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Abstract

In this paper, we consider the problem of antenna placement for radio interferometer arrays. In this type of applications,
signal-to-noise ratios (SNR) are typically low, and possibly lower than a SNR threshold under which the estimation
performance of source parameters may degrade significantly. In this regime, the Cramér-Rao bound (CRB), which
is often used for array design, is not a tight bound of the MSE. Therefore, we study the use of a Barankin-type
bound (BTB) as an alternative array design criterion. We assess and compare the array geometries based on the CRB
and the BTB in terms of MSE for a source’s DOA and intensity. We also study how both geometries perform for
imaging purposes. Specifically, the obtained results are assessed in terms of uv-plane coverage (completeness of spatial
frequency sampling), mainlobe width and sidelobe level of the synthesized beam, as well as image reconstruction
performance. Numerical experiments show that the BTB-based design leads to better overall estimation performance
over a fairly wide range of SNR and to an enhanced array imaging capability, compared with a CRB-based approach.

Keywords: Antenna placement, Barankin bound, Cramér-Rao bound

1. Introduction

In recent decades, radio interferometer arrays have
grown in size, with many more antenna elements and
much wider spatial spread. The increased number of
antennas improves resolution and sensitivity, as is the
case of modern instruments, such as LOFAR [1] or SKA
[2, 3]. Since their accuracy highly depends on the an-
tenna locations, antenna placement makes up a critical
task in the design phase of the instruments.

In radio interferometry, the data used to construct sky
images correspond to the signal correlations between
each pair of antennas, also referred to as visibilities. Due
to the Fourier transform relationship between the visibil-
ities and the sky image [4], a fundamental characteristic
of radio interferometers is the sampling function of the
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visibilities in the spatial frequency domain, generally re-
ferred to as uv-plane coverage in radio astronomy. Each
visibility is associated with a baseline vector that con-
nects the corresponding pair of antennas. The collection
of the array baseline vectors, projected on the plane
orthogonal to the reference direction (generally the cen-
ter of the desired image), forms the uv-plane coverage.
Consequently, classical approaches for radio interferom-
eter design consist in placing antennas so as to obtain
a desired uv-plane sampling function, or equivalently a
desired point-spread function in the image domain (typi-
cally, with a narrow main lobe and low sidelobes) [5, 6].

The uv-plane coverage plays a key role when con-
sidering imaging methods based on beamforming. If
model-based, parametric techniques such as maximum
likelihood estimation are used [7], it seems more appro-
priate to formulate array design criteria based on the
statistical performance of such methods, which is usu-
ally assessed in terms of mean-squared error (MSE).
Assessing the MSE of an estimator requires numerous
Monte-Carlo simulations, which can quickly become
computationally intensive, and sometimes unfeasible, as
the number of unknown parameters increases. This is
especially burdensome if MSE is to be used as the cost
function to design a system. To overcome this difficulty,
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lower bounds of the MSE can be used as performance
indicator, such as the Cramér-Rao bound (CRB). In ad-
dition these bounds have the appealing property of being
valid for a family of estimators (namely, unbiased esti-
mators in the case of the CRB, for instance). In array
processing, the CRB is commonly used as a design crite-
rion to solve the problem of optimal antenna placement
[8, 9], due to its simplicity and existence of closed form.
However, it is well-known that the CRB is generally
only asymptotically attained, i.e., for a large number of
observations and/or high SNR. In nonlinear estimation
problems, a threshold SNR exists, under which the MSE
significantly deviates from the CRB. For low SNR, the
CRB is consequently not appropriate to describe estima-
tion performance. Numerous other bounds have been
proposed in the literature, which can be used to predict
the SNR threshold (see e.g., [10, 11] for an overview).
Among them, Barankin-type bounds (BTB), such as the
Hammersley-Chapman-Robbins bound [12], offer a prac-
tical way for computing the original Barankin bound
[13]. These bounds have been extensively studied in
the literature, especially in the field of array processing
(see [14–16], for instance). To the best of our knowl-
edge, BTBs have rarely been used to solve an antenna
selection problem at low SNR. In [17], the authors used
the Bobrovsky-Zakai bound, which can be seen as the
Bayesian counterpart of BTBs, in a context of cognitive
antenna selection for automotive radar.

Here, we investigate the antenna placement problem
by seeking to minimize MSE lower bounds on the pa-
rameters of a single source, such as direction of arrival
(DOA) and source power. We aim at studying to which
extent this relaxed model may lead to relevant array
geometries for imaging purposes in radio astronomy.
Specifically, we compare antenna placement approaches
based on the minimization of the CRB and the BTB,
respectively. The performance of both approaches is
compared in terms of array beampattern (or dirty beam),
baseline diversity, and parameter estimation accuracy.
It is shown that a BTB-based design criterion is more
suitable than a CRB-based criterion, especially in the
SNR transition regime.

The rest of the paper is organized as follows: Section 2
describes the data model and provides some background
on MSE lower bounds, Section 3 formulates the opti-
mization problem for antenna placement, and Section 4
presents numerical results and analyses. Finally, conclu-
sions are drawn in Section 5.

2. Data model and associated error lower bounds

2.1. Model formulation

We consider an antenna array consisting of P antennas
placed on the Earth’s surface, whose location vectors are
denoted by ξp = [xp, yp, zp]T, p = 1, . . . , P, in a local
coordinate system where the x-axis is oriented towards
east of the reference observation point (chosen as the
origin), the y-axis is oriented towards north, and the z-
axis points at the zenith. We assume the presence of a
single, narrowband, far-field source signal s(t), that is
zero-mean, complex Gaussian, with an unknown vari-
ance denoted by S = E

∣∣∣s2(t)
∣∣∣ that corresponds to the

source intensity. We are interested in recovering this
source intensity, as well as its DOA, which is described
by a unit vector ℓ = [l,m,

√
1 − l2 − m2]T, with l and

m the direction cosines. The antennas give rise to an
independent, identically distributed (i.i.d.) additive noise
vector n(t) ∈ CP that is assumed to be complex Gaussian
with covariance matrix σ2I, and uncorrelated with the
source signal s(t). In these conditions, noting as yp(t)
the signal received at the p-th antenna, the array sig-
nal vector yn = [y1(tn), . . . , yP(tn)]T at sampling time tn,
n = 0, . . . ,N − 1, can be expressed as

yn = a(ℓ) sn + nn, (1)

where a(ℓ) =
[
e−j 2π

λ ξ
T
1 ℓ, . . . , e−j 2π

λ ξ
T
Pℓ
]T
∈ CP denotes the

array response vector (the exponential function is applied
element-wise), Ξ = [ξ1, . . . , ξP] is the 3×P matrix stack-
ing the antenna coordinates, sn = s(tn) and nn = n(tn).
Given the assumptions made about the source and noise
signals, the array signal vector yn follows a zero-mean,
complex Gaussian distribution with covariance matrix

R(θ) = S a(ℓ) aH(ℓ) + σ2I, (2)

where θ = [l,m, S , σ2]T denotes the unknown parameter
vector. The likelihood function, for an observation Y =
[y0, . . . , yN−1] over N independent samples, is given by

p(Y ; θ) =
1

πNP|R(θ)|N
exp

− N−1∑
n=0

yH
n R−1(θ) yn

 (3)

where |·| denotes the determinant of its argument.
In this paper, we aim at finding antenna locations

z1, . . . , zp that lead to minimal MSE on parameter vector
θ. We do so by resorting to lower bounds of the MSE,
which are described in the next sections.
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2.2. Lower bounds of the MSE

The Cramér-Rao and Barankin-type bounds are lower
bounds of the MSE for unbiased estimators, which can
be shown to satisfy the following matrix inequalities (in
the sense that the difference between the left-hand side
and the right-hand side is a nonnegative-definite matrix)
[10]:

Ce ≥ CB ≥ CCR (4)

where Ce = E
[
(̂θ(Y) − θ0)(̂θ(Y) − θ0)T] is the MSE ma-

trix, CCR is the CRB and CB is a BTB. The CRB is
known to be the inverse of the Fisher information ma-
trix (FIM) F = E

[
∂ log p(Y;θ)
∂θ

∂ log p(Y;θ)
∂θT

]
, where derivatives

are evaluated at the true parameter vector θ0, that is
CCR = F−1. Barankin-type bounds can be expressed in
various ways (see [10] for several examples). In this pa-
per, we investigate the so-called Hammersley-Chapman-
Robbins bound [12], which holds for estimators which
are unbiased at a number K of test points denoted by θk,
k = 1, . . . ,K. This bound is given by

CB = H
(
B − 11T

)−1
HT (5)

where H = [θ1 − θ0, . . . , θK − θ0], and B is the (K × K)
Barankin matrix whose (i, j)-th component is given by

Bi j = E
[

p(Y ; θi)
p(Y ; θ0)

p(Y ; θ j)
p(Y ; θ0)

]
. (6)

2.2.1. Cramér-Rao lower bound
The CRB for the (unconditional) signal model (1)

has been well studied in the array processing literature
[18–20]. The expression of the FIM results from the
Slepian-Bangs formula, which leads to [19]

F = N
(
∂ vec R
∂θT

)H

(R−T ⊗ R−1)
∂ vec R
∂θT

, (7)

where ⊗ denotes the Krönecker product, and vec(·) rep-
resents the vectorization operator. The vectorized co-
variance matrix vec R can be written (after dropping
the dependence of the array response vector a on ℓ for
simplicity) as

vec R = S (a∗ ⊗ a) + σ2 vec I, (8)

where (·)∗ denotes complex conjugation. The derivatives
of vec R can subsequently be computed as [21]

∂ vec R
∂l

= −j
2π
λ

S (diag vec∆x) (a∗ ⊗ a) (9)

∂ vec R
∂m

= −j
2π
λ

S (diag vec∆y) (a∗ ⊗ a) (10)

where ∆x and ∆y are (P × P) matrices whose elements
are respectively given by (∆x)i j = xi − x j −

l(zi−z j)
√

1−l2−m2
and

(∆y)i j = yi − y j −
m(zi−z j)
√

1−l2−m2
, i, j = 1, . . . , P, the diag(·)

operator converts its vector argument to a diagonal ma-
trix with the elements of the vector on the diagonal, and
finally

∂ vec R
∂S

= a∗ ⊗ a and
∂ vec R
∂σ2 = vec I. (11)

It can be noted that expressions (9) and (10) provided
here are rewritten from those in [21], in order to highlight
the role of the array baseline lengths (through matrices
∆x and ∆y) in the Fisher information.

A closed-form expression of the stochastic CRB for
DOAs has been derived in [20], for instance. In our case,
by denoting as CRB(l,m) the block of the CRB matrix
CCR that pertains to parameters l and m, this expression
becomes:

CRB(l,m) =
1 + P SNR
2NP SNR2 Re

[
DHΠ⊥a D

]−1
(12)

where Π⊥a = I − 1
P a(ℓ) aH(ℓ), and D = ∂a(ℓ)

∂ℓT
= −j 2π

λ

[
(x −

l
√

1−l2−m2
z) ⊙ a, (y − m

√
1−l2−m2

z) ⊙ a
]
, in which x, y and

z denote the vectors [x1, . . . , xP]T, [y1, . . . , yP]T and
[z1, . . . , zP]T stacking the x-, y- and z-coordinates of
the antennas, respectively, and ⊙ denotes the Hadamard
(element-wise) product. Similarly, an expression of the
CRB for the source power S , denoted as CRB(S ), can
be obtained as CRB(S ) = P(P−1)S 2+2(P−1)Sσ2+σ2

NP(P−1) .

2.2.2. Hammersley-Chapman-Robbins bound
For the model in the form of (1), it can be shown that

the elements of the matrix B in (5)-(6) are given by

Bi j =

(
|R(θ0)|

|R(θi)| |R(θ j)| |R−1(θi) + R−1(θ j) − R−1(θ0)|

)N

,

(13)
provided the determinant |R−1(θi) + R−1(θ j) − R−1(θ0)|
is not zero [15, 22]. Explicit expressions for the determi-
nants in (13) were obtained in [15] for a similar model,
but with a known noise covariance matrix. Following
these lines, similar expressions for the determinant and
the inverse of R(θ) can be obtained:

|R(θ)| = σ2P(1 + P SNR) (14)

with SNR = S/σ2, and

R−1(θ) =
1
σ2

[
I − ã(θ) ãH(θ)

]
(15)
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after defining ã(θ) =
√

C a(ℓ), with C = SNR
1+P SNR . The

expression of the third determinant in the denominator of
(13) obtained in [15] can also be extended to the present
case, and shown to be

Di j(θ0) = |R−1(θi) + R−1(θ j) − R−1(θ0)|

= γP
[
(1 + P ρ0 C0)(1 − P ρi Ci)(1 − P ρ j C j)

+ ρ0 ρi (1 − P ρ j C j) |ãH
0 ãi|

2

+ ρ0 ρ j (1 − P ρi Ci) |ãH
0 ã j|

2

− ρi ρ j (1 + P ρ0 C0) |ãH
i ã j|

2

+ 2 Re
(
ρ0 ρi ρ j (ãH

0 ã j)(ãH
i ã0)(ãH

j ãi)
)]

(16)

where we have used the following definitions:

ãi =
√

Ci a(ℓi) (17)

Ci =
SNRi

1 + P SNRi
=

(S i/σ
2
i )

1 + P (S i/σ
2
i )

(18)

γ = σ−2
i + σ

−2
j − σ

−2
0 (19)

ρi = σ
−2
i /γ, (20)

and the subscripts i, j, and 0 of an unknown parameter (l,
m, S or σ2) in the expressions above respectively refer
to the i-th test point, the j-th test point, and the true value
for this parameter. Finally, by plugging (14) and (16)
into (13), the elements of B are obtained as

Bi j =

 σ2P(1 + P SNR)
σ2P

i σ
2P
j (1 + P SNRi)(1 + P SNR j) Di j(θ0)

N

,

(21)
and the Barankin-type bound can be computed using (5).

3. Optimization of antenna placement

3.1. Optimization problem set-up
In this paper, array design is formulated as an antenna

selection problem. We do so by defining a set of P
candidate antenna locations, and by selecting a subset of
M antenna among those P candidates, which minimizes
a predefined cost function. In our study, this criterion
will be based on either the CRB matrix CCR, or the BTB
matrix CB. Specifically, we seek to solve the following
optimization problem:

min
w

f (C(w)) (22)

s.t. 1Tw = M

w ∈ {0, 1}P

where w = [w1, . . . ,wP]T denotes the antenna selection
vector, i.e., wp = 1 if the pth antenna is selected, and

wp = 0 if it is not, and f (C(w)) is the cost function re-
lated to the matrix lower bound C(w) chosen as selection
criterion. Several functions f are possible [23], relating
to different types of optimality. In this study, we will use
the trace of the matrix bound, i.e., f (C(w)) = tr(C(w)),
as it minimizes the total MSE of the unknown parameters.
The noise variance σ2 is assumed to be unknown, but is
treated as a nuisance parameter, which means that the
matrix C(w) appearing in the cost function will actually
be the (upper-left) 3× 3 block of CCR or CB, correspond-
ing to the MSE of the parameters of interest l, m, and S .
Finally, the antenna selection problem can be stated as

min
w

tr(ΨC(w)ΨT) (23)

s.t. 1Tw = M

w ∈ {0, 1}P

where Ψ = [I 0] is the (3 × 4) matrix which extracts
the elements corresponding to the parameters of interest
(l, m, S ), C(w) either denotes CCR or CB, and M is the
antenna budget (that is the number of selected antennas).

It is generally possible to solve the problem (23) effi-
ciently by using convex relaxation or greedy approaches.
However, it is not easy to adapt these methods to the case
of a BTB, due to the presence of (possibly many) test
points. In this paper, since we aim at comparing the rele-
vance of the CRB-based and the BTB-based criteria for
antenna placement, we study a reduced-dimension prob-
lem where an exhaustive search method is affordable.
Namely, inspiring from existing interferometric antenna
array geometries, we consider the case of star-shaped
arrays, although it is also possible to apply the described
methodology to other (e.g., closed) configurations. We
define a maximum aperture Dmax for the antenna array,
and a number MB of straight branches, evenly spaced in
angle. Each branch contains a number L of uniformly
spaced candidate antenna locations. The antenna bud-
get is fixed to M = ML MB, where ML is the number
of selected antenna on a branch. The antenna selection
procedure is performed by evaluating the cost function
for the whole array with MB branches, and by carrying
out an exhaustive search of the ML antennas, among the
L candidates, that minimize this cost function (all the
branches are imposed to be identical).

3.2. Practical computation of the Barankin bound

The test points θk used to compute the Barankin bound
can be freely chosen, however they should be selected
so as to obtain the tightest bound possible. An approach
to do so consists in defining a grid over the parameter
space. However, this rapidly becomes unfeasible as the
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number of unknown parameters, and thus the number of
test points, increase, as the computation of CB requires
inversion of the (K × K) matrix B − 11T, where K is
the number of test points. In order to reach a trade-off
between computation complexity and tightness of the
bound, test points can be chosen at sidelobe locations
for each unknown parameter. This is particularly use-
ful regarding the source direction (parameters l and m),
however there exists no sidelobes for source and noise
powers S and σ2. Consequently, in the sequel, the BTB
is computed using 20 test points for (l,m) chosen in
(−1, 1) × (−1, 1) around sidelobes of the array beampat-
tern for each candidate configuration, while 3 test points
are used for S and σ2 in the vicinity of their true values,
namely (0.9, 0.99, 1.1) S 0 and (0.9, 0.99, 1.1)σ2

0, respec-
tively. It should be noted that these test points are used to
evaluate the bound numerically and are intended to span
the parameter space. After having performed extensive
numerical experiments with different test-point values,
we have not noticed any significant variation in the value
of the bound, and finally chose these values.

4. Numerical results

In this section, we compare the performance of ar-
rays obtained from the CRB and the BTB in terms of
single-source parameter estimation and imaging abilities.
We consider the case of an array with MB = 3 straight
branches, with ML = 7 antennas on each branch (thus
a total of M = 21 antennas). We set Dmax = 10λ, and
each branch consists in L = 20 candidate antenna lo-
cations with λ/4-interspacing. We consider a zenithal
observation, i.e., l = m = 0, with N = 100. It is worth
noting that, at high SNR, the BTB coincides with the
CRB, so that both criteria are expected to yield equiv-
alent results. At lower SNR, since the BTB reflects
the threshold effect, while the CRB does not, both cri-
teria substantially differ, and the BTB seems a more
relevant choice. In the following experiments, we set
SNRdB = 10 log10 SNR = −12 dB.

The results of the proposed antenna selection proce-
dure are presented in Fig. 1. It can be noticed that the
CRB-based criterion leads to a configuration where an-
tennas are located at the very ends of the branches. On
the other hand, the BTB leads to a somewhat different
configuration, with closely-spaced antennas near the ar-
ray center, and an increasing spacing towards the ends
of the branches.

It is instructive to assess an array lay-out in terms of
baseline diversity (or completeness of spatial frequency
domain sampling), through the so-called uv-plane cover-
age. It corresponds to the collection of the array normal-

ized baseline vectors, i.e., Su = {ui j = (ξi − ξ j)/λ, i, j =
1, . . . ,M}, projected on the plane orthogonal to the ref-
erence direction (in this case the direction l = m = 0).
For a single-snapshot zenithal observation, it coincides
with the notion of difference coarray that arises in array
processing [24]. The uv-plane fills up during the obser-
vation, as the Earth rotates and the angle with which
the array is seen from the source reference direction
changes. The uv-plane coverage thus provides insight
about the imaging capabilities of a radio interferometer
as it is linked to the point-spread function of the instru-
ment through a Fourier transform [4], and it determines
its ability to capture different angular scales on the sky.
Fig. 2 presents the uv-plane coverage of arrays obtained
from CRB and BTB minimization, for a snapshot ob-
servation as well as a for 4-hour observation, where the
antennas are assumed to be placed on the surface of the
Earth at a latitude of 47°. It can be observed that the
BTB-based array has a higher baseline diversity than the
CRB-based array, and thus a superior coverage of the
uv-plane. In Fig. 3, we provide the array beampatterns of
both configurations. For an easier comparison, we also
plot these beampatterns along the l = 0 direction as well
as the diagonal (l = m) direction. It can be seen that the
mainlobe of the BTB-based array is only slightly wider
while its sidelobes are considerably lower than those of
the CRB-based array.

Then, both arrays are compared in terms of estimation
performance for the source parameters (DOA and inten-
sity) according to model (1)–(3) in Figs. 4 and 5. The
absolute biases of the MLE for the estimation of l and S
were computed by running 10 000 Monte-Carlo simula-
tions, and are shown in Figs. 4(a) and 5(a), respectively.
The MSE of the MLE (also obtained from Monte-Carlo
simulations) and the corresponding CRB and BTB for
the estimation of l and S are shown in Figs. 4(b) and
5(b), respectively. Results regarding estimation of m are
identical to those for l, and are consequently not shown
here. Regarding DOA estimation (Fig. 4), the behavior
of the BTB reflects that of the MSE fairly well, with
a difference of about 7 dB between the SNR threshold
predicted by the BTB and that of the MLE, for the BTB-
based array. Most importantly, the threshold SNR for
the BTB-based array is about 5 dB below that of the
CRB-based array, leading to a significantly lower MSE
over a wide SNR range (from −11 dB to −5 dB) for
the BTB-based array. The accuracy gained in this SNR
range comes at the expense of asymptotic accuracy, as
the CRB for the CRB-based array is slightly lower than
that of the BTB-based array (which is related to the dif-
ference in the main-lobe width noticed in Fig. 3). On
the other hand, it is seen from Fig. 5 that the estimation
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performance of both arrays regarding the source inten-
sity S is essentially the same. We conclude that the BTB
seems more suitable than the CRB for array design, as
it leads to an array that yields superior source parameter
estimation performance in this regime.

These results clearly illustrate how the CRB and the
BTB lead to different array configurations. To a fairly
large extent, these results can be effectively explained
from known results in array processing. In particular,
it was shown in [22] that the CRB for the DOA of a
single source, which relates to small estimation errors, is
linked to the second derivative of the array beampattern
at the origin, that is its curvature. Consequently, a CRB-
based design criterion only focuses on the thinness of
the mainlobe, and thus systematically results in an array
with a maximal aperture, at the expense of the sidelobe
level. It can also be seen from (9) and (10) that long
baselines imply large values in matrices ∆x and ∆y arising
in the FIM, hence contributing to minimize the CRB. In
contrast, the BTB-based criterion yields a configuration
with less antennas concentrated at the edges, and thus a
synthesized beam with lower sidelobes. It is also worth
noting that assuming the source intensity S is unknown
does not affect the SNR threshold value on the DOA
estimation, compared with a situation where S would be
known [25].

Finally, we assess the performance of both array ge-
ometries in terms of imaging accuracy, as can be done in
radio astronomy. In this case, the antenna arrays receive
signals from more than a single source. Although the
single-source assumption used to derive our design crite-
ria does not actually hold in this case, it is insightful to as-
sess the imaging capability of the obtained geometries. A
test image of the M51 galaxy, that is assumed to represent
the true source structure, is given in Fig. 6(a). An imag-
ing algorithm, based on an Expectation-Maximization
(EM) approach including sparsity constraints [26], is ap-
plied to obtain images for both CRB- and BTB-based
arrays. These images are computed in a realistic radio-
astronomy scenario, where the antennas are assumed
to be placed on the surface of the Earth, with the array
center at a latitude of 47°, and taking Earth rotation into
account. As usually done in radio interferometry, the
imaging method makes use of visibility data that corre-
spond to the correlations of the antenna signals, obtained
as R̂i =

1
N

∑iN−1
n=(i−1)N ynyH

n , i = 1, . . . ,Nsnapshot, averaged
over N antenna signal samples. The obtained images for
the CRB-based and the BTB-based array are provided
in Figs. 6(b) and 6(c), for a 4-hour observation time,
using Nsnapshot = 48 snapshots, obtained by averaging
N = 5 · 105 antenna signal samples, which corresponds
to Nvis = Nsnapshot M2 = 21 168 visibilities. Finally, we

report in Table 1 the normalized MSE (NMSE) for the
same image reconstruction set-up, averaged over 100
noise realizations. The NMSE metric is defined by

NMSE =
∑

i, j|S 0,i j − Ŝ i j|
2∑

i, j|S 0,i j|
2 (24)

where S 0,i j is the true (i, j)-pixel intensity and Ŝ i j is the
estimated (i, j)-pixel intensity. It can be seen that the
BTB-based array performs markedly better in terms of
imaging accuracy than the CRB-based one. These re-
sults confirm that the BTB-based array design criterion
is more suitable than that based on the CRB for an imag-
ing purpose. The fact that the BTB allows to handle
the sidelobe level, as explained above, translates into
less ambiguities than the CRB criterion in the recon-
structed images, as can be seen from Fig. 6. Of course,
this in no way implies that the proposed BTB-based de-
sign criterion is optimal for imaging. From Fig. 2, it
can be seen that there is a range of spatial frequencies
which are not sampled, resulting in a ring-shaped hole
in the uv-domain for a synthesis observation. The single-
source model used does of course not fully grasp the
complexity of the imaging problem, but the results in
terms of imaging argue in favor of a BTB-type design
criterion. In the end, it can be viewed as a criterion based
on the expected performance of image reconstruction
algorithms, and may be considered for the selection of a
radio-interferometer configuration. The CRB may still
prove relevant for array design, but would require the use
of more sophisticated models (with more than a single
source) to obtain geometries that mitigate the sidelobe
level in the array beampattern.

5. Conclusions

In this article, we have compared two antenna selec-
tion approaches, respectively based on the CRB and a
BTB. The performance of both optimized array geome-
tries has been evaluated based on several criteria relevant
to parameter estimation, such as a source’s DOA and
intensity, and to radio-interferometric imaging applica-
tions, such as the uv-plane coverage, the array beampat-
tern and the recovery of a more complex radio source
structure. Simulation results demonstrate that a design
criterion based on the BTB leads to an optimal trade-off
(in the MSE sense) between the array’s main-lobe width
and sidelobe level, resulting in (i) a lower overall MSE
for the parameters of a point source over a fairly wide
range of (moderate) SNR, and (ii) an enhanced imag-
ing capability of the array compared with a CRB-based
design criterion.
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(a)

(b)

Figure 1: Antenna array obtained from (a) the CRB-based criterion,
(b) the BTB-based criterion.

Table 1: NMSEs for M51 image reconstruction using CRB-based and
BTB-based arrays, obtained after averaging over 100 Monte-Carlo
trials (standard deviations are indicated between brackets).

NMSE

CRB array 0.33 (±0.005)
BTB array 0.09 (±0.005)

(a) (b)

(c) (d)

Figure 2: Coverage of the uv-plane obtained for a snapshot observation
(a)-(b) and for a 4-hour observation (c)-(d), for the CRB-based array
(on the left: (a) and (c)), and the BTB-based array (on the right: (b)
and (d)).

(a) (b)

(c) (d)

Figure 3: Array beampatterns of the CRB-based array (a) and the
BTB-based array (b), 1D-comparison of both along the l = 0 direction
(c) and along the diagonal (l = m) direction (d).

7



(a)

(b)

Figure 4: Comparison of the estimation performance of direction
cosine l: (a) absolute bias of the MLE for both CRB-based and BTB-
based array geometries, and (b) square roots of the CRBs and BTBs,
and RMSEs, for both arrays. Red curves regard the CRB-based array,
while blue curves regard the BTB-based array. In (b), solid lines,
dashed lines, and solid lines with point markers respectively represent
the (square roots of the) CRBs and BTBs, and RMSEs.

(a)

(b)

Figure 5: Comparison of the estimation performance of direction
cosine S : (a) absolute bias of the MLE for both CRB-based and BTB-
based array geometries, and (b) square roots of the CRBs and BTBs,
and RMSEs, for both arrays. Red curves regard the CRB-based array,
while blue curves regard the BTB-based array. In (b), solid lines,
dashed lines, and solid lines with point markers respectively represent
the (square roots of the) CRBs and BTBs, and RMSEs.
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(a)

(b)

(c)

Figure 6: Image of the M51 galaxy used as sky model (true image,
with size 128 × 128) (a), and imaging results for the CRB-based array
(b) and the BTB-based array (c).
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