of 3 bins. Otherwise, the attacker just adds further distinct
elements of its choice in the hash table, until there is a leak (at most 3k3+2−n
new known elements have to be added). Thus partionning is always subject to
this attack, requiring only a polynomial number of operations.

In the following, we therefore propose proven secure protocols that do not
make use of partionning.

4 Cryptographic Tools: Homomorphic Schemes

4.1 Linearly Homomorphic Encryption Scheme

Notation: In the following, we denote by x̂ a value encrypted using linearly
homomorphic encryption (LHE).

A LHE is a semantically secure public-key encryption scheme such that for
(pkL, skL)← L.Setup(κ), a key pair for a security parameter κ, together with
m̂1 ← L.EpkL(m1) and m̂2 ← L.EpkL(m2), two encryptions, their decryption
L.D must satisfy:

– homomorphic addition +L: L.DskL(m̂1 +L m̂2) = m1 +m2.
– cleartext-ciphertext product ⋉L: L.DskL(m1 ⋉L m̂2) = m1m2.

For the remainder, we assume that the chosen LHE scheme satisfies IND-CPA
security.

Remark 2. We extend naturally the encryption and decryption algorithms for a
LHE to allow matrix or polynomials (seen as a vector of its coefficients) as inputs.
This allows for instance to extend +L and ⋉L to matrix or polynomials inputs.
In particular, we can compute the homomorphic polynomial product between
a cleartext polynomial A and a ciphertext polynomial Ĉ, corresponding to the
following two linear maps: Ĉ 7−→ A⋉L Ĉ and A 7−→ A⋉L Ĉ.

4.2 Fully Homomorphic Encryption Scheme

Notation: In the following, we denote by x̃ a value encrypted using fully homo-
morphic encryption (FHE).

A FHE is a semantically secure public-key encryption scheme such that for
(pkF , skF )← F.Setup(κ), a key pair for a security parameter κ, together with
m̃1 ← F.EpkF (m1) and m̃2 ← F.EpkF (m2), two encryptions, their decryption
F.D must satisfy:

– homomorphic addition +F : F.DskF (m̃1 +F m̃2) = m1 +m2.
– cleartext-ciphertext product ⋉F : L.DskF (m1 ⋉F m̃2) = m1m2.
– homomorphic product ×F : F.DskF (m̃1 ×F m̃2) = m1m2.

Remark 3. Similarly to the LHE, we extend naturally the scheme for matrix and
polynomial inputs, and we assume for the purposes of our proofs that the FHE
is IND-CPA secure.
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4.3 Practical Tools in FHE.

In practice, actual FHE schemes, like the BGV scheme [3], are constructed on
top of a leveled fully homomorphic encryption scheme, allowing a bounded mul-
tiplicative depth algorithms. The latter is extended to arbitrary depth using a
bootstrapping procedure. A message is encrypted with a random noise that grows
at each homomorphic operation. If the noise becomes too large, the ciphertext
is no longer decipherable. Before that, a modulus switching procedure can be
performed (in particular, after each homomorphic product), reducing the noise
(and the size of the ciphertext). When the ciphertext size is even too small for
another modulus switching, then only a bootstrapping is required (increasing
back the size of the ciphertext, while regaining a small noise). Bootstrapping
being usually quite expensive, it means some that the multiplicative depth of
the protocols has to be controlled. We further introduce two tools that we use in
practice in our protocol. The first one is a noise flooding which, together with a
shortening, allows to ensure circuit privacy, while incidentally reducing the com-
munication volume. The second tool is batching, that allows single-instruction
multiple-data (SIMD) homomorphic operations.

Noise Flooding and Shortening In some implementations of FHE, cipher-
texts size and noise could contain some information about the homomorphic
operation performed. To prevent this, and thus ensure circuit privacy, some
schemes often need another algorithm, called flood, that, given an FHE cipher-
text ỹ, performs a noise flooding4 together with as many modulus switching
as possible (to preserve the decryption’s correctness). The resulting ciphertext
encrypts the same cleartext, but can no more be multiplied homomorphically
without a bootstrap. Now, for f, g two arithmetic circuits, let a, b, y be such that
f(a) = g(b) = y and let ã, b̃ be their respective FHE encryptions, the decryption

key owner should then not be able to distinguish flood(f(ã)) from flood(g(̃b)).

Batching From the construction of cleartext and ciphertext spaces in FHE
schemes, it is often possible to batch together several cleartexts so that encrypt-
ing them will result in a single ciphertext. We will denote by 〈yi〉i∈[m] a batch
of m cleartexts. For ỹ← F.EpkF (〈yi〉i∈[m]) an encryption of batched cleartexts
and f a circuit, the batching correctness implies that f(ỹ) is an encryption of
〈f(yi)〉i∈[m].

5 Optimal Communication Volume, Low Depth,
Batchable and Parallelizable UPSU Protocol

The idea of our protocol is to represent the set X owned by the receiver as the
polynomial PR(Z) =

∏
x∈X

(Z − x) and to evaluate PR on each element owned
by the sender. The receiver must learn only the elements of Y that are not

4 For instance, by adding a random noise.
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root of PR, and the evaluation must be performed homomorphically. To keep
the communication volume proportional to the size |Y| of the sender’s set, the
sender first sends its elements encrypted. The receiver performs the evaluation
homomorphically on its polynomial in clear. This requires both additions and
multiplications, whence the need for a FHE scheme. For efficiency purposes, we
introduce a homomorphic polynomial evaluation algorithm that is highly par-
allelizable, uses properly the batch and has a low multiplicative depth. Finally,
to minimize the number of rounds and avoid the expensive usage of FHE when
it is not required, we make a transition from the FHE to the LHE scheme and
conclude our protocol similarly to [9].

5.1 Fully Homomorphic Batched Scalar Multi-point Evaluation

A homomorphic batched scalar multi-point evaluation algorithm, denoted F.BSMEv,
is an algorithm that, given a pair of FHE keys (pkF , skF ), a batched ciphertext
ỹ← F.EpkF (〈yi〉i∈[m]) and a polynomial P in clear, satisfies

F.DskF (F.BSMEv(P, ỹ)) = 〈P (yi)〉i∈[m]. (3)

This algorithm evaluates a clear polynomial in many encrypted evaluation points.
Its main goal is to be efficient in practice. This requires to use properly the batch-
ing, to have a low multiplicative depth, to lessen the number of homomorphic
products and to be as parallelizable as possible.

Proposition 1. Let P be a clear polynomial of degree n given as a product of
√
n

polynomials of degrees
√
n, and let ỹ← F.EpkF (〈yi〉i∈[m]) be a batched ciphertext

corresponding to m plaintexts. Then F.BSMEv(P, ỹ) can be computed in O(mn)
arithmetic operations and a depth ⌈logn⌉+ 1.

Proof. The algorithm is built in three steps. First, compute homomorphically
the encryption of yji , for i ∈ [m] and j ∈ [

√
n]. Using batching, this costs m

√
n

homomorphic products ×F , in depth log
√
n. The result is an encrypted vector−→̃

v . Let P = P1×· · ·×P√
n, with degPj =

√
n. Then, write each Pj as a vector of

coefficients and compute the encryptions P̃j(y) of 〈Pj(yi)〉i∈[m], for j ∈ [
√
n], us-

ing homomorphic inner products between the vectors of coefficients and
−→̃
v . This

requires nm cleartext-ciphertext products ⋉F , in multiplicative depth 1. Finally,

reconstruct homomorphically the encryption of 〈P (yi)〉i∈[m] from {P̃j(y)}j∈[
√
n]

with a (homomorphic) binary multiplicative tree. This requires m
√
n homomor-

phic products ×F in depth log
√
n.

5.2 Formalization of the protocol

Let {xi}i∈[n], {yi}i∈[m] ⊂ M, n ≥ m, be the sets of the receiver R and of the
sender S, respectively. For the sake of simplicity, we assume that M is a finite
field, and that it is the (common) plaintext space of an FHE and an LHE. This
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assumption is met in our implementations, and we propose in Appendix A some
slight changes to keep the correctness of our protocol under other assumptions.
The respective ciphertext spaces for LHE and FHE are denoted EL and EF .
Formally, our protocol is built with the algorithms Setup, Encode, Reduce,
Map and Union respectively presented in Algs. 1 to 5. A more visual version
is presented in Protocol 1.

Algorithm 1 Setup(κ)

Input: A security parameter κ.
Outputs: Pairs of LHE keys (pkL, skL) and FHE keys (pkF , skF ), both with κ bits of
security. The secret key skL is owned by the receiver, and skF is owned by the sender.

1: R: compute (pkL, skL)← L.Setup(κ) and send pkL to S ;
2: S : compute (pkF , skF )← F.Setup(κ) and send pkF to R;
3: R: return keysR ← {(pkL, skL), pkF };
4: S : return keysS ← {(pkF , skF ), pkL};

Algorithm 2 Encode(Y, keysS)

Input: A set of plaintexts Y = {yi}i∈[m] ⊂ M and keysS = {(pkF , skF ), pkL}.
Output: A FHE ciphertext ỹ ∈ EF , such that F.DskF (ỹ) = 〈yi〉i∈[m].

1: S : compute ỹ← F.EpkF (〈yi〉i∈[m]) and send ỹ to R;
2: R: return ỹ;

Theorem 1. The protocol built with the algorithms Setup, Encode, Reduce,
Map and Union (Algs. 1 to 5) is a secure unbalanced private set union scheme
under the honest-but-curious adversary model and computes the set union with
the asymptotic complexity bounds presented in Table 3 .

Table 3: Cost analysis of Protocol 1 for n > m
Algorithm Ar. Cost for R Ar. Cost for S Comm. Vol. Depth

Setup O(1) O(1) O(1)

Encode O(1) O(m) O(m)

Reduce O(mn) O(1) O(m) ⌈logn⌉ + 1

Map O(1) O(m) O(m)

Union O(m) O(1) O(1)

Total O(mn) O(m) O(m) ⌈log n⌉+ 1
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Algorithm 3 Reduce(X, ỹ, keysR)

Input: A set of plaintexts X = {xj}j∈[n] ⊂ M, a FHE ciphertext ỹ ∈ EF and
keysR = {(pkL, skL), pkF}.

Output: A reduced FHE ciphertext h̃ ∈ EF , and a set of LHE ciphertexts
{k̂i}i∈[m] ⊂ EL, such that, for F.DskF (ỹ) = 〈yi〉i∈[m],

F.DskF (h̃) = 〈L.DskL(k̂i) +
∏

j∈[n]

(yi − xj)〉i∈[m].

1: R: compute PR ←
∏

j∈[n]

(Z − xj);

2: for all i ∈ [m] do

3: R: sample ki
$
←− M uniformly;

4: R: compute k̂i ← L.EpkL(ki);
5: end for

6: R: compute k̃← F.EpkF (〈ki〉i∈[m]);
7: R: compute ẽ← F.BSMEv(PR, ỹ);

8: R: compute h̃← flood
(
k̃ +F ẽ

)
;

9: R: send h̃ and {k̂i}i∈[m] to S ;

10: S : return {h̃, {k̂i}i∈[m]};

Algorithm 4 Map(Y, {h̃, {k̂i}i∈[m]}, keysS)

Input: A set of m plaintexts Y = {yi}i∈[m] ⊂ M, a FHE ciphertext h̃ ∈ EF , a LHE

ciphertext set {k̂i}i∈[m] ⊂ EL, and keysS = {(pkF , skF ), pkL}.
Output: A set of LHE ciphertext pairs {(êj , η̂j)}j∈[m] ⊂ E2

L such that, for

F.DskF (h̃) = 〈hi〉i∈[m], L.DskL(êπ(i)) = hi − L.DskL(k̂i) and
L.DskL(η̂π(i)) = yiL.DskL(êπ(i)) for i ∈ [m].

1: S : compute 〈hi〉i∈[m] ← F.DskF (h̃);

2: S : sample a uniform permutation π
$
←− Sm;

3: for all i ∈ [m] do

4: S : compute êπ(i) ← L.EpkL(hi)−L k̂i;
5: S : compute η̂π(i) ← yi ⋉L êπ(i);
6: end for

7: S : send {(êπ(i), η̂π(i))}i∈[m] to R;
8: R: return {(êj , η̂j)}j∈[m];

Proof. The correctness of the scheme relies on the fact that an element y owned
by the sender has to be added to the receiver’s set X if, and only if, PR(y) 6= 0.
The correctness of the evaluations is implied by the correctness of the FHE
and LHE encryption schemes, as well as the fact that both scheme share the
same field as plaintext space. The security proof, using simulation, is presented
in Appendix B.
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Algorithm 5 Union(X, {(êj , η̂j)}j∈[m], keysR)

Input: A set of plaintexts X = {xj}j∈[n] ⊂ M, a set of LHE ciphertext pairs
{(êj , η̂j)}j∈[m] ⊂ EL

2.
Output: A set of plaintexts Z ⊂ M, such that
Z = X ∪ {L.DskL(η̂j)L.DskL(êj)

−1 : L.DskL 6= 0}.

1: R: compute Z← X;
2: for all j ∈ [m] do

3: R: compute ej ← L.DskL(êj);
4: if ej 6= 0 then

5: R: compute Z← Z + {L.DskL(η̂j)e
−1
j };

6: end if

7: end for

8: R: return Z;

5.3 Timings in HElib

To instantiate Protocol 1, we used the C++ open source library HElib which
implements the BGV cryptosystem [3]. We could have done our implementations
on any other library implementing exact FHE schemes (BGV, BFV, ...), as
SEAL5 and OpenFHE6, but we found more freedom in the choice of parameters
with HElib. We used a 13th Gen Intel® Core™ i7-1370P with 20 threads and
32GB of RAM for our experiments. The plaintext space is the field F614332 , that
contains 384 bit-length words. The ciphertext space allows to batch up to 1024
plaintexts together. In the following, we consider the size of the sender’s set to be
a constant m = |Y| = 1024, and we want to analyze the communication volume
and the runtime of both parties when the receiver’s set size n = |X| grows
exponentially, from 210 to 220 elements. We choose the other parameters of the
context in order to keep the correctness of the decryption after an homomorphic
circuit of multiplicative depth 21. Through the security estimation given by
HElib, we have κ = 115. In our implementation, we use BGV restricted to
linear operations as a LHE. Since the receiver is assumed to have significant
computing power, we use parallelization on the 20 available threads, mainly for
F.BSMEv in Reduce. We ignore the communication volume and the runtime
implied by Setup as it can be done offline, and consider that both parties own a
secret key and the two public keys. In the unbalanced situation, it is interesting
to distinguish the runtime of both parties, presented in Fig. 1a and Fig. 1b
respectively.

The experimental results confirm the expected asymptotic presented in Ta-
ble 3. In particular, the arithmetic cost for the sender is independent of the
size of the receiver’s set, and is low. On the receiver’s side, the runtime values
confirm the linear complexity in the size of its set. (The runtime for the re-

5 https://github.com/microsoft/SEAL
6 https://github.com/openfheorg/openfhe-development

https://github.com/microsoft/SEAL
https://github.com/openfheorg/openfhe-development
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Protocol 1: Optimal communication volume, low depth, batchable and paral-
lelizable UPSU protocol

R: X = {xi}i∈[n] S: Y = {yi}i∈[m]

Setup

{pkF , skL, pkL} ←−−−−−−−−−−−−−−−→ {pkL, skF , pkF }

Encode
ỹ

←−−−−−−−−−−−−−−−− ỹ← F.EpkF (〈y1〉i∈[m])

PR ←
∏
(Z − xi) Reduce

ki
$
←− M

k̂i ← L.EpkL(ki)

k̃← F.EpkF (〈ki〉i∈[m])
ẽ← F.BSMEv(PR, ỹ)

h̃← flood
(
k̃ +F ẽ

) h̃, {k̂i}i∈[m]
−−−−−−−−−−−−−−−−→

Map 〈hi〉i∈[m] ← F.DskF (h̃)

π
$
←− Sm

êπ(i) ← ĥi −L k̂i
{( ̂eπ(i), ̂ηπ(i))}i∈[m]

←−−−−−−−−−−−−−−−− η̂π(i) ← yi ⋉L êπ(i)

ej ← L.DskL (êj) Union



ej = 0⇒ ⊥

ej 6= 0⇒

{
ηj ← L.DskL (η̂j)
X← X ∪ {ηje

−1
j }

Return X

ceiver is however quite large, around 6400 seconds for a set of size 220, but the
implementation could be optimized to reduce it. Also, the algorithm is highly
parallelizable and the receiver is assumed to have a significant computing power,
so the runtime may also be decreased by using more threads.) Fig. 1c confirms
that the communication volume is independent of the receiver’s set size and we
compare it to the values given in [21,24,25].7 We observe that due to some opti-
mizations, for example the leaky partitioning of [21], the communication volume
of previous protocols are smaller than ours when the receiver’s set is small. Yet,
for larger sets we obtain better results thanks to the optimal asymptotic volume
of our protocol.

6 Asymptotic Improvement for the Receiver

In this section, the idea is to use efficient computer algebra algorithms adapted
to the homomorphic encryption constraints. This allows us to improve the arith-
metic cost for the receiver, making it quasi-linear in its – large – set size n. We

7 In the other papers, the element bit-length is 128, but it is 384 in our implementa-
tions.
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Fig. 1: Protocol 1 experimental results
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28 210 212 214 216 218 220 222
0

1

2

3

Receiver’s set size |X|

R
u
n
ti
m

e
(s

),
|Y
|
=

2
1
0

(c) Communication volume of Protocol 1
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are able to do this while keeping an optimal communication volume, O(m), as
well as 3 rounds and a sender’s arithmetic cost independent of the receiver’s set
size (quasi-linear it its – small – set size). The downside is that batching is more
complex to set-up and that the multiplicative depth is doubled, making their
implementations currently less efficient on the examples of Section 5

More precisely, we reduce the arithmetic costs of our algorithms to fast poly-
nomial multiplication, between two ciphertext polynomials, one cleartext and
one ciphertext, or two cleartext polynomials. Even if fast polynomial multipli-
cation is quasi-linear in the degree, the context may vastly modify the actual
constant in the complexity bound. We thus detail in the following the number of
polynomial products in each context, for A,B polynomials of degrees at most d:

– M(d) is a bound on the arithmetic cost of the map A,B 7→ AB;
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– MF (d) is a bound on the arithmetic cost of the map Ã, B̃ 7→ Ã×F B̃ (note
that a homomorphic polynomial product is considered to have a multiplica-
tive depth 1 in that paper);

– ML(d) is a bound on the arithmetic cost of the map A, B̂ 7→ A⋉L B̂.

6.1 Efficient LHE and FHE Fast Multi-point Evaluation

We consider PR and PS , the two polynomials whose roots are respectively the
elements of the sets X and Y. To avoid the set intersection, we discard the points
of Y that evaluate PR to zero. Our fist remark is that it is sufficient to use
the remainder R = PR mod PS for the evaluations. But now this polynomial
has a degree at most m − 1 for m = |Y|. Our idea, in Protocol 2, is then to
homomorphically compute and evaluate this remainder instead. We show how
to preserve a fast arithmetic complexity bound, even under LHE or FHE.

Efficient Fully Homomorphic Euclidean Remainder. In the context of
homomorphic encryption, the impossibility of branching, for instance, makes it
more complex to design a fast homomorphic remainder. The classical fast division
algorithm computes the quotient first by a fast modular inverse of the divisor
and then updates the remainder. The fast modular inverse is usually obtained
by a Newton-like iteration. Here we need the division of a clear polynomial
by a ciphered one. Even then, this computation cannot be directly performed
in a LHE scheme since the divisor and the quotient, both encrypted, need to
be multiplied together. Moreover, the need to invert the leading coefficient of
the divisor could also be an issue. We thus focus here on the case where the
divisor is monic. We denote this algorithm with the operator modF , that, for
(pkF , skF ) ← F.Setup(κ), a FHE key pair of security κ and for two cleartext
polynomials A,B with B monic, do satisfy that:

F.DskF (A modF (F.EpkF (B))) = A mod B. (4)

Proposition 2. Let A be a cleartext polynomial of degree n and let B̃ be a
FHE ciphertext polynomial which is an encryption of a monic polynomial of

degree m < n. A modF

(
B̃
)

can be computed in less than 4MF (n−m) +O(n)

arithmetic operations with a depth 2⌈log(n−m+1)⌉+1. If an encryption of
←−
B−1

mod Z2⌈logm⌉

is given, the depth is reduced to 2⌈log(n−m+ 1)− logm⌉+ 1.

Proof. The algorithm presented in Appendix C.1 is an adaptation of the fast
Euclidean division algorithm, based on Newton iteration [22], to the FHE set-

tings. We remark that if an encryption of
←−
B−1 mod Z2⌈log m⌉

is given, where
←−
B

is the reverse polynomial, the first ⌈logm⌉ steps of the Newton iterations can be
skipped, reducing the multiplicative depth by 2⌈logm⌉.
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Fast Linearly Homomorphic Multi-point Evaluation. We define a linearly
homomorphic multi-point polynomial evaluation algorithm, denoted by L.MEv,
that homomorphically evaluates a ciphertext polynomial of degree m − 1 in m
cleartext evaluation points. For (pkL, skL) ← L.Setup(κ), a LHE key pair of
security κ, for H a cleartext polynomial of degree m − 1 and for m cleartext
evaluation points {yi}i∈[m], if {êi}i∈[m] ← L.MEv

(
L.EpkL(H), {yi}i∈[m]

)
then,

this algorithm has to satisfy, for all i ∈ [m], that: L.Dsk(êi) = H(yi). Naively,
the algorithm L.MEv can be implemented in O(m2) operations, evaluating
homomorphically the polynomial on each point with an adaptation of the Horner
scheme. In Appendix C.2 we instead derive from [2] an asymptotically fast multi-
point evaluation algorithm that satisfies:

Proposition 3. Let Ĥ be an LHE ciphertext polynomial of degree m − 1 and
{yi}i∈[m] be m cleartext evaluation points. With 1

2M(m) logm+Õ(m) operations

of precomputation on the yi, L.MEv(Ĥ, {yi}i∈[m]) can be computed in at most

ML(m) logm+ Õ(m) operations.

Protocol with modF and L.MEv. Our second protocol makes use of two
cryptosystems, a LHE and a FHE. To ensure correctness, the schemes have to
share the same cleartext space. It is presented in Protocol 2 and its correctness
is implied by the correctness of the encryption schemes and the fact that the
remainder PR mod PS vanishes only on the intersection set.

The full simulation proof of the security of Protocol 2 is given in Appendix B.
The asymptotic presented in Table 4 are implied by Prop. 3 and Prop. 2. In par-

ticular, the sender sends P̃S together with an encryption of
←−
P −1

S mod Z2⌈log m⌉

in its first message, to reduce the FHE multiplicative depth of PR modF (P̃S),
without increasing the dominant term of the communication volume. We observe
that each party has a quasi-linear arithmetic cost in its set size, while conserving
an optimal communication volume. Also, we can remark that this protocol has
a lower multiplicative depth than Protocol 1 when

√
n < m < n, even if it is not

our target usage case.

Theorem 2. Protocol 2 is a secure UPSU under the honest-but-curious adver-
sary model. For the receiver and the server respectively owning sets X and Y of
n and m cleartexts, with the assumption that n > m, it computes the set union
with the asymptotic complexity bounds presented in Table 4.

6.2 Fast FHE Multi-point Evaluation with Compatibility LHE-FHE

In fact, as long as the divisor is monic, we show in the following that it is
actually possible to perform a fast multi-point evaluation, based on successive
remainders, from a FHE Euclidean remainder. This is the idea of the variant
version presented in Protocol 3. This protocol allows a quasi-linear arithmetic
cost for both parties, in their respective set size and an optimal communication
volume. It is clearer to present it when the LHE and the FHE have the same
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Protocol 2: Optimal communication volume UPSU protocol with modF and
L.MEv

R: X = {xi}i∈[n] S: Y = {yi}i∈[m]

Setup

{pkF , skL, pkL} ←−−−−−−−−−−−−−−−→ {pkL, skF , pkF }

Encode PS ←
∏
(Z − yi)

P̃S←−−−−−−−−−−−−−−−− P̃S ← F.EpkF (PS)

PR ←
∏
(Z − xi) Reduce

M
$
←− M[Z]m−1

M̂ ← L.EpkL(M)

M̃ ← F.EpkF (M)

R̃← PRmodF (P̃S)

H̃ ← R̃+F M̃
H̃, M̂

−−−−−−−−−−−−−−−−→

Map H ← F.DskF (H̃)
{hi}i∈[m] ←MEv(H,Y)

{m̂i}i∈[m] ← L.MEv(M̂,Y)

π
$
←− Sm

êπ(i) ← ĥi −L m̂i

{( ̂eπ(i), ̂ηπ(i))}i∈[m]
←−−−−−−−−−−−−−−−− η̂π(i) ← yi ⋉L êπ(i)

ej ← L.DskL (êj) Union



ej = 0⇒ ⊥

ej 6= 0⇒

{
ηj ← L.DskL (η̂j)
X← X ∪ {ηje

−1
j }

Return X

Table 4: Cost analysis of Protocol 2 for n > m
Algorithm Ar. Cost for R Ar. Cost for S Comm. Vol. Depth

Setup O(1) O(1) O(1)

Encode O(1) Õ(m) O(m)

Reduce 4MF (n) + Õ(n) O(1) O(m)
2(⌈log(n − m + 1)⌉
−⌈logm⌉) + 1

Map O(1) ML(m) logm + Õ(m) O(m)

Union O(m) O(1) O(1)

Total 4MF (n) + Õ(n) ML(m) logm+ Õ(m) O(m)
2(⌈log(n−m+ 1)⌉
−⌈logm⌉) + 1

cleartext space, but we show in Appendix A that this condition is not mandatory.
The algorithm can be parallelized but batching is more difficult, and its depth
is twice that of Protocol 1.
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Fast Fully Homomorphic Multi-point Evaluation. We thus now denote
by F.MEv, a fast FHE multi-point evaluation algorithm, that homomorphically
evaluates a cleartext polynomial in encrypted evaluation points. For (pkF , skF )←
F.Setup(κ), a FHE key pair of security κ, for a cleartext polynomial A and for m
cleartext evaluation points {yi}i∈[m], if {ẽi}i∈[m] ← F.MEv(A, {F.EpkF (yi)}i∈[m])
then, this algorithm has to satisfy, for all i ∈ [m], that: F.DskF (ẽi) = A(yi). We
show in Appendix C.3 that it is possible to adapt a Newton iterations and a fast
multi-point algorithm to the fully homomorphic context. This allows us to get
the following proposition:

Proposition 4. Let A be of degree n and {ỹi}i∈[m] be m < n ciphertexts.
F.MEv(A, {ỹi}i∈[m]) can be computed in less than 4MF (n−m) + O(n) arith-
metic operations with a depth 2(L+ l), for L = ⌈log(n−m+1)⌉ and l = ⌈logm⌉.
If an encryption of

←−−−−−−−∏
m

(Z − yi)
−1 mod Z2l is given, the depth is reduced to 2L.

Proof. The algorithm presented in Appendix C.3 is a modification of the Newton
iterations and a multi-point algorithm based on successive Euclidean remainders
adapted in the FHE context. Similarly to Protocol 2, having an encryption of←−−−−−−−∏
m

(Z − yi)
−1 mod Z2l allows to skip l steps of the Newton iterations, and reduce

the multiplicative depth by 2l.

Protocol with F.MEv. This allows us to present Protocol 3 whose character-
istics are given in Theorem 3.

The correctness proof of Protocol 3 follows the line of that of Protocol 1 and
the simulator is given in Appendix B. Its asymptotic cost is presented in Table 5
and is implied by Prop. 4. In particular, the sender sends P̃S together with

an encryption of
←−−−−−−−∏
m

(Z − yi)
−1 mod Z2⌈log m⌉

in its first message. This reduces

the FHE multiplicative depth of F.MEv(PR, {ỹi}i∈[m]), without increasing the
dominant term of the communication volume. We have proven:

Theorem 3. Protocol 3 is a secure UPSU under the honest-but-curious adver-
sary model. For the receiver and the server respectively owning sets X and Y of
n and m cleartexts, with the assumption that n > m, it computes the set union
with the asymptotic complexity bounds presented in Table 5.

7 Conclusion

We have presented two new protocols for the UPSU problem, which are the first
whose computational and communication costs for the sender depend only on
the size of the sender’s set. Asymptotically, we have achieved the optimal or
nearly-optimal computational and communication costs.

However, our protocols are still largely of theoretic interest and further work
remains to make them viable in practice. Our preliminary experiments for the
first protocol validate our asymptotics and show that the sender computation
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Protocol 3: Optimal communication and arithmetic cost with compatibility LHE-
FHE protocol

R: X = {xi}i∈[n] S: Y = {yi}i∈[m]

Setup

{pkF , skL, pkL} ←−−−−−−−−−−−−−−−→ {pkL, skF , pkF}

Encode
{ỹi}i∈[m]

←−−−−−−−−−−−−−−−− ỹi ← F.EpkF (yi)

PR ←
∏
(Z − xi) Reduce

ki
$
←− M

k̂i ← L.EpkL(ki)

k̃i ← F.EpkF (ki)
{ẽi}i∈[m] ← F.MEv(PR, {ỹi}i∈[m])

h̃i ← k̃i +F ẽi
{h̃i}i∈[m], {k̂i}i∈[m]

−−−−−−−−−−−−−−−−→

Map hi ← F.DskF (h̃i)

π
$
←− Sm

êπ(i) ← ĥi −L m̂i

{( ̂eπ(i), ̂ηπ(i))}i∈[m]
←−−−−−−−−−−−−−−−− η̂π(i) ← yi ⋉L êπ(i)

ej ← L.DskL (êj) Union



ej = 0⇒ ⊥

ej 6= 0⇒

{
ηj ← L.DskL (η̂j)
X← X ∪ {ηje

−1
j }

Return X

Table 5: Cost analysis of Protocol 3 for n > m
Algorithm Ar. Cost for R Ar. Cost for S Comm. Vol. Depth

Setup O(1) O(1) O(1)

Encode O(1) Õ(m) O(m)

Reduce 4MF (n) + O(n) O(1) O(m) 2 log(n − m + 1)

Map O(1) O(m) O(m)

Union O(m) O(1) O(1)

Total 4MF (n) +O(n) Õ(m) O(m) 2 log(n−m+ 1)

time and communication volume are competitive with other recent UPSU work.
However, we would need to scale this to larger sizes (particularly larger receiver
set sizes) to demonstrate the practical advantage over alternative approaches.

This scaling is hindered by the higher receiver computational cost in our first
protocol. Our second protocol has a much better (quasi-optimal) computational
cost, but due to the somewhat more sophisticated algorihms which make use
of both FHE and LHE cryptosystems in a delicate interaction, developing a
practical implementation of the second protocol remains as future work.
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A About the Compatibility FHE-LHE

In this paper, our Protocols 1 to 3 combine FHE and LHE schemes. But, de-
pending on the instantiation of both schemes, it is not always straightforward to
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preserved the overall correctness: denoting ML and MF the respective cleartext
spaces of the LHE and FHE schemes, we have presented our protocols when the
message spaces are both equal to a finite field, MF = ML = Fq. In this case,
there are no compatibility issues and this is always possible as an FHE is by
definition also an LHE.

Another situation is when MF = Fq and ML = ZN , for q2 < N : for instance
this is the case if BGV is used for the FHE and Paillier cryptosystem is used
for the LHE. We show next that our Protocols 1 and 3 can benefit from such an
instantiation.

Indeed, more precisely, in BGV, Fq = Fpk ≃ Fp[X]
(T (X)) for T (X) a polynomial

of degree k, irreducible on Fp. Then, for a chosen T (X), an element α ∈ Fq

is uniquely represented as a polynomial
k−1∑
i=0

aiX
i ∈ Fp[X]

(T (X)) , where ai ∈ Fp for

all i. By viewing this polynomial as a polynomial in Z[X ], we can introduce
the one-to-one correspondence Ψ between Fq and [0, q) that maps α ∈ Fq to
k−1∑
i=0

aip
i ∈ [0, q). With the condition q2 < N , an element α ∈ Fq is uniquely

represented in ZN with Ψ(α) ∈ [0, q) ⊂ [0, N). Note that Ψ(0) = 0 but Ψ does
not preserve the arithmetic. In Protocols 1 and 3, the receiver sends α̃, an FHE
encryption of α, and β̂, an LHE encryption of Ψ(β), to the sender. The sender

decrypts α̃, and computes and sends in fact ê← α̂−L β̂ as well as η̂ ← Ψ(y)⋉L ê
and ν̂ ← Ψ(y)⋉L (0̂ −L ê) (where α̂ is an encryption of Ψ(α)). Therefore, after
decryption, if α = β, all three of e, η and ν are 0, as expected. The issue is when
α 6= β. There are two cases, depending whether a modular reduction was needed
in e when subtracting homomorphically Ψ(α) ∈ [0, q) to Ψ(β) ∈ [0, q):

– If e ∈ [0, q), then η ∈ [0, q2) and just dividing η by e over the rationals
recovers Ψ(y) = ηe−1 = Ψ(y)ee−1 ∈ Q.

– If now e ∈ [N − q,N), then in fact ν = Ψ(y)(N − e) ∈ [0, q2) and we need
to divide over the rationals by N − e instead to recover Ψ(y) = Ψ(y)(N −
e)(N − e)−1 ∈ Q.

The actual case is easily decided in view if the deciphering of ê. Overall, we have
shown that even in this BGV/Paillier-like situation, the receiver can compute
back y = Ψ−1 (Ψ(y)) ∈ Fq if and only if α 6= β, that is if and only if P (y) 6= 0.

For some other situations, an oblivious transfer [18] could be used to end the
protocol instead, at the cost of an increase of the number of rounds.

B Security Proofs

We simultaneously do the simulation proof for Protocols 1 to 3, as their con-
structions are close. We also explicit the proof in the situation were the plaintext
spaces for FHE and LHE are the same finite field M := Fq (in the BGV/Paillier-
like situation, otherwise, the analysis of Appendix A shows that the security
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is preserved). We assume that both the FHE and LHE schemes used are IND-
CPA secure. In the following, the receiver R and the sender S are respectively
called party 1 and 2, while the UPSU protocol is denoted Π . The protocol has
3 rounds: R receives 2 messages M1 and M3 while S receives only M2. The
semantic functionality is f : P(M) × P(M) → P(M) × P(M) where P denotes
the power set and MF is the FHE cleartext space. The ideal output-pair is
f(X,Y) = (f1(X,Y), f2(X,Y)) = ((X∪Y), ∅). As the protocol is parametrized
with (upper bounds on) the set sizes |X| and |Y|, those are implicitly revealed
to both parties. The following views are reduced to the minimal set that could
trivially imply the real view; for example, if the real view have a clear polyno-
mial R, a key pkF and a ciphertext F.EpkF (R), we omit F.Epk(R) in the view,
because if we can simulate both R and pkF , it is trivial to simulate F.Epk(R).

As we are proving the security of three protocols, we will use the notation



a
b
c

to

describe the view, where a is related to Protocol 1, b to Protocol 2 and c to Pro-
tocol 3. In the following, we consider that the Setup algorithm has already been
completed: it is just an exchange of two public keys pkL and pkF , respectively
for the LHE and FHE scheme. Now, the views and the outputs of each parties
are:

– viewΠ
1 (X,Y) = (X, C1,M1,M3) such that:

C1 =

{
pkL, skL, pkF ,



{ki}i∈[m]

M
{ki}i∈[m]

,




ẽ

R̃
{ẽi}i∈[m]

, {eπ(i), ηπ(i)}i∈[m]

}
,

where




ẽ

R̃
{ẽi}i∈[m]

←




F.BSMEv(PR, ỹ)

PR modF P̃S
F.MEv(PR, {ỹi}i∈[m])

, and for all j ∈ [m], ej ←

L.DskL(êj), ηj ← L.DskL(η̂j). The content of the first message is:

M1 =








ỹ

P̃S , Ũl

{ỹi}i∈[m], Ũl



 ,

while the content of the second message is

M3 =
{
{êπ(i), η̂π(i)}i∈[m]

}
,

for êπ(i) ←




L.EpkL(PR(yi))
L.EpkL((PR mod PS)(yi))
L.EpkL(PR(yi))

and η̂π(i) ← yi ⋉L êπ(i).
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– viewΠ
2 (X,Y) = (Y, C2,M2) such that:

C2 =



pkF , skF , pkL,



〈hi〉i∈[m]

{H(yi)}i∈[m]

{hi}i∈[m]

, {êi}i∈[m], π



 ,

M2 =








h̃

H̃

{h̃i}i∈[m]

,



{k̂i}i∈[m]

M̂

{k̂i}i∈[m]





.

– outputΠ1 (X,Y) = (X ∪ {yi ∈ Y|PR(yi) 6= 0})
– outputΠ2 (X,Y) = ∅

On the side of S, a probabilistic polynomial-time algorithm S2, taking as
input the set Y, simulates viewΠ

2 (X,Y) with the following tuple.

S2(Y, ∅) =
(
Y,




pkF , skF , pkL,



〈ri〉i∈[m]

{R(yi)}i∈[m]

{ri}i∈[m]

,



{r̂i −L r̂′i}i∈[m]

{R̂(yi)−L R̂′(yi)}i∈[m]

{r̂i −L r̂′i}i∈[m]

, π′





,








flood(F.EpkF (〈ri〉i∈[m]))
F.EpkF (R)
{F.EpkF (ri)}i∈[m]

,



{r̂′i}i∈[m]

R̂′

{r̂′i}i∈[m]





)
,

where m = |Y|, pkF , skF , pkL are obtained from the Setup algorithm, ri, r′i
$←−

M for all i ∈ [m], R,R′ $←− M[X ] of degrees m − 1, for r̂i, r̂′i, R̂, R̂′ their LHE

encryptions with pkL, and π′ $←− Sm.
In the protocol, {hi}i∈[m] (resp. H) are masked values and are thus indis-

tinguishable from the random {ri}i∈[m] (resp. R). Note than in Protocol 1, the
{hi}i∈[m] are sent encrypted under FHE, and S has the decryption key. The
algorithm flood then ensures privacy (and circuit privacy): both the simulated
and the real ciphertexts have the same lowest possible size and their noise are
flooded. The {ki}i∈[m] (resp. M) and π are random values, thus easily simulated
with random values {r′i}i∈[m] (resp. R′) and π′. By performing the operations
from the protocol to the simulated values, we obtain, for every subsets X,Y ⊂M:

{S2(Y, ∅), ((X ∪Y), ∅)} c≡ {viewΠ
2 (X,Y),outputΠ(X,Y)}.

On the side of R, a probabilistic polynomial-time algorithm S1 taking as
input the set X and (X ∪ Y) first computes a set Z = {zi}i∈[m] ⊂ M, with
m = |Y|, as following. Exactly |Y|−(|X∪Y|−|X|) = |X∩Y| of the zi (uniformly
distributed) are randomly picked in X, and the others (|X ∪Y| − |X|) are the
cleartexts in X∪Y\X. The set Z is indistinguishable from the set Y. Indeed, the
two sets have the same size, and X ∪Y = X ∪ Z by construction; in particular,
|X ∩Y| = |X ∩ Z|. All, the information given by the sender to the receiver on
the set X ∩Y are sent encrypted under FHE in the protocol, and the receiver
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does not have the decryption key. This implies, under the IND-CPA security
of the scheme, that taking any subset of X with size |X ∩ Y| can lead to an
indistinguishable simulation. Then, as the sender’s input set has been properly
simulated, S1 simulates viewΠ

1 (X,Y) this way:

S1(X, (X ∪Y)) = viewΠ
1 (X,Z)

Overall, we obtain for every subsets X,Y ⊂M:

{S1(X, (X ∪Y)), ((X ∪Y), ∅)} c≡ {viewΠ
1 (X,Y),outputΠ(X,Y)}.

C Efficient Homomorphic Algorithm Constructions

In the following algorithms, for a polynomial A =
∑d

i=0 aiZ
i, we denote by

[A]Ll :=
∑L

i=l aiZ
i−l, and

←−
A :=

∑d

i=0 ad−iZ
i.

C.1 FHE Euclidean Remainder

We recall the Newton-iteration-based algorithm for polynomial Euclidean divi-
sion. We present the fast version of [13]. The remainder R in the division of A
by a monic B, of respective degrees n and m < n, is the unique polynomial sat-
isfying A = BQ+R with deg(R) < m. This implies, by reversing the polynomial

coefficients,
←−
A =

←−
Q
←−
B + Zn−m+1←−R , whence

←−
Q =

←−
A
←−
B−1 mod Zn−m+1. (5)

The goal is to homomorphically compute the inverse of
←−
B modulo Zn−m+1,

using Newton iteration. Let Ã and B̃ be encryptions of A and B, and 1̃ be an
encryption of 1 with the same public key. The algorithm requires first to compute
the coefficient ŨL, for L = ⌈log(n−m+ 1)⌉ − 1, of the sequence (Ũ):

(Ũ) =





Ũ0 = 1̃

Ũk+1 = Ũk ×F

(
1̃−F

[←−̃
B ×F Ũk

]2k+1−1

2k
Z2k

)
mod Z2k+1 (6)

Now, instead of computing the last step of the sequence that would give us ho-

momorphically the inverse polynomial of
←−
B mod Zn−m+1, we directly compute

homomorphically the quotient, using ŨL.

S̃ = A⋉F ŨL mod Zn−m+1, and (7)

T̃ =

[←−̃
B ×F ŨL

]2L+1−1

2L
×F

[
S̃
]n−m−2L

0
mod Zn−m+1−2L . (8)

Then
←−̃
Q := S̃ +F T̃Z2L is an encryption of

←−
Q , the reverse quotient. Finally, we

compute
R̃ = A−F Q̃×F B̃ mod Zm (9)
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to get an encryption of the remainder R. Using the fact thatMF (2d) ≤ 2MF (d),
we can bound the number of arithmetic operations done with that algorithm
with at most 4MF (n−m) +O(n). Also, each step of the sequence (Ũ) requires

two homomorphic products which means that computing ŨL has depth 2L. To
obtain R̃, it requires 3 more products, so in total, this algorithm has a depth
2⌈log(n−m+ 1)⌉+ 1.

C.2 LHE multi-point evaluation

We adapt the algorithm presented in [2] to the LHE context. Let Ĥ =
m−1∑
i=0

ĥiZ
i,

H ← L.Dsk(Ĥ). and y1, . . . , ym ∈ M. For the sake of clarity we assume that
m is a power of two, but it is not mandatory in practice. The first step of the
algorithm consists in computing the following polynomials in clear, for k = 0,
. . . , logm and i = 1, . . . , 2k:

P( i

2k
) :=

∏

j∈{ i−1

2k
m+1,..., i

2k
m}

(Z − yj) (10)

These polynomials can be computed using a product tree in 1
2M(m) logm +

Õ(m) arithmetic operations. Note that these polynomials can be precomputed
if the evaluation points are known in advance.

The algorithm requires then to compute the polynomials

B :=
←−
P −1

( 1
1 )

mod Zm, and (11)

Â :=
[←−
B ⋉L Ĥ

]2m−1

m−1
. (12)

Let Â( 1
1 )

:=
←−̂
A . The last step of the algorithm consists in the computation for

k = 1, . . . , logm and i = 1, . . . , 2k of the encrypted polynomials

Â( i

2k
) =

[
←−
P (

i−(−1)(i mod 2)

2k

) ⋉L Â( ⌈i/2⌉

2k−1 )

] m

2k−1

m

2k

. (13)

According to the correctness of the algorithm presented in [2], Â( i
m ) is an en-

cryption of H(yi) for 1 ≤ i ≤ m. The final computation of the polynomials

Â( i

2k
) requiresML(m) logm+ Õ(m) arithmetic operations, and this dominates

the cost.

C.3 FHE multi-point evaluation

Our goal is to evaluate a polynomial A of degree n in m evaluation points
{y1, ..., ym} homomorphically. To ease the description of the algorithm, we will
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assume that m = 2l. We will consider the polynomials P( i

2k
) presented in (10). If

the {yi}i∈[m] are encrypted in a FHE scheme, one can compute those polynomials

homomorphically and obtain the following sequence (P̃ ):

(P̃ ) =





P̃( i
m ) = Z −F ỹi; i ∈ [m]

P̃( i

2k−1 )
= P̃( 2i−1

2k
) ×F P̃( 2i

2k
); k ∈ [l], i ∈ [2k]

(14)

The computation requires less than 1
2 lMF (m)+Õ(m) arithmetic operations with

a depth l. Through an adaptation of the Newton iterations, given the sequence
(P̃ ) and the encrypted {yi}i∈[m], one can compute the following sequence (Ṽ ),

that gives encryption of the set

{←−
P −1

( i

2l−k )
mod Z2k

}

i∈[2k]

, for k ∈ [0, l], as

following:

(Ṽ ) =





Ṽ0

(i)
= 1̃; i ∈ [m]

Ṽ1

(i)
= 1̃ +F (ỹ2i−1 + ỹ2i)Z; i ∈ [2l−1]

˜
V

(i)
k+1 = K̃0 − Z2k

[[
K̃0

]2k−1

0
×F (K̃1 +F K̃2)

]2k−1

0

mod Z2k+1

; i ∈ [2l−(k+1)]

where, for the computation of
˜
V

(i)
k+1, we have

K̃0 =
˜
V

(2i−1)
k

˜
V

(2i)
k ,

K̃1 =

[←−−−−−
P̃( 2i−1

2l−k )
×F

˜
V

(2i−1)
k

]2k+1−1

2k
,

K̃2 =

[←−−−−−
P̃( 2i

2l−k )
×F

˜
V

(2i)
k

]2k+1−1

2k
.

We remark that for all k ∈ [0, l] and i ∈ [2l−k], Ṽ (i)
k is an encryption of

←−
P −1

( i

2l−k )

mod Z2k . It requires less than 2(l − 2)MF (m) + Õ(m) arithmetic operations.
Also, this algorithm has a depth 2(l − 1). With another sequence of Newton

iteration, we want to obtain homomorphically
←−
P −1

( 1
1 )

mod Zn−m+1 in order to

perform the Euclidean division of A by P( 1
1 )

=
m∏
i=1

(Z − yi). In fact, we are

computing the sequence (Ũ) from (6):

(Ũ) =





Ũl = Ṽ
(1)
l

Ũk+1 = Ũk ×F

(
1̃−F

[←−−
P̃( 1

1 )
×F Ũk

]2k+1−1

2k
Z2k

)
mod Z2k+1
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As explained in Appendix C.1, by denoting L = ⌈log(n−m+1)⌉−1 it requires less

than 2MF (n−m)+O(n) arithmetic operations to obtain homomorphically ŨL,
with a depth 2(L− l). With less than 2MF (n−m)+O(n) arithmetic operations
and a depth 3, we compute homomorphically the remainder of A divided by
P( 1

1 )
, that we denote R̃l. We are now applying a multi-point evaluation algorithm

different from the one presented in Appendix C.2, which consists in successive

Euclidean remainders in the P( i

2k
). The previously computed P̃( i

2k
) and Ṽ

(i)
k will

help us to do this algorithm homomorphically through the following sequence.
For k ∈ [0, l − 1]:

(R̃) =





R̃
(1)
l = R̃l( =: A modF P̃( 1

1 )
);

˜
R

(2i−1)
k =

˜
R

(i)
k+1 −F P̃( 2i−1

2l−k )

←−−−−−−−−−−−−−−[
˜
V

(2i−1)
k

←−−−
˜
R

(i)
k+1

]2k−1

0

mod Z2k ; i ∈ [2l−k]

˜
R

(2i)
k =

˜
R

(i)
k+1 −F P̃( 2i

2l−k )

←−−−−−−−−−−−−[
˜
V

(2i)
k

←−−−
˜
R

(i)
k+1

]2k−1

0

mod Z2k ; i ∈ [2l−k]

(15)

The sequence (R̃) satisfies the following correctness, assuming skF is the decryp-
tion key, ∀k ∈ [0, l− 1], ∀i ∈ [2l−k] :

F.DskF

(
˜
R

(i)
k+1

)
mod P( 2i−1

2l−k )
= F.DskF

(
˜
R

(2i−1)
k

)
, (16)

F.DskF

(
˜
R

(i)
k+1

)
mod P( 2i

2l−k )
= F.DskF

(
˜
R

(2i)
k

)
. (17)

In particular, we have :

F.DskF

(
R̃

(i)
0

)
= A(yi) (18)

Finally, computing homomorphically all the

{
R̃

(i)
0

}

i∈[m]

, given R̃l, all the P̃( i

2k
)

and all the Ṽ (i)
k , requires less than 2lMF (m)+Õ(m) arithmetic operations. Also,

this algorithm has a depth 2l. In total, for n > m, less than 4MF (n−m)+O(n)
arithmetic operations and a depth 2(L+ l+ 1) = 2(⌈log(n−m+ 1)⌉+ ⌈logm⌉)
are required.
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