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We present the first application to real molecular systems of the recently proposed linear-response theory for the
density-based basis-set correction method [J. Chem. Phys. 158, 234107 (2023)]. We apply this approach to accelerate
the basis-set convergence of excitation energies in the equation-of-motion coupled-cluster singles doubles (EOM-
CCSD) method. We use an approximate linear-response framework which neglects the second-order derivative of
the basis-set correction density functional and consists in simply adding to the usual Hamiltonian the one-electron
potential generated by the first-order derivative of the functional. �is additional basis-set correction potential is
evaluated at the Hartree-Fock density, leading to a very computationally cheap basis-set correction. We tested this
approach over a set of about 30 excitation energies computed for five small molecular systems and found that the
excitation energies from the ground state to Rydberg states are the main source of basis-set error. �ese excitation
energies systematically increase when the size of the basis set is increased, suggesting a biased description in favour
of the excited state. Despite the simplicity of the present approach, the results obtained with the basis-set corrected
EOM-CCSD method are encouraging as they yield to a mean absolute deviation of 0.02 eV for the aug-cc-pVTZ basis
set, while it is of 0.04 eV using the standard EOM-CCSD method. �is might open the path to an alternative to
explicitly correlated approaches to accelerate the basis-set convergence of excitation energies.

I. INTRODUCTION

One of the main bo�leneck of computational electronic-
structure wave-function methods is the slow convergence of
the energy and properties with the size of the one-electron
basis set used to expand the wave function. At the ori-
gin of this limitation lies the divergence of the Coulomb
electron-electron interaction as the interelectronic distance
goes to zero, creating derivative discontinuities in the wave
function1 which cannot be represented with a finite one-
electron basis set2. One can drastically improve the basis-
set convergence by using geminals explicitly depending on
the interelectronic distance3,4. Among the various flavours
of such explicitly correlated approaches, the so-called F12
method5–9 has proven to be a remarkably efficient tool to
describe ground-state properties. Applications to excited
states10–18 of the F12 or R12 methodology is nevertheless not
straightforward and the initial a�empt led to relatively dis-
appointing results10 . �e main issue came from a strong bias
toward the ground state: in its usual formulation the gemi-
nals are applied only on the Hartree-Fock (HF) Slater deter-
minant which dominates the ground-state wave function but
has only a small contribution to the excited states. Further
developments in which the geminals were also applied on
singly excited configurations led to a strong reduction of this
bias11 . While the la�er developments used the so-called lin-
ear R12 geminals10,11, the modern flavours of explicitly cor-
related methods use Slater-type geminals (F12) which, unlike
the R12 geminals, decay at large interelectronic distance and
the so-called SP ansatz introduced by Ten-No19 which avoids
the optimization of the geminal amplitudes by using first- and
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second-order cusp conditions. In this spirit, Köhn proposed
the so-called XSP ansatz13 which is an extended version of
the SP ansatz adapted to response theory by adding the single
hole-particle excitation channels in the SP geminals. �e ini-
tial application of the XSP ansatz to the equation-of-motion
coupled-cluster singles doubles (EOM-CCSD) method (see,
e.g., Ref. 20), in addition to the use of the complementary
auxiliary basis-set one-electron correction, suppressed not
only the ground-state bias of the standard SP approach but
also improved the basis-set convergence of the excitation en-
ergies. Further extensions of the XSP ansatz to the second-
order coupled-cluster (CC2) method were reported with ap-
plications to organic molecules18. �e XSP ansatz can there-
fore be considered as the state-of-the-art method for treating
excited states within the F12 framework.

Despite the undeniable successes of F12 theories, we might
point out some limitations. First, they are usually formu-
lated for single-referencemethods and are not o�en generally
available for multi-reference methods. Second, they rely on
a relatively involved formulation which makes their incorpo-
ration in computer so�ware a relatively complex task. �ird,
the quality of the results for excitation energies particularly
depends on the Slater geminal parameterγ. Last but not least,
F12 theories need three- and four-electron integrals which
have to be approximated through resolution-of-identity tech-
niques.

An alternative to F12 approaches was recently proposed
by some of the present authors21 with the so-called density-
based basis-set correction (DBBSC) method. �is method
uses range-separated density-functional theory (RSDFT) (see
Ref. 22 and references therein) in order to capture the short-
range correlation energy missing from the description of
wave-function approaches with an incomplete one-electron
basis set B. �e DBBSC method relies on the determina-
tion of an effective local range-separation parameter µB(r),
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depending on the spatial position r, which provides a local
measure of the incompleteness of a given basis set B. One
can then simply use a short-range correlation density func-
tional designed for multideterminant RSDFT23,24 with this
local range-separation parameter µB(r) to obtain an estima-
tion of the correlation energy missing in the basis set B. �e
DBBSC method has been tested and validated for the cal-
culation of ground-state atomization energies25–28 including
light and transition-metal elements and strongly correlated
systems, ionization potentials21,29, and dipole moments30,31.
Efficient implementations using density-fi�ing technologies
were recently reported32,33.

Being based on the Levy-Lieb formulation of density-
functional theory (DFT), the DBBSC method is a ground-
state theory and an a�empt to apply it to excited states
was proposed34 in a state-specific flavour by simply evalu-
ating the basis-set correction energy functional at the den-
sity (and, in some cases, the pair density) of each excited
state. While the results obtained were encouraging34, this
approach is nevertheless not rigorous as it consists in the un-
justified application of a ground-state theory to excited states.
Recently, the present authors derived the general equations
of linear-response theory for the DBBSC method35 and ap-
plied them to the calculation of excitation energies in a one-
dimensional model system. �is linear-response formalism
relies on a variational self-consistent version of the DBBSC
method that was implemented and tested in Ref. 30. In
the la�er framework, the wave function is changed through
the addition of a basis-set correction potential which is self-
consistently determined, and the numerical tests showed that
while self-consistency makes very li�le changes on the en-
ergy, themodifiedwave function leads to a significant change
of the density that greatly accelerates the basis-set conver-
gence of dipole moments. Nevertheless, the self-consistent
approach is difficult to realise with a non-variational wave-
function ansatz, which therefore restricts its domain of ap-
plicability. Recently, the present authors31 proposed to cal-
culate the basis-set correction to coupled-cluster dipole mo-
ments through numerical energy derivative of the non-self-
consistent basis-set correction functional evaluated at the HF
density. �e results showed that the accuracy is similar to
that obtained with the self-consistent approach. Such a find-
ing supports the idea that using the self-consistently opti-
mised density in the presence of the basis-set correction is
o�en not mandatory and that one can simply use the HF den-
sity in the basis-set correction functional in many cases.

In the present work, for calculating excitation energies, we
propose to use a simple linear-response variant of the DBBSC
method which consists in several approximations: i) neglect-
ing the second-order derivative of the basis-set correction
functional, ii) approximating the density at the HF level, iii)
using the simplest (semi)local basis-set correction function-
als, iv) approximating full-configuration-interaction (FCI) ex-
citation energies at the EOM-CCSD level. �e paper is organ-
ised as follows. In Sec. II we present the theory: a summary
of the main equations of the ground-state DBBSC method is
provided in Sec. II A, then the approximate linear-response
theory is presented in Sec. II B, and eventually its application

to the EOM-CCSD method is sketched out in Sec. II C. Nu-
merical results are presented and discussed in Sec. III for a
set of 30 excitation energies in the NH3, H2O, CO, N2 and
N2CH2 molecules comprising Rydberg and valence excited
states with singlet and triplet symmetry. Finally, Sec. IV con-
tains our conclusions.

II. THEORY

A. Ground-state DBBSC method

As introduced in Ref. 21, in the DBBSC method, one de-
fines an approximation to the ground-state energy EB

0 for a
given basis set B by restricting the DFT ground-state energy
minimization to B-representable densities nB (i.e. densities
that can be obtained from a wave function ΨB in the many-
electron Hilbert space HB generated by the basis set B)

EB
0 = min

nB

(

F[nB ] +
∫

dr vne(r)n(r)

)

, (1)

where F[n] = minΨ→n〈Ψ|T̂ + Ŵee|Ψ〉 is the usual Levy-

Lieb universal density functional. Here, T̂ and Ŵee are
the kinetic-energy and Coulomb electron-electron operators,
and vne is the nuclei-electron potential. As the basis-set re-
striction in Eq. (1) is only on the density and not on the wave
function, the energy EB

0 is a much be�er approximation to
the exact ground-state energy E0 than the ground-state FCI
energy EB

FCI in the same basis set B. One can in fact rewrite

Eq. (1) in terms of a minimization over wave functions ΨB

restricted to the Hilbert space HB

EB
0 = min

ΨB

(

〈ΨB|Ĥ|ΨB〉+ ĒB [nΨB ]
)

, (2)

where Ĥ = T̂ + Ŵee + V̂ne is the total Hamiltonian, includ-
ing the nuclei-electron operator V̂ne =

∫

dr vne(r)n̂(r) ex-

pressed with the density operator n̂(r), and ĒB[nΨB ] is the
basis-set correction density functional evaluated at the den-
sity of ΨB . For a B-representable density nB , this functional
is defined as

ĒB [nB ] = min
Ψ→nB

〈Ψ|T̂ + Ŵee|Ψ〉

− min
ΨB→nB

〈ΨB|T̂ + Ŵee|ΨB〉, (3)

and corrects for the error due to the basis-set restriction on
the wave functions ΨB . A minimizing wave function ΨB

0 in
Eq. (2) satisfies the following self-consistent Schrödinger-like
equation

P̂B ˆ̄HB[nΨB
0
]|ΨB

0 〉 = EB
0 |ΨB

0 〉, (4)

where EB
0 is the Lagrange multiplier imposing the normaliza-

tion condition of thewave function, P̂B is the projector on the

Hilbert spaceHB , and ˆ̄HB [n] is an effective Hamiltonian,

ˆ̄HB [n] = Ĥ + ˆ̄VB [n], (5)
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where ˆ̄VB [n] is the basis-set correction potential operator
generated by the derivative of the basis-set correction func-
tional

ˆ̄VB [n] =
∫

dr
δĒB [n]
δn(r)

n̂(r), (6)

which corresponds to a one-electron potential.
Instead of performing the minimization in Eq. (2), one can

use a non-self-consistent approximation21,25

EB
0 ≈ EB

X + ĒB[nB
Y ], (7)

where EB
X is an approximation of the FCI energy in the ba-

sis set B calculated with a method X and nB
Y is the density

calculated with a method Y with the same basis set B . �is
non-self-consistent variant was successfully applied in Refs.
25 and 31 using coupled cluster singles doubles and pertur-
bative triples [CCSD(T)] for method X and HF for method
Y to compute ground-state atomization energies and dipole
moments. A detailed study was carried out in Ref. 30 where
it was shown that the non-self-consistent approximation was
good enough to calculate the energy.
Unlike the Levy-Lieb density functional, the basis-set cor-

rection functional ĒB [n] is no longer universal as it depends
explicitly on the basis set B, which is in practice system-
dependent. Nevertheless, as most of the basis-set incomplete-
ness consists in missing correlation effects occurring at short
interelectronic distances (i.e. in the vicinity of the univer-
sal electron-electron cusp), one can expect to find generic
approximations for ĒB [n]. As originally proposed in Ref.

21, the basis-set correction functional ĒB [n] can be approx-
imated by the short-range (sr) multideterminant (md) corre-
lation functional from RSDFT23,24 evaluated with a basis-set
dependent and local range-separation parameter µB(r). A
semilocal version of it which is appropriate for weakly corre-
lated systems is25

ĒB[n] ≈
∫

dr esrc,md(n(r),∇n(r), µB(r)), (8)

where ∇n is the density gradient and esrc,md(n,∇n, µ) is the
following correlation energy density

esrc,md(n,∇n, µ) =
ec(n,∇n)

1 + β(n,∇n)µ3
, (9)

with

β(n,∇n) =
3

2
√

π(1 −
√

2)

ec(n,∇n)

nUEG
2

(n)
, (10)

where ec(n,∇n) can be any approximate Kohn-Sham
(semi)local correlation energy density, and nUEG

2 (n) =

n2g0(n) is the on-top pair density of the uniform electron gas
(UEG)36 wri�en in terms of the UEG on-top pair-distribution
function g0(n) as parametrised in Eq. (46) of Ref. 37. �e
function esrc,md(n,∇n, µ) is designed such that it interpolates

between the exact large-µ behavior22,37,38 in 1/µ3 and the

Kohn-Sham correlation energy density ec(n,∇n) at µ = 0.
In the present work, we use two different approximations
for the correlation functional ec(n,∇n): the local-density ap-
proximation (LDA)39 and the Perdew-Burke-Ernzerhof (PBE)
approximation40.
Although in its most general form µB(r) depends on a cor-

related wave function ΨB
loc used to localise the Coulomb two-

electron interaction projected in the basis set21 , it was shown
in a series of studies21,25,29–33 that simply using the HF wave
function (i.e. ΨB

loc = ΦB
HF) is enough to obtain reliable results

for weakly correlated systems. Also, as in most cases wave-
function calculations are performedwith the frozen-core (FC)
approximation, a corresponding FC version for the calcula-
tion of µB(r) was introduced in Ref. 25. �e use of the FC
version with the HF wave function leads to the following ex-
pression for µB(r)

µB(r) =
√

π

2

fBHF(r)
nB

2,HF(r)
, (11)

with the function

fBHF(r) = 2 ∑
p,q∈all

∑
i,j∈act

φp(r)φq(r)φi(r)φj(r)V
ij
pq, (12)

and the HF on-top pair density

nB
2,HF(r) = 2 ∑

i,j∈act

(

φi(r)φj(r)
)2

, (13)

where {φp} are the (real-valued) spatial HF orbitals, V
ij
pq =

〈pq|ij〉 are the usual two-electron Coulomb integrals, and
p, q run over all (occupied+virtual) HF spatial orbitals in the
basis set B and i, j run over only the active (i.e. non-core oc-
cupied) spatial HF orbitals. Correspondingly, with the FC ap-
proximation, the basis-set correction functional is evaluated
at the active HF density (removing the contribution from the
core orbitals)

nB
HF(r) = 2 ∑

i∈act
φi(r)

2. (14)

As shown in Ref. 21, this local range-separation parameter
µB(r) automatically adapts to the basis set and tends to in-
finity in the complete-basis-set (CBS) limit. �is makes the
basis-set correction functional ĒB [n] in Eq. (8) correctly van-
ish in the CBS limit.

B. Approximate linear-response DBBSC method

�e extension to linear-response theory of the DBBSC
method was recently proposed by the present authors in Ref.
35 when using a FCI wave function.
In this case, the (normalised) ground-state wave function

ΨB
0 satisfying Eq. (4) is expanded in terms of N orthonormal

Slater determinants {Φi}1≤i≤N spanning the Hilbert space

HB

|ΨB
0 〉 =

N

∑
i=1

c0,i|Φi〉, (15)
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and the (real-valued) coefficients {c0,i} satisfy the stationary
equation, for 1 ≤ i ≤ N,

〈Ψ̄i| ˆ̄HB [n
ΨB

0
]|ΨB

0 〉 = 0, (16)

where Ψ̄i are the wave-function derivatives

|Ψ̄i〉 = |Φi〉 − c0,i|ΨB
0 〉, (17)

which are orthogonal to ΨB
0 , i.e. 〈Ψ̄i|ΨB

0 〉 = 0.
In the linear-response equations of Ref. 35, if we neglect

the kernel contribution coming from the second-order deriva-
tive of the basis-set correction functional ĒB [n], we obtain
the following approximate linear-response equations

Ā Xn = ωB
n S̄ Xn, (18)

where Xn are eigenvectors, ωB
n are the eigenvalues corre-

sponding to excitation energies (1 ≤ n ≤ N − 1), and the
matrix elements of Ā and S̄ are, for 2 ≤ i, j ≤ N,

Āij = 〈Ψ̄i| ˆ̄HB [nΨB
0
]− EB

0 |Ψ̄j〉, (19)

and

S̄ij = 〈Ψ̄i|Ψ̄j〉 = δij − c0,ic0,j. (20)

To avoid the parameter redundancy due to the normaliza-
tion constraint on the wave function, the first wave-function
derivative |Ψ̄1〉 = |Φ1〉 − c0,1|ΨB

0 〉, involving the HF Slater

determinant Φ1 ≡ ΦB
HF, has been dropped in the linear-

response equations. �us, it remains only N − 1 equa-
tions. �ese approximate linear-response equations are in
fact completely equivalent to the FCI equations for the effec-

tive Hamiltonian ˆ̄HB [n
ΨB

0
]. To see this, we begin by rewrit-

ing Eq. (18) as

H̄ Xn = EB
n S̄ Xn, (21)

where H̄ij = 〈Ψ̄i| ˆ̄HB [n
ΨB

0
]|Ψ̄j〉 and EB

n = EB
0 + ωB

n are

the excited-state total energies. Clearly, Eq. (21) is the eigen-

value equation for the Hamiltonian ˆ̄HB [nΨB
0
] in the non-

orthogonal basis {Ψ̄i}2≤i≤N . We then add the ground-state

FCI wave function ΨB
0 to this basis, which, using the station-

ary equation of Eq. (16), leads to the following N × N eigen-
value equation, for 0 ≤ n ≤ N − 1,

(

EB
0 0

0 H̄

)(

δ0n

Xn

)

= EB
n

(

1 0

0 S̄

)(

δ0n

Xn

)

, (22)

and the FCI ground state is recovered for n = 0 with
X0 = 0. Equation (22) is thus the eigenvalue equation

for the Hamiltonian ˆ̄HB [nΨB
0
] in the non-orthogonal basis

{ΨB
0 } ∪ {Ψ̄i}2≤i≤N. If we rewrite this eigenvalue equa-

tion in the orthonormal basis of the N Slater determinants
{Φi}1≤i≤N, we recover a standard FCI eigenvalue equation

for the effective Hamiltonian ˆ̄HB [n
ΨB

0
]

Hcn = EB
n cn, (23)

with Hij = 〈Φi| ˆ̄HB [n
ΨB

0
]|Φj〉 and cn are the eigenvectors.

Equivalently, this eigenvalue equation can be wri�en as

P̂B ˆ̄HB[nΨB
0
]|ΨB

n 〉 = EB
n |ΨB

n 〉, (24)

and the excited-state wave functions are

|ΨB
n 〉 =

N

∑
i=1

cn,i|Φi〉. (25)

�erefore, in the linear-response DBBSC method, when
neglecting the kernel coming from the second-order deriva-
tive of the basis-set correction functional, the excitation en-
ergies ωB

n can be obtained directly by solving the FCI eigen-

value equation with the effective Hamiltonian ˆ̄HB [nΨB
0
] =

Ĥ + ˆ̄VB [n
ΨB

0
] containing the basis-set correction potential

operator ˆ̄VB [n
ΨB

0
].

C. Application to the EOM-CCSD method

Although Eq. (24) can a priori be solved using any wave-
function method targeting excited states, the fact that the
basis-set correction potential must be evaluated at the den-
sity of the ground-state wave function ΨB

0 is not convenient.
Indeed, it requires to perform a self-consistent ground-state
calculation for obtaining ΨB

0 . Nevertheless, as shown in pre-

vious works21,25,29,31, good results can be obtained when the
density nΨB

0
is approximated by the HF density nB

HF. �ere-

fore, we use here the following approximation

ˆ̄HB [n
ΨB

0
] ≈ ˆ̄HB [nB

HF] ≡ ˆ̄HB , (26)

where we have dropped the explicit dependence on nB
HF in

the Hamiltonian for the sake of simplicity.
We then approximately solve Eq. (24), with the approxi-

mation of Eq. (26), using the EOM-CCSD method (see, e.g.,
Ref. 20) as follows. First, the ground-state wave function
is approximated as a coupled-cluster singles doubles (CCSD)
ansatz

|ΨB
0 〉 = eT̂ |ΦB

HF〉, (27)

with T̂ = T̂1 + T̂2 where T̂1 and T̂2 are the usual single and
double excitation operators in the basis set B. �e single-
and double-excitation amplitudes are determined from the
ground-state CCSD amplitude equations using the Hamilto-

nian ˆ̄HB

〈Φµ|e−T̂ ˆ̄HBeT̂ |ΦB
HF〉 = 0, (28)

for all singly and doubly excited Slater determinants Φµ with

respect to ΦB
HF (which we will denote by µ ∈ SD). Note of

course that the optimal single- and double-excitation ampli-
tudes are not the same as in standard CCSD since we use the
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TABLE I. NH3 molecule: Standard EOM-CCSD and basis-set corrected EOM-CCSD-LDA and EOM-CCSD-PBE excitation energies (eV) with
the AVXZ basis sets (with X = D,T,Q, 5). �e le�er “R” indicates the Rydberg nature of the excited states. �eMAD reportedwas calculated
with all the excitation energies except for the 1A1 and 3A1 excited states for which convergence is not yet reached with the AV5Z basis set.

EOM-CCSD EOM-CCSD-LDA EOM-CCSD-PBE
AVDZ AVTZ AVQZ AV5Z AVDZ AVTZ AVDZ AVTZ

1A2 (R) 6.45 6.60 6.65 6.67 6.59 6.65 6.58 6.65
1E (R) 8.02 8.15 8.19 8.20 8.16 8.20 8.15 8.20
1A1 (R) 9.65 9.33 9.13 8.93 9.77 9.39 9.77 9.39
3A2 (R) 6.15 6.30 6.35 6.37 6.28 6.35 6.28 6.35
3E (R) 7.89 8.02 8.07 8.08 8.02 8.08 8.02 8.08
3A1 (R) 8.45 8.70 8.60 8.48 8.98 8.76 8.98 8.76
MAD(R) 0.20 0.06 0.01 - 0.07 0.01 0.07 0.01

TABLE II. H2Omolecule: Standard EOM-CCSD and basis-set corrected EOM-CCSD-LDA and EOM-CCSD-PBE excitation energies (eV) with
the AVXZ basis sets (with X = D,T,Q, 5). �e le�er “R” indicates the Rydberg nature of the excited states. �eMAD for all the six excitation
energies is reported.

EOM-CCSD EOM-CCSD-LDA EOM-CCSD-PBE
AVDZ AVTZ AVQZ AV5Z AVDZ AVTZ AVDZ AVTZ

1B1 (R) 7.45 7.60 7.66 7.68 7.63 7.67 7.62 7.67
1A2 (R) 9.21 9.36 9.42 9.44 9.40 9.44 9.39 9.44
1A1 (R) 9.86 9.96 10.00 10.01 10.02 10.02 10.02 10.02
3B1 (R) 7.04 7.20 7.28 7.30 7.22 7.28 7.21 7.27
3A2 (R) 9.05 9.20 9.26 9.28 9.23 9.27 9.21 9.27
3A1 (R) 9.39 9.49 9.54 9.56 9.55 9.55 9.54 9.55
MAD(R) 0.21 0.08 0.02 - 0.04 0.01 0.05 0.01

effective Hamiltonian ˆ̄HB . �e corresponding ground-state
CCSD energy eigenvalue is

EB
0 = 〈ΦB

HF|e−T̂ ˆ̄HBeT̂ |ΦB
HF〉. (29)

�en, we solve the EOM-CCSD equations with the fixed

similarity-transformed Hamiltonian e−T̂ ˆ̄HBeT̂

〈Φµ|e−T̂( ˆ̄HB − EB
0 )eT̂|ΨB

n 〉 = ωB
n 〈Φµ|ΨB

n 〉, (30)

where ωB
n are the excitation energies (n ≥ 1) and the excited-

state wave functions are expanded on all single and double
excitations

|ΨB
n 〉 = ∑

µ∈SD
cn,µ|Φµ〉. (31)

In practice, the only change to make in the standard EOM-
CCSD algorithm is thus to replace the usual one-electron in-
tegrals hpq = 〈φp|T̂ + V̂ne|φq〉 by

hpq → hpq + v̄Bpq, (32)

where v̄Bpq = 〈φp| ˆ̄VB [nB
HF]|φq〉 are the integrals of the basis-

set correction potential. Consistently with the FC approxi-
mation, the one-electron integral v̄Bpq is set to zero if p or q
refers to a core orbital.

III. NUMERICAL RESULTS

A. Computational details

We computed systematically the first three excited states
of both singlet and triplet spin symmetry of the NH3, H2O,
CO, N2, and N2CH2 molecules whose geometries have been
taken from Ref. 41. �is constitutes a set of 30 excited states
among which 14 have a Rydberg character and 16 have a va-
lence character (according to the classification reported in
previous works20,41).
Standard EOM-CCSD calculations (i.e. using the stan-

dard Hamiltonian) have been performed with the Gaussian-
16 so�ware42 with the aug-cc-pVXZ (X = D,T,Q, 5) basis
sets43 , abbreviated as AVXZ, except for the N2CH2 molecule
with the AV5Z basis set for which the PySCF so�ware44 was
used. �e EOM-CCSD calculations using the effective Hamil-

tonian ˆ̄HB have been performed using the PySCF so�ware44

by reading the one- and two-electron integrals defining the

Hamiltonian ˆ̄HB from a FCIDUMP format for the AVDZ and
AVTZ basis sets. Limitations of the FCIDUMP format pre-
vented us to perform calculations in larger basis sets, but
we believe that the results presented here are sufficient to
discuss the main trends. �e one-electron integrals, includ-
ing the basis-set correction potential integrals v̄Bpq [Eq. (32)],

and the two-electron integrals have been computed with the
�antum Package so�ware45 . �e integrals v̄Bpq have been

computed using a standard Becke-type46 spatial grid with 75
radial points and 302 Lebedev angular points. All calculations
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TABLE III. CO molecule: Standard EOM-CCSD and basis-set corrected EOM-CCSD-LDA and EOM-CCSD-PBE excitation energies (eV) with
the AVXZ basis sets (with X = D,T,Q, 5). �e le�er “V” indicates the valence nature of the excited states. �eMAD for all the six excitation
energies is reported.

EOM-CCSD EOM-CCSD-LDA EOM-CCSD-PBE
AVDZ AVTZ AVQZ AV5Z AVDZ AVTZ AVDZ AVTZ

1Π (V) 8.67 8.59 8.57 8.57 8.76 8.63 8.74 8.62
1Σ (V) 10.10 9.99 9.99 10.00 10.15 10.01 10.15 10.01
1∆ (V) 10.21 10.12 10.13 10.13 10.26 10.15 10.26 10.14
3Π (V) 6.38 6.36 6.36 6.36 6.43 6.38 6.41 6.38
3Σ (V) 8.34 8.34 8.37 8.39 8.39 8.37 8.39 8.37
3∆ (V) 9.29 9.24 9.24 9.25 9.35 9.25 9.35 9.26
MAD(V) 0.06 0.02 0.01 0.11 0.02 0.10 0.02

TABLE IV. N2 molecule: Standard EOM-CCSD and basis-set corrected EOM-CCSD-LDA and EOM-CCSD-PBE excitation energies (eV) with
the AVXZ basis sets (with X = D,T,Q, 5). �e le�er “V” indicates the valence nature of the excited states. �eMAD for all the six excitation
energies is reported.

EOM-CCSD EOM-CCSD-LDA EOM-CCSD-PBE
AVDZ AVTZ AVQZ AV5Z AVDZ AVTZ AVDZ AVTZ

1Πg (V) 9.50 9.41 9.40 9.40 9.60 9.45 9.57 9.45
1Σu (V) 10.20 10.00 9.98 9.98 10.24 10.01 10.24 10.01
1∆u (V) 10.61 10.44 10.42 10.42 10.66 10.46 10.66 10.46
3Σu (V) 7.69 7.66 7.69 7.69 7.71 7.67 7.71 7.67
3Πg (V) 8.12 8.09 8.10 8.10 8.20 8.13 8.18 8.13
3∆u (V) 9.04 8.91 8.91 8.91 9.07 8.92 9.07 8.92
MAD(V) 0.11 0.01 0.00 - 0.16 0.03 0.15 0.03

have been performed within the FC approximation, both for
the EOM-CCSD part and the computation of all quantities
related to the basis-set correction [see Eqs. (11)-(14)]. �e
EOM-CCSD calculations using either the LDA and PBE ver-
sions of the basis-set correction functional [see Eqs. (9) and
(10)] will be referred to as EOM-CCSD-LDA and EOM-CCSD-
PBE, respectively.

B. Results and discussion

We report the EOM-CCSD, EOM-CCSD-LDA, and EOM-
CCSD-PBE excitation energies for the NH3, H2O, CO,N2, and
N2CH2 molecules in Tables I, II, III, IV, and V, respectively.
We can notice that, except for the 1A1 and 3A1 states of the
NH3 molecule, all standard EOM-CCSD excitation energies
computed with the AV5Z basis set can be considered as con-
verged with respect to the basis set within less than 0.02 eV.
For each system and each excited state, we will therefore use
the EOM-CCSD excitation energies computed with the AV5Z
basis set as our estimate for the CBS limit. For each system
we also report the mean absolute deviation (MAD) with re-
spect to the reference AV5Z basis set calculation, and when
possible we also report the MAD computed with only Ryd-
berg excited states [MAD(R)] or only valence excited states
[MAD(V)] in order to differentiate these two types of excita-
tion energies. We also report in Table VI the MAD computed
over the whole set of 28 converged excitation energies, to-
gether with MAD(R) and MAD(V) obtained with the 12 and
16 converged Rydberg and valence excitation energies, re-

spectively.
A detailed look at all the tables reveals two interesting

general trends: i) except for the 3Σ valence state of the CO
molecule and for the two unconverged 1A1 and

3A1 Rydberg
states of the NH3 molecule, all the excitation energies corre-
sponding to Rydberg states increase when the size of the ba-
sis set is increased while the excitation energies correspond-
ing valence excited states tend to be stable or decrease with
the basis set, and ii) the basis-set error in the excitation en-
ergies of the Rydberg excited states is much larger than that
of the valence excited states. �antitatively, for the Rydberg
excited states, the overall MAD is 0.21 eV, 0.07 eV, and 0.02 eV
for standard EOM-CCSD with the AVDZ, AVTZ, and AVQZ
basis sets, while for the valence excited states it is 0.07 eV,
0.01 eV, and 0.01 eV with the same basis sets. A qualitative
explanation of this observation could be that, in a Rydberg
excited state, one electron is in a diffuse orbital relatively
far from the bulk of the electronic density of the molecule,
and therefore the correlation effects of this electron are much
smaller than in the ground state, leading, in a small basis set,
to a description biased toward the excited state and therefore
a too small excitation energy. By contrast, in a valence ex-
cited state, the excited electron remains in a valence orbital
and is much closer to the bulk of the electronic density, and
therefore the correlation effects are much more comparable
to those of the ground state, leading to a much smaller basis-
set error. We therefore conclude from this part of the study
that the main source of basis-set error for the description of
a set of excited states come from the Rydberg excited states.
Moving now to the our EOM-CCSD-LDA and EOM-CCSD-
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TABLE V. N2CH2 molecule: Standard EOM-CCSD and basis-set corrected EOM-CCSD-LDA and EOM-CCSD-PBE excitation energies (eV)
with the AVXZ basis sets (with X = D,T,Q, 5). �e le�er “R” or “V” indicates the Rydberg or valence nature of the excited states. �e MAD
for all the six excitation energies is reported, together with the MAD calculated with the two Rydberg excited states and the MAD calculated
with the four valence excited states.

EOM-CCSD EOM-CCSD-LDA EOM-CCSD-PBE
AVDZ AVTZ AVQZ AV5Z AVDZ AVTZ AVDZ AVTZ

1A2 (V) 3.23 3.19 3.19 3.20 3.26 3.20 3.25 3.20
1B1 (R) 5.43 5.57 5.62 5.65 5.58 5.63 5.58 5.63
1A1 (V) 5.90 5.94 5.96 5.97 5.99 5.98 5.99 5.98
3A2 (V) 2.90 2.88 2.88 2.90 2.94 2.89 2.93 2.89
3B1 (V) 3.99 3.95 3.95 3.95 3.99 3.95 3.98 3.94
3A1 (R) 5.26 5.42 5.46 5.50 5.41 5.48 5.41 5.48
MAD 0.10 0.04 0.02 - 0.05 0.01 0.05 0.01

MAD(R) 0.23 0.08 0.04 - 0.08 0.02 0.08 0.02
MAD(V) 0.03 0.01 0.01 - 0.04 0.01 0.03 0.01

PBE calculations, we see that, with respect to the standard
EOM-CCSD calculations in a given basis set, the effect of the
basis-set correction potential is always to increase the excita-
tion energies. As the valence excitation energies tend to de-
crease with the basis set, our approach cannot improve these
excitation energies while it will improve the description of
the Rydberg excitation energies which tend to be underesti-
mated in a finite basis set. �e present test set consists of 12
Rydberg excited states and 16 excited valence states, and rep-
resents a relatively balanced selection between excitation en-
ergies that the basis-set correction method with the current
approximations can improve and excitation energies that it
will tend to deteriorate.

From a quantitative point of view, the EOM-CCSD-LDA
and EOM-CCSD-PBE approximations give very similar re-
sults with the AVDZ basis set (the larger difference of the
MAD is 0.01 eV) and essentially indistinguishable results with
the AVTZ basis set. We also notice that the MADs for the Ry-
dberg excitation energies is drastically reduced by the basis-
set correction potential. With the AVDZ basis set, the MADs
obtained with EOM-CCSD-PBE are 0.07 eV, 0.05 eV, and 0.08
eV for the NH3, H2O, and N2CH2 molecules, respectively,
smaller by at least a factor of two with respect to the MADs
obtained with the standard EOM-CCSD method, and thus
reaching an accuracy similar to standard EOM-CCSD with
the AVTZ basis set. With the AVTZ basis set, the MADs ob-
tained the basis-set corrected EOM-CCSDmethod for the Ry-
dberg excitation energies are 0.01 eV for both the NH3 and
H2O molecules, and 0.02 eV for the N2CH2 molecule, which
is as accurate as standard EOM-CCSD with the AVQZ basis
set for the NH3 molecule, and even more accurate in the case
of the H2O and N2CH2 molecules. We therefore conclude
that the addition of the basis-set correction potential drasti-
cally improves the basis-set convergence of the excitation en-
ergies for the Rydberg excited states at virtually no cost with
respect to standard EOM-CCSD calculations.

Turning now to the set of valence excited states, as antic-
ipated above, the basis-set correction potential overall dete-
riorates the accuracy of the excitation energies, but this de-
terioration becomes smaller as the basis-set size increases.
More quantitatively, the MADs obtained with EOM-CCSD-

TABLE VI. Total MAD calculated over the set of 28 excitation en-
ergies, together with the MADs calculated over the set of Ryd-
berg excited states [MAD(R)] and the set of valence excited states
[MAD(V)].

MAD MAD(R) MAD(V)

EOM-CCSD
AVDZ 0.14 0.21 0.07
AVTZ 0.04 0.07 0.01
AVQZ 0.01 0.02 0.01

EOM-CCSD-LDA
AVDZ 0.09 0.06 0.10
AVTZ 0.02 0.01 0.02

EOM-CCSD-PBE
AVDZ 0.08 0.07 0.09
AVTZ 0.02 0.01 0.02

PBE with the AVDZ basis set are 0.10 eV, 0.15 eV, and 0.03 eV
for the CO, N2, and N2CH2 molecules, respectively, which
are larger than the standard EOM-CCSD values by 0.04 eV
for the CO and N2 molecules, but identical for the N2CH2

molecule. With the AVTZ basis set, the MADs obtained with
EOM-CCSD-PBE decrease to 0.02 eV, 0.03 eV, and 0.01 eV, rep-
resenting an accuracy comparable to that of standard EOM-
CCSD with the same basis set.

IV. CONCLUSION

In the present workwe proposed and tested a novel scheme
based on the DBBSC method21 to improve the basis-set con-
vergence of the excitation energies in wave-function cal-
culations. �is is based on the recently introduced linear-
response theory35 for the DBBSC method which was only
tested on a one-dimensional model system. In order to treat
real molecular systems, we use basis-set correction density
functionals previously developed in the DBBSC method for
ground-state calculations, and we introduce a further approx-
imation in the response equations which consists in neglect-
ing the kernel contribution coming from the second-order
derivatives of the basis-set correction functional. �e advan-
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tage of the approximation is that the response equations can
be rewri�en as a usual FCI eigenvalue equation with an ad-
ditional one-electron potential coming from the first-order
derivative of the basis-set correction functional. �erefore,
by simply modifying the one-electron integrals in the Hamil-
tonian, this scheme can be applied to any wave-function
methods targeting excited states.
Applying this scheme to the EOM-CCSD method, we pre-

sented numerical tests performed on a set of 30 excitation
energies on the NH3, H2O, CO, N2, and N2CH2 molecules.
�e results were analysed based on a partition of the exci-
tation energies: the ones corresponding to Rydberg excited
states and the ones corresponding to valence excited states.
We found that the global basis-set error is dominated by the
Rydberg excited states, whose excitation energies tend to in-
crease when the size of the basis set is increased, while the
valence excitation energies tend to be much less sensible to
basis set and overall tend to decrease with the basis set. �e
increase of the excitation energy with the basis set for a Ryd-
berg excited state can be qualitatively understood by the fact
that the excited electron is relatively far from the molecule
and is therefore much less correlated than in the ground state,
which leads to a biased description in favour of the excited
state in small basis sets. By contrast, in a valence excited
state, the excited electron remains in the valence region and
its correlation effects are much more comparable to that of
the ground state, leading to a much smaller sensitivity to fi-
nite basis-set effects. We found that the present basis-set cor-
rected EOM-CCSD method always increases the excitation
energies, and therefore it tends to improve Rydberg excita-
tion energies while it tends to deteriorate the valence excita-
tion energies. Indeed, with the AVTZ basis set, the DBBSC
scheme reduces the MAD on the Rydberg excitation energies
obtained with standard EOM-CCSD from 0.07 eV to 0.01 eV,
which is a large improvement. With the same AVTZ basis set,
the DBBSC scheme increases the MAD on the valence excita-
tion energies from 0.01 eV to 0.02 eV, which still represents a
reasonable accuracy.
We therefore conclude that the present basis-set corrected

EOM-CCSD method allows one to overall reduce the basis-
set error for the computation of excitation energies, at virtu-
ally no additional cost with respect to standard EOM-CCSD
calculations. In forthcoming works, we will investigate the
impact of taking into account the basis-set correction kernel,
together with the dependency on the density used.
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