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Abstract

In this paper, we study the notion of distance between the most important structures
of formal concept analysis: formal contexts, concept lattices, and implication bases.
We first define three families of Minkowski-like distances between these three struc-
tures. We then present experiments showing that the correlations of these measures
are low and depend on the distance between formal contexts.
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1. Introduction

Formal Concept Analysis (FCA [9]) is a mathematical framework that allows
extracting patterns called concepts from data in the form of objects described by at-
tributes, and organises them in an ordered structure called a concept lattice. Concept
lattices are then used for exploratory search [12, 11], conceptual navigation [17, 1],
and other applications – see [13] for a survey. The framework also handles implica-
tions between sets of attributes, that can be summarised by implication bases. In
FCA, formal contexts, concept lattices and sets of implications are three represen-
tations of – or points of view on – the same entity and all three of them are well
known, well studied, and well used in various fields of data mining [15, 14, 6].

We are interested in distances between these FCA structures. Given two data
tables on the same objects and attributes, how far apart are the structures that
are extracted from them? In this paper, we define three families of distances: one
between formal contexts, one between implication bases, and one between concept
lattices. For formal contexts, we consider the context as a set of pairs (the incidence
relation) and use set-based analogues of Minkowski distances to define the factual
distance. For concept lattices and implication bases, we consider the structures as
representations of, respectively, the derivation operators and the closure operator
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of the corresponding context and propose Minkowski-like distances: the conceptual
distance and the logical distance. We show that these distances are metrics and
we provide algorithms to compute them. We experimentally study the correlations
between those distances on formal contexts that are closer or farther apart and
observe that these correlations depend on the factual distance.

There are multiple expected applications for this work. The most direct one would
be the comparison of concept lattices or implication bases, for instance to study the
differences in the variability in different software product lines [3]. Another applica-
tion would be in distance-based machine learning, for instance in the clustering of
entities represented by binary relations. More broadly, these distances could be used
to define complexity indicators in triadic or polyadic datasets [19] as the relative
distance of each slice of context to every other, or even define a notion of trajectory
in iterative processes such as Relational Concept Analysis [16, 2]. Additionally, this
is a contribution to Ordinal Data Science, as defined in its manifesto [18], and it
seemed fun to do.

The paper follows a classic structure: in Section 2 we define the necessary notions
of FCA and distances, then we introduce our distances between FCA structures and
the algorithms to compute them in Section 3. In Section 4 we experiment on the
new distances: we study the correlations between them and compare them together
and with Domenach’s dissimilarity measure [7] on concept lattices.

2. Preliminaries

2.1. Formal Concept Analysis
Formal Concept Analysis (FCA) is a mathematical framework based on lattice

theory that aims at structuring the information contained in the relation between
objects and their attributes [9]. It is centered around the notion of formal context.

Definition 1 (Formal context). A formal context is a triple (O,A,R) in which
O is a set of objects, A is a set of attributes and R ⊆ O ×A is a binary relation
between objects and attributes. We say that the object o is described the attribute a
when (o, a) ∈ R.

Formal contexts can be represented as crosstables.
A formal context C gives rise to two derivation operators, both usually noted ·′,

defined as:
·′ : P(A) 7→ P(O)

A′ = {o ∈ O | ∀a ∈ A, (o, a) ∈ R}
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a1 a2 a3 a4 a5
o1 × ×
o2 × × ×
o3 × × ×
o4 × ×
o5 × ×

Figure 1: A formal context with five objects and five attributes

·′ : P(O) 7→ P(A)
O′ = {a ∈ A | ∀o ∈ O, (o, a) ∈ R}

where P(X) denotes the powerset of X.
For instance, in the Fig. 1 context, {a2, a4}′ = {o2, o3} and {a1}′′ = {a1, a2}. Both

compositions ·′′ form Galois connections and are thus closure operators. Throughout
this paper, when in the presence of two different formal contexts C1 and C2, we shall
use ·′i and ·′′i to denote the derivation and closure operators of context Ci.

Definition 2 (Formal concept). In a formal context (O,A,R), a formal concept
is a pair (E, I) in which E is a set of objects, I is a set of attributes and such that
E = I ′ and I = E ′. As such, I = I ′′ and E = E ′′ are both closed sets. We call E the
extent and I the intent of the concept.

Visually, concepts correspond to maximal rectangles of crosses in the context’s
crosstable, up to permutation of rows and columns. In the Fig. 1 context, the
pair ({o2, o3}, {a2, a4}) is a concept while the pair ({o3, o4}, {a5}) is not as {a5}′ =
{o3, o4, o5}. Concepts can be ordered by the inclusion relation on their extents,
i.e. (E1, I1) ≤ (E2, I2) ⇔ E1 ⊆ E2. As per the basic theorem of formal concept
analysis [9], the set of all concepts of a context C ordered in such a way forms a
complete lattice called the concept lattice of C. Additionally, all complete lattices are
isomorphic to the concept lattice of some context.

Definition 3 (Implications). In a formal context (O,A,R), an implication is a
pair of attribute sets (X, Y ), usually noted X → Y . An implication X → Y holds in
the context when X ′ ⊆ Y ′ or, equivalently, Y ⊆ X ′′. In other words, the implication
holds when all the objects described by X are also described by Y .

In the Fig. 1 context, the implications {a1} → {a1, a2} and {a3, a4} → {a2} hold
while the implication {a3} → {a5} does not. For simplicity’s sake, we thereafter say
“X → Y ” instead of “X → Y holds”. Some implications can be inferred from others
through Armstrong’s axioms:
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({o1, o2, o3, o4, o5}, ∅)

({o2, o3}, {a2, a4}) ({o3, o5}, {a4, a5})

({o4}, {a3, a5})({o3}, {a2, a4, a5})({o2}, {a2, a3, a4})({o1}, {a1, a2})

({o3, o4, o5}, {a5})({o2, o3, o5}, {a4})

({o2, o4}, {a3})

({o1, o2, o3}, {a2})

(∅, {a1, a2, a3, a4, a5})

Figure 2: Concept lattice of the formal context depicted in Fig. 1.

• if Y ⊆ X, then X → Y (Reflexivity)

• if X → Y , then X ∪ Z → Y ∪ Z for all attribute sets Z (Augmentation)

• if X → Y and Y → Z, then X → Z. (Transitivity)

Definition 4 (Implication base). An implication base of a formal context is an
implication set I such that the set of implications that can be inferred from I through
Armstrong’s axioms is the set of all implications that hold in the context.

Several implication bases with interesting properties exist in the literature [5, 4].
In this paper, we are interested in only one.

Definition 5 (Proper Premises). Let (O,A,R) be a formal context and a an
attribute. A proper premise of a is an inclusion-minimal attribute set X such that
X → {a}, i.e. there is no Y ⊂ X such that Y → {a}.

In the Fig. 1 example, the set {a2, a4} is a proper premise of the attribute a5 as
no proper subset of {a2, a4} implies {a5}. The set of all implications X → {a} where
a is an attribute and X is one of its proper premises forms an implication base.

Definition 6 (Logical closure). Let I be an implication base. The logical closure
of an attribute X by I, noted XI, is defined as the biggest Y ⊇ X such that X → Y
can be inferred from I.
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For instance, the logical closure of the attribute set {a1, a3} by the implication
base I = {{a1} → {a2}, {a2, a3} → {a4}} is {a1, a3}I = {a1, a2, a3, a4}. The logical
closure, as its name indicates, is a closure operator. If C is a formal context and I
an implication base of C, then ·I = ·′′.

2.2. Metrics
A metric on a set S is a function of distance between the elements of S satisfying

the following axioms:

• f(x, x) = 0

• f(x, y) > 0 when x ̸= y, (positivity)

• f(x, y) = f(y, x), (symmetry)

• f(x, z) ≤ f(x, y) + f(y, z). (triangular inequality)

In this paper, we make use of two families of metrics between vectors and sets
so as to build our own metrics between FCA structures. The first is the well-known
family of Minkowski distances between vectors X = (x1, . . . , xn) and Y = (y1, . . . , yn)
defined as

Dp(X, Y ) = p

√√√√ n∑
i=1

|xi − yi|p.

The second is the family of normalised set-based analogues of Minkowski dis-
tances [10] defined, for two sets X and Y , as

d2,p(X, Y ) =
p

√
(|X| − |X ∩ Y |)p + (|Y | − |X ∩ Y |)p

|X ∩ Y |+ p

√
(|X| − |X ∩ Y |)p + (|Y | − |X ∩ Y |)p

.

3. Distances Between FCA Structures

3.1. Aim
We aim at proposing distance measures between FCA structures. This is not a

brand new endeavor. Distance measures between formal contexts can be obtained by
considering contexts as being any more widely known structures, such as bipartite
graphs or hypergraphs, and using existing measures for these structures. Similarity
measures between concept lattices have already been studied [7]. However, these are
not sufficient. What we want is a set of three measures that can be used to compare
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two entities in their three different forms (context, lattice and implication base) and
the knowledge of how these three measures relate to each others. In this paper, we
suppose that all pairs of structures we compare use the same objects and attributes.

In this section, we define families of distances for each of the usual structures
of FCA, and show that they are metrics. The three families are based on the nor-
malised set-based analogues of Minkowski distances d2,p [10]. In Section 4, we provide
experimental results on the interaction of those distances.

3.2. Distance Between Contexts
As we only consider contexts on the same sets of objects and attributes, the

distance between the contexts depends only on their incidence relations. Hence, we
define our distance measure between formal contexts as a distance between binary
relations seen as sets of pairs.

Definition 7. Let C1 = (O1,A1,R1) and C2 = (O2,A2,R2) be two formal contexts.
The factual distance (FD) between C1 and C2 is defined as

FDp(C1, C2) = d2,p(R1,R2).

The two formal contexts depicted in Fig. 3 have a factual distance of ≈ 0.13.

a1 a2 a3 a4
o1 × × × ×
o2 × × ×
o3 × ×
o4 ×

a1 a2 a3 a4
o1 × × × ×
o2 × × ×
o3 × ×
o4 ×

Figure 3: Two chain contexts. The two contexts have a factual distance of ≈ 0.13 with p = 2.

As d2,p is a metric, the factual distance is a metric.

3.3. Distance Between Concept Lattices
We consider concept lattices as pairs of functions that map sets of objects to the

set of attributes they have in common and sets of attributes to the set of objects
they all describe, i.e. we see concept lattices as representations of the derivation
operators ·′. If (E, I) is a concept, then all subsets of E that are not subsets of lower
neighbours in the lattice are mapped to I and reciprocally. This is notationally easier
to express in terms of the derivation operators associated with the formal context of
the lattice, which might not be explicitly given: object sets O are mapped to O′. As
such, we define our distance measure between concept lattices as a distance measure
between the derivation operators.
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Definition 8. Let L1,L2 be the two concept lattices of two contexts C1 and C2 with
the same sets of objects O and attributes A. We define the lattice object distance as

LODp,q(L1,L2) =
p

√∑
o∈O d2,q(P({o}′1),P({o}′2))p

p

√
|O|

and the lattice attribute distance as

LADp,q(L1,L2) =
p

√∑
a∈A d2,q(P({a}′1),P({a}′2))p

p

√
|A|

.

The conceptual distance (CD) between L1 and L2 is then defined as

CDp,q(L1,L2) = min(LODp,q(L1,L2), LADp,q(L1,L2)).

Figure 4 depicts the two chain concept lattices of the two contexts in Fig. 3.
Even though they are isomorphic, their conceptual distance is ≈ 0.33 with p = 2 and
q = 1.

{o1}, {a1a2a3a4}

{o1o2}, {a1a2a3}

{o1o2o3}, {a1a2}

{o1o2o3o4}, {a1}

{o1}, {a1a2a3a4}

{o1o2}, {a1a2a4}

{o1o2o3}, {a1a2}

{o1o2o3o4}, {a1}

Figure 4: The two concept lattices of the Fig. 3 contexts. These have a conceptual distance of
CD2,1 ≈ 0.33 with p = 2 and q = 1. A small difference in the intents leads to a non-zero distance,
even on isomorphic lattices with the same extents.

The conceptual distance takes its values in [0, 1] and is a metric, satisfying the
following axioms:

1. CD(x, x) = 0

2. CD(x, y) > 0 when x ̸= y, (positivity)
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3. CD(x, y) = CD(y, x), (symmetry)
4. CD(x, z) ≤ CD(x, y) + CD(y, z). (triangular inequality)

These follow directly from the fact that d2,p is a metric.
Computing the conceptual distance is quite easy: for each object o, find its

introducer concepts in both lattices to obtain {o}′1 and {o}′2. Then, computing
d2,q(P({o}′1),P({o}′2)), the distance between the sets of attribute sets that contain
o in their derivation, is straightforward. Algorithm 1 follows this principle. Finding
the introducer concept of an object in the lattice Li can be done in O(|Li|) so the
time complexity of Algorithm 1 is in O((|O|+ |A|)×max(|L1|, |L2|)).

Algorithm 1: CDp,q

Input: Two concept lattices L1 and L2, p and q
Output: CDp,q(L1,L2)

1 LOD = 0
2 foreach object o do
3 (E1, I1) = the introducer of o in L1

4 (E2, I2) = the introducer of o in L2

5 LOD = LOD + ( q

√
(2|I1| − 2|I1∩I2|)q + (2|I2| − 2|I1∩I2|)q)p

6 LOD = p
√
LOD/ p

√
|O|

7 LAD = 0
8 foreach attribute a do
9 (E1, I1) = the introducer of a in L1

10 (E2, I2) = the introducer of a in L2

11 LAD = LAD + ( q

√
(2|E1| − 2|E1∩E2|)q + (2|E2| − 2|E1∩E2|)q)p

12 LAD = p
√
LAD/ p

√
|A|

13 return min(LOD,LAD)

3.4. Distance between Implication Bases
For our distance measure between implication bases, we consider implication

bases as functions mapping attribute sets X to attribute sets Y = {y | X → {y}}, i.e.
we see implication bases as representations of the closure operator ·′′ on attributes.
Note that, from Armstrong’s axioms, we can infer that

X → Y ⇔ ∀y ∈ Y,X → {y}.
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{a4} → {a2, a3}

{a3} → {a2}

∅ → {a1}

{a4} → {a2}

{a3} → {a2, a4}

∅ → {a1}

Figure 5: The two proper premises bases of the Fig. 3 contexts. The logical distance, with param-
eters p = 2 and q = 1, between these two bases is ≈ 0.23.

Definition 9. Let I1, I2 be two implications bases on the same attribute set A. For
an attribute a ∈ A and an implication base I, we denote by Ia = {X | a ∈ XI} the
set of attributes sets that imply a. The logical distance (LD) between I1 and I2 is
then defined as

LDp,q(I1, I2) =
p

√∑
a∈A d2,q(Ia1 , Ia2 )p

p

√
|A|

.

Fig. 5 depicts the two proper premises implication bases of the contexts in Fig 3.
These two implication bases have a logical distance of ≈ 0.23. Indeed, the attribute
a3 is implied by all supersets of {a4} only in the first context and the attribute a4 is
implied by all supersets of {a3} only in the second context.

The logical distance takes its values in [0, 1] and is a metric, satisfying the fol-
lowing axioms:

1. LD(x, x) = 0

2. LD(x, y) > 0 when x ̸= y, (positivity)
3. LD(x, y) = LD(y, x), (symmetry)
4. LD(x, z) ≤ LD(x, y) + LD(y, z). (triangular inequality)

Just as those for the conceptual distance, these axioms follow from the fact that d2,q
is a metric.

To compute the logical distance, one requires the knowledge of all the attribute
sets X that imply a given attribute a. This is not explicitly contained in implication
bases and retrieving it is the computationally most expensive part of computing the
distance. We propose Algorithm 3 to compute the logical distance. We assume that
the implication bases are proper premises bases. If this is not the case, other bases
can be converted to proper premises bases.

The algorithm treats each attribute a separately. It starts with computing the
attribute sets X that are minimal such that X → {a} in both implication bases
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(commonPremises). It then computes the union closure of the set of common
premises (Uc), of the set of premises in I1 (U1) and of the set of premises in I2 (U2),
i.e. the minimal sets of attributes sets such that X, Y ∈ Uc ⇒ X ∪ Y ∈ Uc (resp.
U1, U2). From there, the algorithm associates to each element x of Uc (resp. U1,
U2) the number of attribute sets that contain x but not its supersets in Uc (i.e. the
size of the equivalence classes in the resulting lattice) with Algorithm 2. Algorithm 3
then sums those numbers (sumc, sum1 and sum2) to obtain the numbers of attribute
sets containing one of the corresponding premises. As the size of the union closure
is bounded by 2|A| (when all singletons are premises), the worst case complexity of
Algorithm 3 is in O(|A| × 2|A|).

Algorithm 2: sizeEQ

Input: A set U of premises
Output: sizeEQ(U)

1 Build a dictionary D mapping each premise P in U to the set of premises
P2 ⊃ P

2 sum← 0
3 over ← false
4 while over = false do
5 over ← true
6 foreach premise P in U do
7 if all P2 ∈ D(P ) have been tagged then
8 |P≡| ← 2|A|−|P |−1 −∑

P2∈D(P ) |P≡
2 |

9 Tag P
10 sum← sum+ |P≡|
11 over ← false

12 return sum
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Algorithm 3: LD
Input: Two implication bases I1 and I2, p, q
Output: LDp,q(I1, I2)

1 Result← 0
2 foreach attribute a do
3 commonPremises = min({P1 ∪ P2 | P1 ∈ Ia1 , P2 ∈ Ia2})
4 Uc = unionClosure(commonPremises)
5 U1 = unionClosure(Ia1 )
6 U2 = unionClosure(Ia2 )
7 sumc = sizeEQ(Uc)
8 sum1 = sizeEQ(U1)
9 sum2 = sizeEQ(U2)

10 Result = Result+ ( q

√
(sum1 − sumc)q + (sum2 − sumc)q)

p

11 return p
√
Result/ p

√
|A|

4. Experiments

In all these experiments, we used parameters p = 2 and q = 1 for all distances.
A Python module containing the three distances is publicly available1.

4.1. Correlation Between distances

C1 a1 a2 a3 a4
o1 × × ×
o2 × × ×
o3 × ×
o4 × ×

C2 a1 a2 a3 a4
o1
o2 ×
o3 ×
o4 ×

C3 a1 a2 a3 a4
o1 × ×
o2 ×
o3 × × ×
o4 × × × ×

Figure 6: Three formal contexts C1, C2 and C3.

The first question that may come to mind is “how do these distance measures
compare to each others?”. Let us consider the Fig. 6 example representing three
contexts C1, C2 and C3. We denote their concept lattices by L1, L2 and L3 and their
proper implication bases by I1, I2 and I3. We compute the factual, conceptual and
logical distances between C1 and the other two and obtain the following results:

1https://github.com/Authary/FCAD
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FD2,1(C1, C2) = 0.80 FD2,1(C1, C3) = 0.58
CD2,1(L1,L2) = 0.69 CD2,1(L1,L3) = 0.68
LD2,1(I1, I2) = 0.15 LD2,1(I1, I3) = 0.20

We observe that C3 is factually and conceptually closer to C1 while C2 is logically
closer. The three measures therefore do not always agree. Are they at least corre-
lated? In order to answer this question, we generated structures in different ways.
As contexts are the easiest structure to randomly generate, we explored the following
approaches:

• generating random contexts by adding each cross with a probability p

• generating random contexts factually close to a reference context by randomly
flipping the truth value of the presence of pairs in the incidence relation with
a probability p

• generating a sequence of contexts that get progressively farther from a reference
context by iteratively modifying the context

In each case, we computed three correlation coefficients, Pearson, Spearman and
Kendall’s τ .

4.2. Randomly Generated Contexts
We randomly generated 1500 pairs (A,B) of formal contexts with 50 objects and

10 attributes, with a pair (o, a) having a probability 0.3 of being in the incidence re-
lation. We then computed the distances between the contexts (resp. their associated
lattices and implication bases) in each pair. Fig. 7 depicts three diagrams illustrating
the relation between the factual (x-axis) and logical (y-axis) distances, the relation
between the factual (x-axis) and the conceptual (y-axis) distances and the relation
between the conceptual (x-axis) and the logical (y-axis) relations.

We observe that the three distances appear to be pairwise independent when the
contexts are randomly generated in such a way. Fig. 7 also depicts the values of
the three correlation coefficients, Pearson, Spearman and Kendall’s τ . Their values
confirm the independence, with the factual and conceptual distances being very
slightly less independent. Note that Pearson measures linear correlation, Spearman
assesses monotonic relationships and Kendall’s τ measures rank correlation.

Interestingly, all factual distances are between 0.67 and 0.85, suggesting that
random generation produces contexts that are far apart.
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0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84
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0.7

0.75

Factual
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Pearson Spearman Kendall
0.09 0.10 0.06

(a) Factual (x-axis) and conceptual
(y-axis) distances of random con-
texts.

0.68 0.7 0.72 0.74 0.76 0.78 0.8 0.82 0.84
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Factual

Lo
gi

ca
l

Pearson Spearman Kendall
−0.16 −0.15 −0.10

(b) Factual (x-axis) and logical (y-
axis) distances of random contexts.

0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76 0.78
0.08

0.1

0.12

0.14

0.16

0.18

0.2

Conceptual

Lo
gi

ca
l

Pearson Spearman Kendall
0.14 0.13 0.09

(c) Conceptual (x-axis) and logical
(y-axis) distances of random con-
texts.

Figure 7: Randomly generated contexts : correlation between the distance measures.

4.3. Randomly Modified Contexts
In a second batch of experiments, we generated 1500 other pairs of contexts such

that A is a randomly generated context and B is obtained by randomly modifying
A. All contexts contain 50 objects and 10 attributes. The contexts A were generated
with a probability 0.3 for each cross. The modified contexts were obtained through
the following algorithm: for each (object, attribute) pair, with a probability 0.05,
remove the pair from the incidence relation if it belongs to it or add it if it does
not. We then computed the distances between the contexts (resp. their associate
lattices and implication bases) in each pair. Fig. 8 depicts three diagrams illustrating
the relation between the factual (x-axis) and logical (y-axis) distances, the relation
between the factual (x-axis) and the conceptual (y-axis) distances and the relation
between the conceptual (x-axis) and the logical (y-axis) relations. Fig. 8 also depicts
the values of the three correlation coefficients, Pearson, Spearman and Kendall’s τ .

Visually, we observe some slight positive correlation between the factual and con-
ceptual distances and between the factual and logical distances. This is in opposition
to the previous experiment with randomly generated contexts. All factual distances
are below 0.2, suggesting that our modification algorithms successfully produces con-
texts that are close together. This result, together with the previous one on randomly
generated contexts, hints at the correlations between the factual distance and the
others being stronger for very close contexts.

4.4. Variation of Correlation Relative to the Factual Distance
In the previous experiments, the distances seemed to be more correlated for low

factual distances. This hinted at differences in correlations depending on factual
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tual (y-axis) distances to a refer-
ence context of contexts obtained
by randomly modifying the refer-
ence.
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(b) Factual (x-axis) and logical (y-
axis) distances to a reference con-
text of contexts obtained by ran-
domly modifying the reference.
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cal (y-axis) distances to a refer-
ence context of contexts obtained
by randomly modifying the refer-
ence.

Figure 8: Randomly modified contexts: correlation between the distance measures (factual,logical),
(factual,conceptual) and (conceptual,logical)

distances. Let us check whether this is really the case. For this experiment, we
generated pairs (A,B) of contexts such A is a 50×10 randomly generated context and
B is obtained by randomly flipping the truth value of each (object, attribute) pair in
A with a probability p. We made p vary from 0.025 to 0.5 with 0.025 increments. For
each value of p, we generated 1000 pairs of contexts and computed the three distances
between A and B. We then computed the three correlation coefficient for each pair
of distances. Fig. 9 presents these correlation values (y-axes) for the different values
of p (x-axes). As a higher p results in factually more distant contexts, we observe
that the correlations between the factual distance and the other two decrease when
p increases. This confirms our previous observation that these distances are more
correlated for low factual distances.

4.5. Progression from a Reference Context
In a fourth experiment, we generated 200 contexts by starting with a random

reference context and iteratively modifying it using the modification algorithm pre-
viously described with a probability p = 0.02. The goal is to observe the progression
of the three distances when contexts get factually farther from the reference context.
Fig. 10 depicts the factual, conceptual and logical distances of the 200 contexts to
the reference context. We observe that the contexts indeed get progressively fac-
tually farther from the reference context until around 50 iterations, at which point
the factual distance stabilises. The conceptual and logical distances increase much
faster and stabilise around 40 iterations, with more variance in the logical distance.
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Figure 9: Correlation of the three distance measures for different values of probabilities used in the
modification of contexts. Higher probabilities means higher factual distances.

This reinforces the idea of a correlation between the factual distance and the other
two for small factual distances. Note that the stabilisation occurs when the factual
distance reaches above 0.6, which is the distance range in which randomly generated
contexts occur.

4.6. Comparaison with Domenach’s Dissimilarity Measure
Domenach’s dissimilary measure is based on the overhanging relation [8] between

sets of objects. Two sets are overhanged if one is a subset of the other and their
closures are different. To compute a distance between concept lattices, Domenach
defines two matrices, M1 and M2, based on the overhanging relation of pairs of objets
in each concept lattice. The distance is then based on the L1 norms of those matrices:
||M1−M2||

||M1||+||M2|| .
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Figure 10: Iterative modifications from a reference context: progression of the three distances.
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Figure 11: Randomly generated contexts : correlation between our distance measures and Domen-
ach’s dissimilarity.

We compared our distances with Domenach’s dissimilarity measure on 1000 pairs
of randomly generated contexts. Fig. 11 depicts the results. We observe that Dom-
enach’s dissimilarity measure is independent of our conceptual distance and slightly
correlated with our factual distance.

5. Conclusion and Perspectives

We presented three distance families between the most important structures in
formal concept analysis, i.e. formal contexts, concept lattices and implication bases.
These structures represent three complementary points of view on the information
contained in formal context: the factual, conceptual and logical points of views. We
see the distances we studied in this paper as a first step towards the simultaneous
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exploitation of the three points of view in the analysis of data. The applications
could be distance-based machine learning, both supervised and unsupervised, or the
measurement of the complexity of multidimensional data.

Our experiments indicate that, of our distances, only the factual distance is
(barely) correlated with the other two and that their correlations depends on the
factual distance. The variation of the correlation w.r.t. other distances should also
be studied once we better understand how to control the conceptual and logical dis-
tances in the generation of data. Our experiments also highlight the need to study the
metric spaces induced by the distances, and their relations, as experimental results
are insufficient.

Future work includes the extension of these measures to contexts defined on dif-
ferent sets of objects and attributes, and to the polyadic concept analysis framework.
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