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Explicit lower bounds for the height in Galois
extensions of number fields ∗

Jonathan Jenvrin

Abstract

Amoroso and Masser proved that for every real ϵ > 0, there is a
constant c(ϵ) > 0, with the property that, for every algebraic number
α such that Q(α)/Q is a Galois extension, the height of α is either 0
or at least c(ϵ)[Q(α) : Q]−ϵ. In this article, we establish an explicit
version of this theorem.

1 Introduction
In this article, we let Q be a fixed algebraic closure of Q. For an algebraic
number α, we denote by h(α) ≥ 0 its absolute logarithmic Weil height.

It’s well know by Kronecker’s theorem that h(α) = 0 if and only if α = 0
or α is a root of unity. Lehmer’s conjecture predicts the existence of a positive
constant c such that

h(α) ≥ cd−1

whenever α ̸= 0 has degree d over Q and is not a root of unity.
This is obviously true for α not a unit with c = log(2). The conjecture

has been established for various classes of α. For α non-reciprocal (which
is always the case for d odd) the result holds true with c = 3h(θ) = log(θ),
where θ is the real root > 1 of X3 −X − 1 (see [Sch73]). If α belongs to an
abelian extension and h(α) ̸= 0, we have h(α) ≥ log(5)

12
(see [AD00]). For α in

a CM-field with |α| ≠ 1, we have h(α) ≥ 1
2
log(1+

√
5

2
) (see [Sch73]). The best

unconditional result we have to Lehmer’s conjecture is Dobrowolski’s result
∗This work has been partially supported by the Institut Fourier, Université Grenoble1,

UMR 5582 duCNRS, 100 rue des mathématiques, BP 74, 38402 St Martin d’hères.
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[Dob79], which implies that for any ϵ > 0, there is c(ϵ) > 0 such that either
h(α) = 0 or h(α) ≥ c(ϵ)d−1−ϵ.

Amoroso and David proved Lehmer’s conjecture when Q(α)/Q is a Galois
extension, see [AD99, Corollaire 1.7]. Later, Amoroso and Masser [AM16]
proved the following stronger result.

Theorem 1.1. For any ϵ > 0, there is a positive effective constant c(ϵ) with
the following property. If α ∈ Q∗ is of degree d over Q, α is not a root of
unity and Q(α)/Q is Galois, then

h(α) ≥ c(ϵ)d−ϵ.

The goal of our article is to give a explicit version of this theorem. Our
main result is the following:

Theorem 1.2. Suppose α ∈ Q∗ is of degree d over Q. If α is not a root of
unity and Q(α)/Q is Galois, then

h(α) ≥ exp
(
−500 log(3d)3/4 log(log(3d))

)
.

Theorem 1.2 is proved in Section 3. Our proof strategy relies on that of
Amoroso and Masser in [AM16, Theorem 3.3]. There will be two cases. They
are related to the comparison of the multiplicative rank ρ of the conjugates
of α, and d. If ρ is big in terms of d, then they originally use the main
result of [AD99]. It says that for any α1, . . . , αr multiplicatively independent
algebraic number and any ϵ > 0, there exists C(ϵ) such that

max
i

h(αi) ≥ C(ϵ)D−1/r−ϵ

where D = [Q(α1, . . . , αr) : Q]. We will instead use a more precise and
explicit result from [AV12] (see Theorem 2.1). If ρ is small in terms of d,
then they use the relative Dobrowolski lower bound of [AZ10]. Again, we will
instead apply a more precise and explicit result from [AD07] (see Theorem
2.2). We moreover need an explicit estimate for the Euler Totient function
(see Lemma 2.2).

2 Auxiliary Results
We state two important results that will be the key ingredients in our proof.
The first was proved by Amoroso and Viada in [AV12, Corollary 1.6], where,

2



more generally, they give an explicit version of a generalized Dobrowolski
result on Lehmer’s problem.

Theorem 2.1 ([AV12, Corollary 1.6]). Let α1, . . . , αn be multiplicatively in-
dependent algebraic numbers in a number field K. Then

h(α1) . . . h(αn) ≥ [K : Q]−1(1050n5 log(3[K : Q]))−n2(n+1)2 .

The second result was proved by Amoroso and Delsinne in [AD07, Théorème
1.3]. We recall a special case of this theorem, which is enough for our pur-
poses.

Theorem 2.2 ([AD07, Théorème 1.3]). Let α ∈ Q∗ be not a root of unity
and let L be a number field. Then if L/Q is a finite abelian extension and
D = [L(α) : L], we have

h(α) ≥ D−1 log log(5D)3

log(2D)4
.

The following lemma is a general version of [AM16, Lemma 2.2], with an
improvement on the value of n(ρ).

Lemma 2.1. Let F/K be a finite Galois extension and α ∈ F \{0}. Let ρ be
the multiplicative rank of the conjugates α1, ..., αd of α over K, and suppose
ρ ≥ 1. Then there exists a subfield L ⊂ F which is Galois over K of degree
[L : K] ≤ n(ρ) and an integer k ≥ 1, such that F contains a primitive k-th
root of unity ζk and αk ∈ L. We can take

n(ρ) = ρ!2ρ for ρ = 1, 3, 5 and ρ > 10.

Otherwise we can take
n(ρ) = 135ρ!2ρ−1.

Proof. Let k be the order of the group of roots of unity in F , in particular
F contains K(ζk). Define βi = αk

i for 1 ≤ i ≤ d and L = K(β1, . . . , βd). We
have L ⊂ F because F/K is Galois, and we easily check that L/K is Galois.
The Z−module

M = {βa1
1 . . . βad

d | a1, . . . , ad ∈ Z}

is torsion free by the choice of k and so, by the Classification Theorem for
abelian group, is free, of rank ρ. This shows that the action of Gal(L/K)
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over M defines an injective representation from Gal(L/K) to GLρ(Z), hence
Gal(L/K) identifies with a finite subgroup of GLρ(Z). To conclude, we use a
theorem stated by Feit in 1996, and proved by Rémond in [Rém20, Théorème
7.1], which, in particular, gives an explicit bound for the order of the maximal
finite subgroups of GLρ(Z).

We end this section with the following two lemmas.

Lemma 2.2. Let ϕ be the Euler’s totient function. For every positive integer
n, we have 1

n

ϕ(n)
≤ 3 log(log(3n))

2 log(log(3))

and

ϕ(n) ≥
√

n

2
.

Proof. For n ≥ 3, let

an =
ϕ(n) log(log(n))

n
.

We are going to show that an ≥ a3 for all n ≥ 3. It’s easy to check that
a4 ≥ a3, so we can suppose n ≥ 5. We have (see [BS96, Theorem 8.8.7]) that
for k ≥ 3

ϕ(k) >
k

eγ log(log(k)) + 3
log(log(k))

where γ is the Euler’s constant. Thus for all k ≥ 3 we have

ak ≥
log(log(k))

eγ log(log(k)) + 3
log(log(k))

.

Consider the function

f(x) =
log(log(x))

eγ log(log(x)) + 3
log(log(x))

.

Its derivative is

f ′(x) =
6 log(log(x))

x log(x)(eγ(log(log(x)))2 + 3)2
.

1The factor 3 in log(log(3n)) is here for the cases n = 1 and n = 2.
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So the function f is increasing on the interval [3,+∞[. We can check that
f(5) ≥ 2 log(log(3))

3
. As a result, for n ≥ 5

an ≥ f(n) ≥ f(5) ≥ 2 log(log(3))

3
= a3.

Hence, for n ≥ 3 we have

n

ϕ(n)
≤ 3 log(log(n))

2 log(log(3))
.

The second inequality is well known, and, for instance, it can be deduce
easily from the previous one for n ≥ 503, and checked for small values of
n.

Lemma 2.3. For every positive integer n, we have

2nn!

nn−5
≤ 21818!

1818−5
< 80601.

Proof. One can check that the result hold true for n ≤ 18. For n ≥ 18, let
Un = 2nn!

nn−5 . Then

Un+1

Un

= 2

(
n+ 1

n

)5(
n

n+ 1

)n

≤ 2

(
19

18

)5(
n

n+ 1

)n

≤
(
19

18

)5(
18

19

)18

< 1,

where we used the fact that
((

n
n+1

)n)
n≥1

is a decreasing sequence. Hence the
sequence (Un)n≥18 is decreasing, which proves the result.

3 Proof of Theorem 1.2
We can now establish the proof of Theorem 1.2. Firstly, we will demonstrate a
lower bound for h(α) depending on the multiplicative rank ρ of the conjugates
of α, and on the degree d of Q(α) over Q.
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Lemma 3.1. Let α ∈ Q∗ of degree d over Q and not a root of unity. Let ρ
be the multiplicative rank of the conjugates of α. Define

g1(ρ, d) = min
1≤r≤ρ

(
d1/r(1050r5 log(3d))r(r+1)2

)
and

g2(ρ, d) = 1020ρρ log
(
log

(
6d2

))5
.

Then:
h(α) ≥ min (g1(ρ, d), g2(ρ, d))

−1 .

Proof. By Theorem 2.1 applied to Q(α), and given that all conjugates of α
over Q are in Q(α) (since Q(α)/Q is Galois), we have, for every 1 ≤ r ≤ ρ,
that

h(α) ≥ d−1/r(1050r5 log(3d))−r(r+1)2 ,

so h(α) ≥ g1(ρ, d)
−1.

By Lemma 2.1, there exists L ⊂ Q(α) and k ≥ 1 such that L/Q is Galois,
[L : Q] ≤ 135ρ!2ρ−1, Q(ζk) ⊂ Q(α) and αk ∈ L. Set M = Q(ζk). We have
M(α) = Q(α) = L(α). Notice that

[M(α) : M ] = [L(α) : L]
[L : Q]

[M : Q]
.

Since α is a root of Xk − αk ∈ L[X], we have [L(α) : L] ≤ k. We also
have ϕ(k) = [M : Q]. Therefore, we obtain

[M(α) : M ] ≤ k
[L : Q]

[M : Q]
≤ k

ϕ(k)
[L : Q].

By Lemma 2.2, we have

k

ϕ(k)
≤ 3 log(log(3k))

2 log(log(3))
,

so
[M(α) : M ] ≤ 405

log(log(3k))

log(log(3))
ρ!2ρ−2.

We notice that ϕ(k) ≤ d. By the last statement of Lemma 2.3, we have√
k/2 ≤ ϕ(k). Hence, we have k ≤ 2d2, and so

[M(α) : M ] ≤ 405
log (log (6d2))

log(log(3))
Dρ!2ρ−2 ≤ 104ρ!2ρ log

(
log

(
6d2

))
.
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By Lemma 2.3 we have

[M(α) : M ] ≤ 109ρρ−5 log
(
log

(
6d2

))
.

By Theorem 2.2, applied to Q(ζk)/Q, we have

h(α) ≥ [M(α) : M ]−1 log (log (5[M(α) : M ]))3

log(2[M(α) : M ])4
.

Since the function
f(x) =

1

x

log(log(5x))3

log(2x)4

is decreasing on the interval [1,+∞[, setting

X(ρ, d) = 109ρρ−5 log
(
log

(
6d2

))
we deduce that

h(α)−1 ≤ X(ρ, d) log(2X(ρ, d))4 ≤ 1020ρρ log
(
log

(
6d2

))5
.

Hence h(α) ≥ g2(ρ, d)
−1. This proves the lemma.

Proof of Theorem 1.2. Now, we are ready to prove Theorem 1.2. Suppose,
first, that ρ ≤ log(3d)1/4. By Lemma 3.1, we get

h(α)−1 ≤ g2(ρ, d) = 1020
(
log(3d)1/4

)log(3d)1/4
log

(
log

(
6d2

))5
= exp

(
20 log(10) + log(3d)1/4 log(log(3d)1/4) + 5 log(log

(
log

(
6d2

))
)
)
.

So, we have

h(α)−1 ≤ exp
(
20 log(10) + 6 log(3d)1/4 log(log(3d)))

)
. (1)

Now, we suppose that ρ ≥ log(3d)1/4. We choose r ∈ Z such that
log(3d)1/4 + 1 > r ≥ log(3d)1/4. In particular r ≤ ρ. Then, thanks again to
Lemma 3.1, we obtain

h(α)−1 ≤ g1(ρ, d) = d1/r(1050r5 log(3d))r(r+1)2

≤ d1/ log(3d)
1/4 (

1050(log(3d)1/4 + 1)5 log(3d)
)(log(3d)1/4+1)(log(3d)1/4+2)2

≤ d1/ log(3d)
1/4 (

216 log(3d)9/4
)23 log(3d)3/4

= exp
(
log(3d)3/4 + 23 log(3d)3/4 log(216 log(3d)9/4)

)
.
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So, we have

h(α)−1 ≤ exp
(
log(3d)3/4 + 400 log(3d)3/4 log(log(3d))

)
. (2)

From (1) and (2), we obtain

h(α)−1 ≤ exp
(
500 log(3d)3/4 log(log(3d))

)
.

Acknowledgments
I am grateful to Gaël Rémond for comments and suggestions on an earlier
draft of this article, and for pointing out the reference [Rém20].

References
[AD99] Francesco Amoroso and Sinnou David. The higher-dimensional

Lehmer problem. J. Reine Angew. Math., 513:145–179, 1999.

[AD00] Francesco Amoroso and Roberto Dvornicich. A lower bound for
the height in abelian extensions. J. Number Theory, 80(2):260–272,
2000.

[AD07] Francesco Amoroso and Emmanuel Delsinne. An explicit relative
lower bound for the height in an extension of an abelian extension.
Diophantine geometry, 1–24, 2007.

[AM16] Francesco Amoroso and David Masser. Lower bounds for the height
in Galois extensions. Bull. Lond. Math. Soc., 48(6):1008–1012, 2016.

[AV12] Francesco Amoroso and Evelina Viada. Small points on rational
subvarieties of tori. Comment. Math. Helv., 87(2):355–383, 2012.

[AZ10] Francesco Amoroso and Umberto Zannier. A uniform relative Do-
browolski’s lower bound over Abelian extensions. Bull. Lond. Math.
Soc., 42(3):489–498, 2010.

[BS96] Eric Bach and Jeffrey Shallit. Algorithmic number theory, Vol. 1:
Efficient algorithms. Cambridge, MA: The MIT Press, 1996.

8



[Dob79] Edward Dobrowolski. On a question of Lehmer and the number of
irreducible factors of a polynomial. Acta Arith., 34:391–401, 1979.

[Rém20] Gaël Rémond. Degré de définition des endomorphismes d’une var-
iété abélienne. J. Eur. Math. Soc. (JEMS), 22(9):3059–3099, 2020.

[Sch73] Andrzej Schinzel. On the product of the conjugates outside the unit
circle of an algebraic number. Acta Arith., 24:385–399, 1973.

JONATHAN JENVRIN: Univ. Grenoble Alpes, CNRS, IF, 38000 Greno-
ble, France

E-mail adress : jonathan.jenvrin@univ-grenoble-alpes.fr

9

mailto:jonathan.jenvrin@univ-grenoble-alpes.fr

	Introduction
	Auxiliary Results
	Proof of Theorem 1.2

