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Explicit lower bounds for the height in Galois
extensions of number fields ∗

Jonathan Jenvrin

Abstract

Amoroso and Masser proved that for every real ϵ > 0, there exists a
constant c(ϵ) > 0, with the property that, for every algebraic number
α such that Q(α)/Q is a Galois extension, the height of α is either
0 or at least c(ϵ)[Q(α) : Q]−ϵ. In the present article, we establish an
explicit version of the aforementioned theorem.

1 Introduction
In this article, we let Q be a fixed algebraic closure of Q. For an algebraic
number α of degree d over Q, we denote by h(α) its absolute logarithmic
Weil height defined as

h(α) =
1

d

(
log

(
|a|

d∏
i=1

max (1, |αi|)

))
where a is the leading coefficient of the minimal polynomial of α over Z, and
α1, . . . , αd are the conjugates of α over Q. Notice in particular that h(α) ≥ 0
for all α ∈ Q.

While, by Kronecker’s theorem (see for instance [BG06, Theorem 1.5.9]),
it is well-known that h(α) = 0 if and only if α is either 0 or a root of unity, in
[Leh33] Lehmer raised the question of whether there exists a constant c > 0
such that

h(α) ≥ c

d
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whenever h(α) is not zero. The existence of such a constant is nowadays
known as Lehmer’s conjecture and has been proved for various classes of
algebraic numbers, but is still open in general. For instance, the conjecture
is obviously true for α not a unit with c = log(2). While for α non-reciprocal
(which is always the case for d odd) its validity was proved in [Smy71] with
c = 3h(θ) = log(θ), where θ is the real root > 1 of X3 − X − 1. The most
notable progress toward Lehmer’s conjecture is Dobrowolski’s result [Dob79,
Theorem 1], later made explicit by Voutier in [Vou96, Theorem on p. 83],
proving that if h(α) ̸= 0, then

h(α) ≥ 1

4d

(
log log d

log d

)3

.

This implies that for any ϵ > 0, there is an explicit constant c̃(ϵ) > 0 such
that either h(α) = 0 or h(α) ≥ c̃(ϵ)d−1−ϵ.

While Dobrowolski’s result remains the only unconditional one on this
problem, it is possible to prove that specific classes of algebraic numbers
satisfy even stronger variants of Lehmer’s conjecture, such as the Bogomolov
property introduced by Bombieri and Zannier in [BZ01]. A set of algebraic
numbers S has the Bogomolov property (B) if there exists a constant c =
c(S) > 0 such that for every α ∈ S, either h(α) = 0 or h(α) ≥ c.

A set of algebraic numbers that has garnered attention in recent years is
that of all α ∈ Q such that Q(α)/Q is Galois.

Amoroso and David proved that Lehmer’s conjecture holds for elements
of this set (see [AD99, Corollary 1.7]). Later, Amoroso and Masser [AM16,
Theorem 3.3] showed an even stronger result: for any ϵ > 0, there exists a
positive effective constant c(ϵ) such that, for every α ∈ Q of degree d over Q
and not a root of unity, such that Q(α)/Q is Galois, one has

h(α) ≥ c(ϵ)d−ϵ. (⋆)

This strong result raises the question of whether the set of algebraic num-
bers that generate a Galois extension over Q satisfies Property (B). A natural
way to tackle this question is to fix the Galois group G of Q(α)/Q. The an-
swer is positive when G is abelian [AD00], dihedral [AZ10, Corollary 1.3],
has an exponent bounded by an absolute constant [ADZ14, Corollary 1.7] or
has odd order (since the field of totally real numbers satisfies Property (B)
by [Sch73, Corollary 1]). An even stronger result has been proven for some
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classes of generators of Galois extensions of Q of group Sn in [Amo18, The-
orem 1.2 and Theorem 1.3], or An in [Jen24, Theorem 1.4 and Theorem 1.5];
in these cases the height of such generators goes to infinity with n. All these
results give evidences for a positive answer to the aforementioned question,
which is still open in general.

The goal of our article is to give an explicit version of (⋆). Our main
result is the following:

Theorem 1.1. Suppose α ∈ Q∗ is of degree d over Q. If α is not a root of
unity and Q(α)/Q is Galois, then

h(α) ≥ 10−8 exp

(
−49

2
log(3d)3/4 log(log(3d))

)
.

As an easy corollary, we obtain an explicit version of Amoroso and Masser’s
result [AM16, Theorem 3.3].

Corollary 1.1. For every ϵ > 0 and for every α of degree d, not a root of
unity, such that Q(α)/Q is Galois, one has

h(α) ≥ c(ϵ)d−ϵ

where

c(ϵ) = 10−8

(
1

3

)ϵ

exp

(
−181

(
724

5ϵ

)4

−
(
724

5ϵ

)5
)
.

Theorem 1.1 and Corollary 1.1 are proved in Section 3. Our proof strategy
relies on that of Amoroso and Masser’s result in [AM16, Theorem 3.3].

In particular, we divide our proof in two cases, according to the rela-
tive magnitude of the multiplicative rank ρ(α) of the subgroup of Q× gen-
erated by the conjugates of α, and the quantity log(3 deg(α))1/4, where
d(α) = [Q(α) : Q]. When ρ(α) > log(3 deg(α))1/4, we conclude using
a result of Amoroso and Viada [AV12], which we recall in Theorem 2.1,
bounding from below the products of heights of multiplicatively independent
algebraic numbers. On the other hand, when ρ(α) ≤ log(3 deg(α))1/4 we
conclude by applying a result of Amoroso and Delsinne [AD07], providing
an explicit relative version of Dobrowolski’s lower bound, where the degree
deg(α) = [Q(α) : Q] is replaced by a relative degree [L(α) : L], where
L/Q is a finite abelian extension. This is in contrast with Amoroso and
Masser’s proof of (⋆), which uses an older higher-dimensional generalization
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of Dobrowolski’s lower bound proven by Amoroso and David [AD99] when
ρ(α) > log(3d(α))1/4, and the relative Dobrowolski lower bound proven by
Amoroso and Zannier when ρ(α) ≤ log(3d(α))1/4.

2 Auxiliary Results
We state two important results that will be the key ingredients in our proof.
The first was proved by Amoroso and Viada in [AV12, Corollary 1.6], where,
more generally, they give an explicit version of a generalized Dobrowolski
result on Lehmer’s problem.

Theorem 2.1 ([AV12, Corollary 1.6]). Let α1, . . . , αn be multiplicatively in-
dependent algebraic numbers in a number field K. Then

h(α1) . . . h(αn) ≥ [K : Q]−1(1050n5 log(3[K : Q]))−n2(n+1)2 .

The second result was proved by Amoroso and Delsinne in [AD07, Théorème
1.3], and provides a relative version of Dobrowolski’s lower bound, when the
base field considered is abelian. We recall a special case of this theorem,
which is enough for our purposes.

Theorem 2.2 ([AD07, Théorème 1.3]). Let α ∈ Q∗ be not a root of unity
and let L be a number field. Then if L/Q is a finite abelian extension and
D = [L(α) : L], we have

h(α) ≥ D−1 log log(5D)3

log(2D)4
.

Proof. We apply [AD07, Théorème 1.3], with L = L and K = Q. Notice that
the lower bound in [AD07] depends on a certain quantity (g([K : Q]) ·∆K)

−c

which is 1 for K = Q. This gives the desired result.

The following lemma is a relative version of [AM16, Lemma 2.2].

Lemma 2.1. Let F/K be a finite Galois extension and α ∈ F \ {0}. Let
α1, . . . , αd be the conjugates of α over K, i.e. the orbit of α under the action
of Gal(F/K). Moreover let ρ be the rank of the multiplicative group generated
by α1, . . . , αd, and suppose that ρ ≥ 1. Then there exists a subfield L ⊂ F
which is Galois over K of degree [L : K] ≤ n(ρ), such that F contains a
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primitive k-th root of unity ζk and αk ∈ L, where k is the order of the group
of roots of unity in F . We can take

n(ρ) = ρ!2ρ for ρ = 1, 3, 5 and ρ > 10.

Otherwise we have

n(ρ) 2 4 6 7 8 9 10
ρ 12 1152 103680 2903040 696729600 1393459200 8360755200

Proof. Define βi = αk
i for 1 ≤ i ≤ d and L = K(β1, . . . , βd). We have

L ⊂ F because F/K is Galois, and we easily check that L/K is Galois. The
Z−module

M = {βa1
1 . . . βad

d | a1, . . . , ad ∈ Z}
is torsion free by the choice of k and so, by the classification of finitely
generated abelian groups ([Lan02, Theorem 8.1 and Theorem 8.2]), is free, of
rank ρ. This shows that the action of Gal(L/K) over M defines an injective
representation Gal(L/K) → GLρ(Z). We obtain that Gal(L/K) identifies to
a finite subgroup of GLρ(Z). To conclude, we use a theorem stated by Feit
in 1996, and proved by Rémond in [Rém20, Théorème 7.1], which computes
the largest cardinality of a finite subgroup of GLρ(Z).

Remark 2.1. The constant n(ρ) in Lemma 2.1 is somehow optimal, since
it is equal to the largest cardinality of a finite subgroup of GLρ(Z).

We continue this section with the following lemma, which gives an explicit
upper bound for the quotient of an integer over his Euler’s totient.

Lemma 2.2. Let ϕ be the Euler’s totient function. For every positive integer
n ≥ 1, we have

n

ϕ(n)
≤ log(log(3n))

log(log(3))

and

ϕ(n) ≥
√

n

2
.

Proof. The first inequality can be easily deduced from [RS62, Theorem 15]
for n ≥ 100 and verified for smaller values of n. Indeed, if we denote by γ
the Euler’s constant, then for n ≥ 100, we have

eγ log(log(n)) +
2.50637

log(log(n))
≤ 3 log(log(3n)) ≤ log(log(3n))

log(log(3))
.
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The second inequality is well-known, and can be deduced easily from the
previous one.

We conclude this section by recalling Stirling’s upper bound ([Rob55, (1)
and (2) on p. 26]), which will be use in the next section.

Lemma 2.3. For every n ≥ 1, we have

n!

nn
≤

√
2πne

1
12n e−n.

3 Proof of Theorem 1.1
We can now establish the proof of Theorem 1.1. To this end, we fix for the
rest of this section an algebraic number α ∈ Q such that Q(α)/Q is Galois.
Firstly, we will prove a lower bound for h(α) depending on the multiplicative
rank ρ of the conjugates of α, and on the degree d of Q(α) over Q.

Lemma 3.1. Let

g1(ρ, d) = min
1≤r≤ρ

(
d1/r

(
1050r5 log(3d)

)r(r+1)2
)

and
g2(ρ, d) = 6.5 · 107ρρ+5 log

(
log
(
6d2
))5

.

Then:
h(α)−1 ≤ min (g1(ρ, d), g2(ρ, d)) .

Proof. Let α1, . . . , αρ be multiplicatively independent conjugates of α, and
fix r ∈ {1, . . . , ρ}. Since Q(α)/Q is Galois by assumption, we have that
α1, . . . , αr ∈ Q(α). Therefore, applying Theorem 2.1 to α1, . . . , αr we see
that

h(α) = (h(α1) · · ·h(αr))
1/r ≥ d−1/r

(
1050r5 log(3d)

)−r(r+1)2
,

which implies that h(α) ≥ g1(ρ, d)
−1.

Let k be the number of roots of unity in Q(α). Then, by Lemma 2.1 there
exists a subfield L ⊂ Q(α) whose degree can be bounded as follows:

[L : Q] ≤ 135ρ!2ρ−1,
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such that the extension L/Q is Galois and αk ∈ L. Set M = Q(ζk). We have
M(α) = Q(α) = L(α). Notice that

[M(α) : M ] = [L(α) : L]
[L : Q]

[M : Q]
.

Since α is a root of Xk − αk ∈ L[X], we have that [L(α) : L] ≤ k. We
also notice that ϕ(k) = [M : Q]. Therefore, we obtain the following chain of
inequalities:

[M(α) : M ] ≤ k
[L : Q]

[M : Q]
≤ k

ϕ(k)
[L : Q].

By Lemma 2.2, we have that

k

ϕ(k)
≤ log(log(3k))

log(log(3))
,

so we obtain
[M(α) : M ] ≤ 135

log(log(3k))

log(log(3))
ρ!2ρ−1.

Since k is the number of roots of unity contained in L, we have that
ϕ(k) ≤ d. By the last statement of Lemma 2.2, we have that

√
k/2 ≤ ϕ(k),

hence k ≤ 2d2 and

[M(α) : M ] ≤ 135
log (log (6d2))

log(log(3))
ρ!2ρ−1 ≤ 718ρ!2ρ log

(
log
(
6d2
))

.

By Lemma 2.3, applied to ρ, we have that

[M(α) : M ] ≤ 718ρρ
√

2πρe
1

12ρ e−ρ2ρ log
(
log
(
6d2
))

≤ 1440ρρ log
(
log
(
6d2
))

By Theorem 2.2, applied to Q(ζk)/Q, we have

h(α) ≥ [M(α) : M ]−1 log (log (5[M(α) : M ]))3

log(2[M(α) : M ])4
.

Since
x 7→ 1

x

log(log(5x))3

log(2x)4
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is a decreasing map on [1,+∞[, we deduce, by setting

X(ρ, d) = 1440ρρ log
(
log
(
6d2
))

that

h(α)−1 ≤ X(ρ, d) log(2X(ρ, d))4

= 1440ρρ log
(
log
(
6d2
))

log
(
4884ρρ log

(
log
(
6d2
)))4

≤ 12448ρρ+4 log
(
log
(
6d2
))5

log
(
48841/ρρ

)4
≤ 6.5 · 107ρρ+5 log

(
log
(
6d2
))5

This gives the second desired lower bound for h(α), and therefore proves the
lemma.

Proof of Theorem 1.1. Now, we are ready to prove Theorem 1.1. Suppose,
first, that ρ ≤ log(3d)1/4. By Lemma 3.1, we get

h(α)−1 ≤ g2(ρ, d) ≤ 6.5 · 107
(
log(3d)1/4

)log(3d)1/4+5
log
(
log
(
6d2
))5

≤ 6.5 · 107 exp
((
log(3d)1/4 + 5

)
log
(
log(3d)1/4

)
+ 5 log

(
log
(
log
(
6d2
))))

.

≤ 6.5 · 107 exp
(
3

2
log(3d)1/4 log(log(3d)) + 2 log(3d)1/4 log(log(3d))

)
.

So, we have

h(α)−1 ≤ 6.5 · 107 exp
(
7

2
log(3d)1/4 log(log(3d))

)
. (1)

Now, we suppose that ρ ≥ log(3d)1/4. We let r =
⌈
log(3d)1/4

⌉
. In

particular r ≤ ρ. Then, thanks again to Lemma 3.1, we obtain

h(α)−1 ≤ g1(ρ, d) = d1/r
(
1050r5 log(3d)

)r(r+1)2

≤ d1/ log(3d)
1/4
(
1050

(
log(3d)1/4 + 1

)5
log(3d)

)(log(3d)1/4+1)(log(3d)1/4+2)
2

≤ d1/ log(3d)
1/4 (

31693 log(3d)9/4
)6 log(3d)3/4

≤ exp
(
log(3d)3/4 + 6 log(3d)3/4 log

(
31693 log(3d)9/4

))
.

So, we have

h(α)−1 ≤ 31693 exp

(
log(3d)3/4 +

27

2
log(3d)3/4 log(log(3d))

)
. (2)
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From (1) and (2), we obtain

h(α)−1 ≤ 6.5 · 107 exp
(
49

2
log(3d)3/4 log(log(3d))

)
.

Proof of Corollary 1.1. We fix ϵ > 0. Notice that the function

f(x) =
log(log(3x))

log(3x)1/20

has a maximum at

x =
ee

20

3
.

Hence, we have that

log(log(3d)) ≤ 20

e
log(3d)1/20,

which implies

49

2
log(3d)3/4 log(log(3d))− ϵ log(d) ≤ 181 log(3d)4/5 − ϵ log(d). (3)

Also, the function fϵ(x) = 181 log(3x)4/5 − ϵ log(x) has its maximum at

x =
1

3
exp

(
724

5ϵ

)5

.

Therefore, we have

181 log(3d)4/5 − ϵ log(d) ≤ 181

(
724

5ϵ

)4

− ϵ log(1/3)−
(
724

5ϵ

)5

. (4)

Hence, by (3) and (4), we have that

−49

2
log(3d)3/4 log(log(3d)) ≥ −181

(
724

5ϵ

)4

+ϵ log(1/3)+

(
724

5ϵ

)5

−ϵ log(d).

and we conclude by Theorem 1.1.
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