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Enhanced network compression through tensor
decompositions and pruning

Van Tien Pham, Yassine Zniyed, Thanh Phuong Nguyen

Abstract—Network compression techniques that combine ten-
sor decompositions and pruning have shown promise in leverag-
ing the advantages of both strategies. In this work, we propose
NORTON (enhanced Network cOmpRession through TensOr
decompositions and pruNing), a novel method for network
compression. NORTON introduces the concept of filter decom-
position, enabling a more detailed decomposition of the network
while preserving the weight’s multidimensional properties. Our
method incorporates a novel structured pruning approach, ef-
fectively integrating the decomposed model. Through extensive
experiments on various architectures, benchmark datasets, and
representative vision tasks, we demonstrate the usefulness of our
method. NORTON achieves superior results compared to state-
of-the-art techniques in terms of complexity and accuracy. Our
code is also available for research purposes.

Index Terms—tensor decompositions, structured pruning,
hybrid compression, efficient inference.

I. INTRODUCTION

NETWORK compression aims to reduce the computa-
tional and memory requirements of an existing model,

enabling its deployment in resource-constrained environments
without compromising its ability to generalize, i.e., perform
well on unseen data.

Among the existing paradigms for model compression,
tensor decompositions [1], [2] and structured pruning [3]
have demonstrated their effectiveness and practicality. Both
approaches are built upon the hypothesis that the original
model is over-parameterized, and thus, the redundant infor-
mation can be eliminated either by representing the weights
more efficiently using low-rank representations or by directly
removing a part of them through filter pruning. In addition
to their capabilities of high compression rate, these methods
share the advantage of enabling the deployment of compressed
models on resource-constrained devices without requiring any
specialized support. However, it is noteworthy that these two
approaches have mostly been developed independently in the
literature, with few efforts [4], [5] to explore their combined
potential and leverage their individual strengths in an orthogo-
nal manner. This highlights the need for an integrated approach
that harnesses the benefits of both tensor decompositions and
structured pruning.

The motivation for combining tensor decompositions and
structured pruning arises from the observation that the weights
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Fig. 1: Comparison of tensor decompositions approaches.

of CNNs possess both low-rank and sparse properties, as
demonstrated in prior works [6]–[8]. These attributes are
considered partially complementary [7]. Decomposition ap-
proaches are not designed to eliminate all redundant channels
[8], while pruning approaches typically focus on removing
redundant elements but may overlook the low-rank structure
within the retained weights post-pruning. The natural inclina-
tion, therefore, is to integrate these two compression strategies
to push the limits of network compression [6]. For instance,
considering the VGG-16 architecture, RGP [9], a state-of-the-
art (SOTA) filter pruning method, achieved a maximal pruning
of 90.5% of MACs, while HALOC [10], representing SOTA
in tensor decompositions, compressed a maximum of 86%
of MACs. In other words, no reported work has effectively
compressed more than 91% of MACs for this architecture.
In contrast, by combining the two approaches, NORTON
achieves a simultaneous compression of 99% of MACs and
parameters with a modest drop, as depicted in Fig. 2. Specif-
ically, applying only the decomposition part in NORTON can
compress up to 88% of MACs (with the minimum rank 1, see
Tab. VI). Conversely, applying only the pruning part, with a
pruning ratio of around 90%, results in a significant accuracy
drop, and the pruned model fails to recover the accuracy.
However, by combining these two approaches, with rank 1 and
a pruning ratio of 80%, NORTON achieves a 99% compression
rate, evidently pushing the boundaries of network compres-
sion. Our work acknowledges a similar approach observed in
image compression, akin to the widely used JPEG algorithm
[11], where a combination of techniques enhances overall
compression efficiency. Importantly, NORTON is not merely

https://github.com/pvtien96/NORTON
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a mechanical combination of these two approaches; it also
capitalizes on their intrinsic advantages. It is noteworthy that in
our approach, both stages share a common representation—the
factor matrices—which are concurrently employed for both the
decomposition and pruning phases.

Considering tensor decompositions, the typical pattern in-
volves selecting a decomposition method and determining the
rank for the weight tensor of the original layer. The decom-
position is then applied to obtain a low-rank representation,
which is used to construct the weights of the new layer.
Previous works in the literature have primarily focused on the
decomposition method [1], [2], [12], [13] and rank selection
[14]–[17]. However, an unexplored aspect in the existing
literature revolves around the decomposition of the weight
tensor itself. Prior studies have predominantly focused on
decomposing the entire layer as a 4-order tensor or reshaping
it into a 3-order tensor before performing the decomposition.
However, there is limited discussion on determining the most
effective approach for decomposing the weight tensor. This
aspect warrants further investigation to enhance and optimize
network compression techniques.

The weight of a convolution layer is a 4-order tensor, which
can be processed in different formats, each yielding distinct
consequences. In Fig. 1, we illustrate three possible methods
for handling this weight tensor, including layer decomposition
[1], [12], [13] and reshaped-based decomposition [2], [17]–
[20], while the proposed approach is referred to as filters
decomposition. As a representative example, we consider the
Canonical Polyadic decomposition (CPD) [21] to compare the
differences among these approaches. The approach presented
by [1] involves decomposing the entire layer, resulting in 4
factor matrices that correspond to 4 sublayers. Although this
method preserves the multidimensional nature of the weight
tensor, it processes the tensor at a coarse level. This opens up
the potential for a more fine-grained treatment. In contrast, in
[2] the authors suggested reshaping the 4-order weight tensor
into a 3-order tensor, followed by CPD to obtain 3 factor
matrices and 3 sublayers. The authors argued that the kernel
size is relatively small so they can be ignored. However, this
resizing process compromises the multidimensionality of the
weight tensor, resulting in information loss during approxima-
tion. Moreover, this argument does not seem reasonable with
recent modern architectures where the kernel size increases
significantly [22].

Our proposed method operates on the original weight tensor
in a filter-by-filter manner. The key insight lies in the fact
that in a convolution layer, the input undergoes convolu-
tion separately with each filter, and the outputs are then
aggregated to generate the final feature map. Therefore, it is
intuitive to decompose each 3-order filter tensor individually.
The filters decomposition approach offers a higher level of
granularity compared to its counterpart, layer decomposition.
With filters decomposition, not only the multidimensional
property is strictly preserved, but also the layer’s 4-order
weight is spontaneously interpreted as a set of 3-order filters.
Additionally, an interesting side effect of filters decompo-
sition is that it leads to a narrower range of ranks, which
simplifies the rank selection process, as demonstrated later
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Fig. 2: The accuracy-MACs reduction Pareto curves of com-
pressed VGG-16 models are compared on CIFAR-10.

in subsection III-B. Another notable difference is that filters
decomposition replaces the original layer with 3 sublayers,
while layer decomposition requires 4 sublayers, potentially
increasing network depth unnecessarily and introducing the
possibility of gradient vanishing issues. It is worth mentioning
that the distinction between layer decomposition and filters
decomposition aligns with a similar categorization seen in
network pruning, specifically filter pruning [3] and weight
pruning [23], emphasizing the fine-grained granularity aspect.

The second consideration of this work is to combine filters
decomposition and filter pruning to leverage the independent
advantages of each method. While previous studies [4], [8],
[24], [25] have used low-rank representations and network
pruning for compression purposes, they have not explored an
orthogonal combination of these techniques. In these works,
low-rank representations have been used only in the pruning
step without directly contributing to the reduction of model
size. In contrast, our approach takes a different direction by
sequentially applying low-rank representations and pruning in
two separate phases, enabling a dual compression process.
To the best of our knowledge, this direction has not been
extensively investigated in the literature.

There are two possible arrangements for combination:
decomposing then pruning, and pruning then decomposing.
Previous works [4], [5] have adopted the pruning then de-
composing scheme, utilizing a Taylor expansion-based pruning
criterion [3] and Tucker decomposition (TD) [21]. However,
this work [4] lacks comprehensive analysis and experiments,
leaving room for further investigation. To address this gap, our
study explores the decomposing then pruning scheme, where
the model is first decomposed using CPD and then subjected to
filter pruning, as illustrated in Fig. 3. We argue that this order
presents greater challenges compared to its counterpart, as
the model’s architecture becomes more complex after decom-
position, with certain constraints imposed on the sublayers.
To adapt to the decomposed components, we propose to use
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the Principal Angles Between Subspaces (PABS) [35] as a
suitable filter pruning metric which will be further discussed
in subsection III-C.

Briefly, the contributions of this work are three-fold:
• Firstly, we introduce a novel filters decomposition

method, promoting its differentiation with existing layer
decomposition and reshaped decomposition methods.

• Secondly, we investigate the sequential combination of
filters decomposition and filter pruning. We propose a
novel filter pruning algorithm designed to address the
challenges associated with this integration scheme.

• Thirdly, we evaluate the proposed framework on rep-
resentative vision tasks including image classification,
object detection, instance segmentation, and keypoint
detection. We compare NORTON with SOTA methods
in both low-rank representations and structured pruning
domains to demonstrate the superiority of our method.
Notably, our model with different compression levels can
consistently outperform prior arts (see Fig. 2).

II. RELATED WORKS

A. Low-rank Representations

Existing works can be categorized into two branches: matrix
decompositions [15], [20], [36]–[40] and tensor decomposi-
tions [1], [2], [12], [13], [18], [19]. Matrix-based approaches
consider the weight of the fully connected layer [36] or the
convolution layer [15], [20], [37]–[40] as a 2-order matrix on
which the SVD is performed to obtain two smaller matrices.
A required step of this work line is that the 4-order weight
tensor is flattened into a 2-order matrix [20]. On the other
hand, tensor decompositions approaches [1], [2], [12], [13],
[18], [19] execute directly with higher-order weight tensor of
the convolution layer.

Based on the adopted decomposition, various factorizations
have been examined, such as SVD [17], [20], [36], CPD [1],
[41], TD [12], hierarchical TD (HTD) [13], tensor train (TT)
[42], tensor ring (TR) [43] or a mixture of them [2], [44].
The pioneering work [36] employed the truncated SVD to
approximate matrix weights of fully connected layers and
the monochromatic approximation to compress the two first
convolution layers. In the first work of layer decomposition
style [1], CPD was used to exploit the redundancy of the 4-
order weight tensor of convolution layers. However, this work
was restricted to compressing a single layer. The authors of
[12] applied TD along with the variational Bayesian matrix
factorization [16] for rank selection to make a one-shot whole
network compression. Similarly, the hierarchical TD was used
in [13] with an energy-based algorithm for rank selection.
Further, [2] combines CPD and TD to deal with the problem
of degeneracy (i.e., the difficulty of fine-tuning the factors).
TT and TR were used in [42], [43] to obtain the sparse
representation of the redundant weights. In their empirical
investigation of dimension balance preferences, the authors of
[44] proposed a hybrid consideration of TT for convolution
layers and HTD for fully connected layers.

B. Filter Pruning

The criterion to measure the importance of filters is the
foundation of filter pruning. Various approaches have been
proposed to tackle this problem and they can be roughly
categorized as follows: magnitude-based approaches [45]–
[47], correlation-based approaches [48], activation-based ap-
proaches [27], [32], [34], regularization [26], [49]–[51], op-
timization [3], [52]–[55], and neural architecture search [9],
[30], [56]. In [45], the L1 norm was used as a measure of
saliency, assuming that filters with smaller magnitudes are
less important. The authors of [32], [34] argued that the
activation maps represent both the structure and data so the
pruning criterion should be based on the feature map other
than the filters. Regularization was used for learning structured
sparse networks by applying different sparsity regularizers
to different parameters [49]–[51], [57]. The first-order infor-
mation of Taylor expansion is used to optimize the change
in the loss of channel pruning in [3]. From the perspective
of architecture search, [30] used reinforcement learning to
find optimal compact structures. However, some drawbacks
of these methods are the complex design, large search space,
and high computational resource requirement which may be
impractical for users.

C. Hybrid Approach

The notion of combining low-rank representations and
network pruning has been suggested but lacks in-depth ex-
ploration in the existing literature [4]–[8], [24], [58]. In a
previous work [8], a compressed-aware block was incorporated
to acquire a low-rank weight basis and sparse channels; how-
ever, this method is data-dependent, requiring an additional
training stage. Another approach [24] employed group sparsity
constraints on sparsity-inducing matrices after reshaping the
weight tensor to connect filter pruning and decomposition.
A collaborative compression scheme was introduced in [6]
to simultaneously learn model sparsity and low-rankness. In
contrast, NORTON takes a distinctive approach by address-
ing tensor decompositions and filter pruning in two sepa-
rate phases. This ensures that the advantages of both low-
rank structure and filter removal contribute synergistically to
the final compression by addressing sparse and redundant
structures. The most closely related work to ours is [4],
which employed Taylor pruning [3] and TD [12]. However,
NORTON introduces the novel concept of filter decomposition
and incorporates it with an adaptive filter pruning technique in
the inverse order, a more challenging but promising approach.
In contrast to [4], we provide comprehensive experiments and
analysis to shed light on this hybrid approach.

III. NORTON APPROACH

Fig. 3 illustrates the overall pipeline of our approach,
which comprises two main phases: decomposition and prun-
ing. Firstly, the original model is decomposed into CPDBlocks
(as explained in Subsection III-B). Next, the decomposed
CPDBlocks undergo the filter pruning algorithm (as described
in III-C). This algorithm selectively removes filters from the
CPDBlocks based on certain criteria, effectively reducing the
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model’s computational and memory requirements. Finally, a
fine-tuning process is conducted to refine the compact model.
Empirically, only one process of fine-tuning as presented in
our proposal is sufficient instead of considering it after every
phase of decomposition and pruning. This choice simplifies
the methodology, reduces computational requirements, and
maintains satisfactory performance. This scheme is applied
simultaneously to all convolution layers of the original model.
However, for the sake of simplicity, subsequent sections will
focus on discussing one layer, as shown in Fig. 4.

Conv 1 Conv 2 Conv N-1 Conv N...

CPDBlock 1 CPDBlock 2 CPDBlock N-1 CPDBlock N...

 Filter decomposition

Pruned
Block 1

Pruned
Block 2

Pruned
Block N-1

Pruned
Block N

...

 Filter pruning

Fine-tuning

Compact model

Original model

Fig. 3: Graphic illustration of the NORTON approach.

A. Preliminaries

This paper uses lower-case letters (e.g., a) to denote scalars,
bold lowercase letters (e.g., a) to represent vectors, bold
uppercase letters (e.g., A) to represent matrices, and bold
calligraphic letters (e.g., A) to denote tensors. A tensor is a
generalization of a matrix to a multi-way data array. A d-order
tensor is a multi-way data array A ∈ RI1×I2×···×Id , where In
is the size of mode n. ∥.∥F stands for the Frobenius norm.
We now introduce some definitions that will be useful in the
sequel.

Definition 1: A rank-1 d-order tensor A ∈ RI1×···×Id can
be expressed as a sequence of single outer product ◦ of d
vectors as:

A = u(1) ◦ · · · ◦ u(d), (1)

where u(n) ∈ RIn for n = 1, . . . , d. Each entry of A is given
by ai1...id =

∏d
n=1 u

(n)
in

, where u
(n)
in

is the in-th entry of the
In-length vector u(n).

Definition 2: The CP decomposition [21] expresses a tensor
A ∈ RI1×···×Id as the sum of multiple rank-1 tensors:

A =

R∑
j=1

u
(1)
j ◦ u(2)

j ◦ · · · ◦ u(d)
j . (2)

The minimal integer R that ensures equality is called the
canonical rank of A. An equivalent and compact represen-
tation of (2) is A = [[U(1), · · · ,U(d)]], where U

(n)
:,j = u

(n)
j

and is of size In × R. It is worth noting that CPD provides
a compact representation requiring only d · I · R parameters
instead of the exponential Id parameters in the full tensor
representation, significantly reducing the memory and compu-
tational requirements.

≈

...
...

≈

≈

...
...

≈

... ...

...
...

Fig. 4: The decomposition then pruning process for one layer.

Definition 3: For two linear subspaces U ,V ⊂ CI , the
smallest principal angle between them denoted by θ is defined
as [35]:

cos(θ) = max
u∈U ,v∈V

uHv

∥u∥2∥v∥2
. (3)

B. Filters Decomposition Using the CP Decomposition

Consider a convolutional layer with O filters of size Kh ×
Kw × I , where I represents the number of input channels,
and Kh and Kw represent the height and width of the kernel,
respectively. The weight tensor W can be represented as a
4-order tensor of size Kh ×Kw × I ×O. Alternatively, it can
be viewed as a set of O individual 3-order filters denoted as{
W1,W2, . . . ,WO

}
. It is worth noting that the k-th filter

can be obtained by extracting the sub-tensor W :,:,:,k, which is
equivalent to Wk. These weights map an input tensor I of size
Hin×Win×I into an output tensor O of size Hout×Wout×O,
where Hin, Win, Hout, and Wout are the height and width of
the input and output tensors, respectively. For simplicity, the
dimension of the batch is disregarded.

In convolutional neural networks, the mapping of the input
tensor I to the output tensor O is achieved through the con-
volution operation. This convolution is given by the following
expression:

Ok(i, j) =

Kh−1∑
m=0

Kw−1∑
n=0

I−1∑
p=0

I(i+m, j + n, p) ·Wk(m,n, p),

(4)
where, for 0 ≤ k ≤ O − 1, Ok = O:,:,k, and is of size
Hout ×Wout. Based on (4) and the CPD definition in (2), we
can apply the CPD to each individual filter Wk in order to
obtain a compact representation. By decomposing Wk using
CPD, we have

Wk(m,n, p) =

R−1∑
r=0

Ak(m, r) ·Bk(n, r) ·Ck(p, r), (5)

where Ak, Bk and Ck are 3 factor matrices of size Kh ×R,
Kw × R and I × R, respectively. The complexity of this
decomposition algorithm, using the alternating least squares
algorithm, is O

(
R2 · I ·max(Kh,Kw)

)
[21]. This approxi-

mation is graphically represented in the left half of Fig. 4.
By substituting (5) into (4), we obtain a new CPD-based

approach to compute the convolution. This approach involves
a sequence of mappings using the factor matrices instead of
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high-order tensors. The resulting equation for this CPD-based
convolution is:

Ok(i, j) =

Kh−1∑
m=0

Kw−1∑
n=0

I−1∑
p=0

R−1∑
r=0

I(i+m, j + n, p)·

Ak(m, r) ·Bk(n, r) ·Ck(p, r).

(6)

Starting from (6), we observe that the CPD-based convolution
involves element-wise multiplications between the input tensor
I and the factor matrices Ak, Bk, and Ck. It is important
to note that the order of the convolutions can be rearranged
without affecting the final result. This flexibility allows us to
describe the computation as a sequential block of convolutions
with smaller kernels, followed by a summation. First, the input
tensor I can be convolved with the kernel Ck along the input
channel dimension. The resulting tensor is then convolved
with the kernel Bk along the spatial dimensions. Finally,
the output of the second convolution is convolved with the
kernel Ak along the spatial dimensions. The outputs of these
convolutions are summed up to compute the final output tensor
Ok. The following set of equations captures these operations
in a concise manner:

OC
k (i+m, j+n, r) =

I−1∑
p=0

I(i+m, j+n, p) ·Ck(p, r), (7)

where OC
k is of size Hin ×Win ×R.

OB
k (i+m, j, r) =

Kw−1∑
n=0

OC
k (i+m, j+n, r) ·Bk(n, r), (8)

where OB
k is of size Hin ×Wout ×R.

OA
k (i, j, r) =

Kh−1∑
m=0

OB
k (i+m, j, r) ·Ak(m, r), (9)

where OA
k is of size Hout ×Wout ×R. Finally, we have

Ok(i, j) =

R−1∑
r=0

OA
k (i, j, r). (10)

One should note that equations (7), (8), and (9) can be seen
as convolutions and can be easily implemented using common
deep learning frameworks. Specifically, equation (7) can be
computed using a classical 2D convolution operation, while
equations (8) and (9) can be computed via group convolu-
tions. One can refer to Fig. 5, which illustrates the structure
of the CPDBlock. To ensure compatibility with classical
frameworks, certain basic preprocessing operations including
reshaping and mode permutations are required for adapting the
kernel. Specifically, for the O factors Ck of dimensions I×R,
they need to be reshaped into a kernel of size 1×1×I×(R·O).
This enables the application of a classical 2D convolution
for equation (7). Additionally, for the group convolutions in
equations (8) and (9), the kernels should be remodeled as
1×Kw×1×(R·O) and Kh×1×1×(R·O), respectively. These
modifications ensure the appropriate computation of OB and
OA. By performing these preprocessing steps, the CPD-based
convolutions can be seamlessly integrated into existing deep
learning frameworks. Note that in Fig. 5, the batch size B is

depicted, and the O tensors OC
k , OB

k , and OA
k are computed

in a single operation, resulting in the corresponding output
tensors OC, OB, and OA.
About rank and the compression. The choice of rank R in
CPD plays a crucial role in balancing model compression and
accuracy. Kruskal’s theory provides a weak upper bound on
the maximum rank [21], expressed as:

R ≤ min
{
I ·Kh, I ·Kw,Kh ·Kw

}
. (11)

This upper bound offers a guideline for selecting an appro-
priate rank, ensuring a reasonable trade-off between model
compression and preservation of critical features. By fixing a
rank R, the CPDBlock achieves a significant reduction in the
number of parameters compared to the original layer, which
consists of O ·I ·Kh ·Kw parameters. Through the CPD-based
approach, NORTON achieves a compact representation of the
filters, resulting in a reduced parameter count on the order of
O ·R · (I +Kh +Kw). The computational complexity of the
original layer is O (I ·O ·Kh ·Kw ·H ·W ). In contrast, the
three sub-layers exhibit complexities of O(I ·O ·R ·H ·W ),
O (O ·R ·Kw ·H ·W ), and O (O ·R ·Kh ·H ·W ), respec-
tively. As a result, the CPDBlock significantly reduces the
computational load to O (R ·O · (I +Kh +Kw) ·H ·W ).
It’s important to note that the rank constraint introduced in
(11) guarantees a favorable reduction in both the number of
parameters and computational complexity.

C. CPDBlock Pruning

After demonstrating the use of filter decomposition and its
integration into the new architecture, we will now delve into
the methodology of factor matrices pruning. This technique
focuses on reducing the number of parameters by pruning the
factor matrices obtained through the decomposition process.

First, it is important to note that each output Ok is computed
based on three factor matrices: Ak, Bk, and Ck. Therefore,
when pruning the kernel related to a specific output, all three
matrices must be considered for removal. This necessitates
the use of a pruning criterion that takes into account the
interdependencies among the three matrices. Second, it is
worth mentioning that when the CP decomposition is unique,
it is unique up to scaling and permutation ambiguities. In other
words, if two 3-order filters, Wi and Wj , are strictly similar
and satisfy the uniqueness conditions of the CP decomposition
[21], thenWi = [[Ai,Bi,Ci]],

Wj = [[Aj ,Bj ,Cj ]],
Wi = Wj .

⇏

Ai = Aj ,
Bi = Bj ,
Ci = Cj .

(12)

Instead, we have

Ai = AjΠΛA, Bi = BjΠΛB , and Ci = CjΠΛC ,

where Π is a permutation matrix, and the diagonal scaling
matrices verify ΛAΛBΛC = I. For all the aforementioned
reasons, we have decided to choose the PABS [35] as a metric
to measure the distance between two CP decompositions. The
use of the PABS distance measure is justified in both the
unique and non-unique cases of CP decomposition. In the
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Fig. 5: Illustration of the CPDBlock structure for classical deep learning frameworks.

unique case, PABS allows for capturing distances between
factor matrices, enabling the identification of redundant filters
based on their distance patterns, while handling scaling and
permutation ambiguities. Let ϕ(., .) be a function that com-
putes the PABS between two factor matrices, as defined in
(3). If we reconsider the example in (12) in the case of unique
CPDs, we haveWi = [[Ai,Bi,Ci]],

Wj = [[Aj ,Bj ,Cj ]],
Wi = Wj .

⇒

ϕ(Ai,Aj) = 0,
ϕ(Bi,Bj) = 0,
ϕ(Ci,Cj) = 0.

(13)

Even in the non-unique cases, PABS can still be effective in
identifying redundancies, as it captures the distance between
different sets of factor matrices representing the same tensor as
will be confirmed in the simulations. This enables the pruning
process to remove filters that contribute minimally to model
performance or exhibit high similarity to other filters, resulting
in a more compact model while preserving critical features and
maintaining performance.

The core idea of CPDBlock pruning is to construct a
distance matrix D, where each element Dij corresponds to
the distance between the factor matrices [[Ai,Bi,Ci]] and
[[Aj ,Bj ,Cj]]. The pruning process involves iteratively iden-
tifying the pair of decompositions, i and j, corresponding to
the minimum value of Dij , and removing one of them. The
removed decomposition in our strategy between i and j is the
one that most closely resembles the rest of the decompositions,
ensuring that the pruned one retains the representation that
is most similar to the remaining ones. The distance matrix
D ∈ RO×O can be expressed as

Dij = αDA
ij + βDB

ij + γDC
ij , (14)

where DA
ij = ϕ(Ai,Aj) (similarly for DB

ij and DC
ij), and

α, β and γ are weight parameters, whose sum is equal
to 1. The pruning strategy is outlined in Alg. 1, which is
complemented by a visual representation in the right half of

Fig. 4. The complexity of the CPDBlock Pruning algorithm
is O

(
O2 · (O −O′)

)
, resulting from pairwise comparisons in

the calculation of the distance matrix and subsequent iterations
for factor deletion.

Algorithm 1 CPDBlock Pruning

Require: The decompositions of O filters{
A1,B1,C1

}
, . . . ,

{
AO,BO,CO

}
and the number

of filters after pruning O′.
Ensure: Selected factors{

Ap1 ,Bp1 ,Cp1

}
, . . .,

{
ApO′ ,BpO′ ,CpO′

}
.

1: Compute distance matrix D following (14).
2: for t = 1 to O −O′ do
3: Find the shortest distance: (i, j) = argmin

(x,y)

x ̸=y

Dx,y

4: if
O∑

k=1
k ̸=i

Di,k ≤
O∑

k=1
k ̸=j

Dj,k then

5: Delete factors of decomposition i.
6: else
7: Delete factors of decomposition j.
8: end if
9: Delete the row and column of the deleted

decomposition from D.
10: end for

IV. EXPERIMENTS

A. Experimental Settings

Architectures and Datasets. In order to demonstrate the
adaptability of NORTON, we assess three representative ar-
chitectures: VGG-16-BN [59], ResNet-56/110 with residual
blocks [60], and DenseNet-40 with dense blocks [61]. These
models are tested on the CIFAR-10 dataset [62]. Addition-
ally, to validate the scalability of NORTON, experiments



IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 7

are conducted on the challenging ImageNet dataset [63] us-
ing the ResNet-50 architecture. Furthermore, the compressed
ResNet-50 model is employed as the backbone network
for FasterRCNN-FPN [64], MaskRCNN, and KeypointRCNN
[65] on the COCO-2017 dataset [66].

Baselines. NORTON is compared with 52 SOTAs in the
fields of low-rank decompositions (D) [1], [2], [10], [12], [13],
[17], [20], [39], [40], structured pruning (P) [3], [9], [25]–
[34], [45]–[57], [67]–[78] and hybrid methods (H) [4]–[6], [8],
[24], [58]. However, for certain methods where corresponding
experiments were unavailable, we reproduced the approach of
[1], [2], [4], [12] to ensure a more comprehensive comparison.
To ensure fairness in the comparison, all original models are
identical.

Evaluation Protocols. The model is assessed via three
dimensions: accuracy, required Multiply Accumulate Opera-
tions (MACs), and the number of parameters (Params). The
compression ratio (CR) is defined as the percentage reduc-
tion in MACs/Params when compared to the original model.
Concerning the performance, top-1/top-5 accuracy is used on
classification tasks while mean average precision (AP) and
recall (AR) are used on detection/segmentation tasks.

Configurations. On CIFAR, fine-tuning was carried out
for 400 epochs with a batch size of 256, momentum of
0.9, weight decay of 0.0005, and an initial learning rate of
0.01. On ImageNet, fine-tuning was conducted for 200 epochs
with a batch size of 128, a momentum of 0.99, a weight
decay of 0.0001, and a cosine learning rate scheduler with
an initial learning rate of 0.1. On COCO, models are fine-
tuned following the default recipe of torchvision [79]. In this
work, we choose α = β = γ = 1

3 .

B. Results and Analysis

In the ensuing simulations, we adjusted the rank and pruning
ratios to match other methods for a comparable compression
rate. This enables us to examine the trade-off between CR
and accuracy, as well as vice versa. For further transparency
and accessibility, our accompanying code includes detailed
information regarding the rank and pruning rates used in each
case, ensuring the reproducibility and comprehensiveness of
our results. We delve deeper into the impact of varying rank
and pruning ratio selections in Section V.

VGG-16-BN. Tab. I shows compression results of VGG
on CIFAR-10. In all compression levels, compared with other
methods, NORTON consistently achieves the highest accuracy
while reducing much more computation costs and enjoying a
similar number of parameters. In particular, NORTON proves
to be very robust with high compression rates. It can reduce
88% of FLOPs and 87% parameters with almost no loss, just
0.12%; or 96% MACs and 98% parameters with a slight loss
of 1.42%. Finally, to evaluate the resistance of NORTON, we
subject it to an ultra-high compression rate of 99% reduction in
both MACs and parameters, and the proposed method remains
firm, yielding a modest loss.

ResNet-56/110. Tab. II presents results on the ResNet-
56/110 architectures. Our approach has the capacity to gen-
eralize the original model as it boosts 1.11% and 1.35% of

TABLE I: Compression results of VGG-16-BN on CIFAR

Method Type Top-1 MACs (CR) Params (CR)

VGG-16-BN [59] 93.96 313.73M (00) 14.98M (00)
HRank-1 [34] P 93.43 145.61M (54) 2.51M (83)
CHIP [32] P 93.86 131.17M (58) 2.76M (82)
EZCrop [31] P 93.01 131.17M (58) 2.76M (82)
DECORE-500 [30] P 94.02 203.08M (35) 5.54M (63)
APIB [27] P 94.08 127.03M (60) 3.60M (76)
AutoBot [28] P 94.19 145.61M (54) 7.53M (50)
NORTON (Ours) H 94.45 126.49M (60) 2.58M (83)

HRank-2 [34] P 92.34 108.61M (65) 2.64M (82)
DECORE-200 [30] P 93.56 110.51M (65) 1.66M (89)
Yeom et al. [25] P 93.48 104.67M (66) 2.86M (81)
EZCrop [31] P 93.70 104.78M (67) 2.50M (83)
CHIP [32] P 93.72 104.78M (67) 2.50M (83)
APIB [27] P 94.00 106.67M (66) 3.30M (78)
AutoBot [28] P 94.01 108.71M (65) 6.44M (57)
NORTON (Ours) H 94.16 101.91M (68) 2.34M (84)

RGP-64 16 [9] P 92.76 78.78M (75) 3.81M (75)
WhiteBox [29] P 93.47 75.80M (76) N/A
AutoBot [28] P 93.62 72.60M (77) 5.51M (63)
NORTON (Ours) H 94.11 74.14M (77) 3.60M (76)

QSFM [76] P 92.17 79.00M (75) 3.68M (75)
DECORE-100 [30] P 92.44 51.20M (82) 0.51M (96)
FSM [74] P 92.86 59.61M (81) 1.50M (90)
ALDS [20] D 92.67 66.95M (86) 1.90M (96)
Dai et al. [5] H 93.03 37.76M (87) 0.43M (97)
Lebedev et al. [1] D 93.07 68.53M (78) 3.22M (78)
EPruner-0.73 [75] P 93.08 74.42M (76) 1.65M (89)
HALOC [10] D 93.16 43.92M (86) 0.30M (98)
CHIP [32] P 93.18 66.95M (79) 1.90M (87)
ASTER [26] P 93.45 60.00M (81) N/A
EDP [8] H 93.52 62.40M (80) 0.66M (96)
HTP-URC-2 [67] P 93.62 73.32M (77) 0.87M (94)
DF [58] H 93.64 94.00M (70) 1.47M (90)
FSM [74] P 93.73 106.67M (66) 2.10M (86)
NORTON (Ours) H 93.84 37.68M (88) 1.94M (87)

HRank-3 [34] P 91.23 73.70M (77) 1.78M( 92)
RGP-64 6 [9] P 91.45 31.37M (90) 1.43M (90)
DECORE-50 [30] P 91.68 36.85M (88) 0.26M (98)
NORTON (Ours) H 92.54 13.54M (96) 0.24M (98)

NORTON (Ours) H 90.32 4.58M (99) 0.14M (99)

the accuracy while eliminating 37% and 38% of parameters
for ResNet-56 and ResNet-110, respectively. NORTON proves
to be efficient with high-level compression (≈ 90%) where it
outperforms [73] in all aspects. For ResNet-110, NORTON is
better than DECORE [30] in every way.

DenseNet-40. Tab. III shows the compression results
of DenseNet-40 on CIFAR-10. With similar performance,
NORTON usually gains more compression than other meth-
ods. For example, with an accuracy of about 94.86%, our
method reduces more than 7% MACs and 9% parameters in
comparison with [30].

ResNet-50. To evaluate the scalability of NORTON, we
perform experiments on the extensive ImageNet dataset using
the ResNet-50 architecture, as enumerated in Tab. IV. Across
all evaluated scenarios, NORTON consistently outperforms
other approaches in terms of both performance and complexity
reduction. Our method can reduce 50% MACs while still
enjoying an accuracy increment of 1.88% compared to Hinge
[24], a hybrid method. In comparison to other hybrid methods
[6], [8], NORTON yields higher accuracy while requiring
lower computational cost and fewer parameters.
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TABLE II: Compression results of ResNet-56/110 on CIFAR

Method Type Top-1 MACs (CR) Params (CR)

ResNet-56 [60] 93.26 127.09M (00) 0.85M (00)
HRank-1 [34] P 93.52 88.72M (29) 0.71M (17)
DECORE-450 [30] P 93.34 92.48M (26) 0.64M (24)
FilterSketch [73] P 93.65 88.05M (30) 0.68M (21)
TPP [46] P 93.81 86.59M (31) N/A
WHC [47] P 93.91 90.35M (28) N/A
NORTON (Ours) H 94.37 83.11M (35) 0.54M (37)

TRP [39] D 92.77 55.60M (56) N/A
HRank-2 [34] P 93.17 62.72M (50) 0.49M (42)
FilterSketch [73] P 93.19 73.36M (41) 0.50M (41)
SOKS-40% [71] P 93.22 81.40M (36) 0.51M (40)
DECORE-200 [30] P 93.26 62.93M (50) 0.43M (49)
TPP [46] P 93.46 62.75M (50) N/A
BSR [17] D 93.53 55.70M (56) 0.37M (56)
MFP [72] P 93.56 59.40M (53) N/A
EDP [8] H 93.61 53.07M (58) 0.39M (54)
FSM [74] P 93.63 61.49M (51) 0.48M (44)
CC-0.5 [6] H 93.64 60.00M (52) 0.44M (48)
ResRep [49] P 93.71 59.30M (53) N/A
DCP [77] P 93.72 56.47M (55) 0.43M (50)
AutoBot [28] P 93.76 55.82M (56) 0.46M (46)
DeGraph [70] P 93.77 58.98M (53) N/A
WHC [47] P 93.80 74.04M (41) N/A
EZCrop [31] P 93.80 65.94M (47) 0.48M (43)
NORTON (Ours) H 94.00 73.22M (42) 0.44M (48)

QSFM [76] P 91.88 50.62M (60) 0.25M (71)
CHIP [32] P 92.05 34.79M (72) 0.24M (72)
TPP [46] P 92.35 36.39M (71) N/A
BSR [17] D 92.51 32.10M (74) 0.21M (75)
SOKS-55% [71] P 93.08 61.30M (52) 0.39M (54)
CLR-RNF-0.56 [48] P 93.27 54.00M (57) 0.38M (56)
Yang et .al [40] D 93.27 33.88M (73) N/A
APIB [27] P 93.29 41.41M (67) 0.29M (66)
DF [58] H 93.44 32.20M (75) 0.22M (74)
NORTON (Ours) H 93.81 37.52M (71) 0.21M (75)

HRank-3 [34] P 90.72 32.52M (74) 0.27M (68)
DECORE-55 [30] P 90.85 23.22M (81) 0.13M (85)
FilterSketch [73] P 91.20 32.47M (74) 0.24M (72)
APIB [27] P 91.53 23.84M (81) 0.15M (83)
NORTON (Ours) H 91.62 14.47M (89) 0.08M (91)

ResNet-110 [60] 93.50 256.04M (00) 1.73M (00)
DECORE-500 [30] P 93.88 163.30M (35) 1.11M (36)
NORTON (Ours) H 94.85 163.00M (35) 1.08M (38)
NNCS-61.7 [55] P 93.41 99.86M (61) 0.66M (62)
DECORE-300 [30] P 93.50 96.66M (62) 0.61M (65)
NORTON (Ours) H 94.11 92.99M (64) 0.59M (65)
DECORE-175 [30] P 92.71 58.37M (77) 0.35M (80)
NORTON (Ours) H 92.77 47.34M (82) 0.30M (83)

TABLE III: Compression results of DenseNet-40 on CIFAR

Method Type Top-1 MACs (CR) Params (CR)

DenseNet-40 [61] 94.81 282.92M (00) 1.04M (00)
DECORE-175 [30] P 94.85 228.96M (19) 0.83M (21)
NORTON (Ours) H 94.86 213.58M (26) 0.74M (30)

HRank-1 [34] P 94.24 167.41M (41) 0.66M (37)
DECORE-115 [30] P 94.59 171.36M (39) 0.56M (46)
Yeom et al. [25] P 94.62 167.41M (41) 0.66M (37)
AutoBot [28] P 94.67 167.64M (42) 0.76M (28)
NORTON (Ours) H 94.67 168.23M (42) 0.58M (45)

HRank-2 [34] P 93.68 110.15M (61) 0.48M (54)
EZCrop [31] P 93.76 113.08M (60) 0.39M (62)
DECORE-70 [30] P 94.04 128.13M (55) 0.37M (65)
HT2-0.8 [13] D 94.06 104.31M (63) 0.34M (67)
NORTON (Ours) H 94.17 103.68M (64) 0.33M (69)

TABLE IV: Compression results of ResNet-50 on ImageNet

Method Type Top-1 Top-5 MACs (CR) Params (CR)

ResNet-50 [60] 76.15 92.87 4.09G (00) 25.50M (00)
ABCPruner-100% [56] P 72.84 92.97 2.56G (37) 18.02M (29)
CLR-RNF-0.2 [48] P 74.85 92.31 2.45G (40) 16.92M (34)
EPruner-0.81 [75] P 74.95 92.36 2.37G (42) N/A
FilterSketch-0.7 [73] P 75.22 92.41 2.64G (36) 16.95M (33)
Kim et al. [12] D 75.34 92.68 N/A 17.60M (31)
PFP [53] P 75.91 92.81 3.65G (11) 20.88M (18)
C-SGD-70 [68] P 75.94 92.88 2.62G (36) 17.09M (33)
LeGR [50] P 76.20 93.00 2.99G (27) N/A
DECORE-8 [30] P 76.31 93.02 3.54G (13) 22.69M (11)
CHIP [32] P 76.30 93.02 2.26G (44) 15.10M (41)
TPP [46] P 76.44 N/A 2.74G (33) N/A
NORTON (Ours) H 76.91 93.57 2.32G (43) 14.51M (43)

FilterSketch-0.6 [73] P 74.68 92.17 2.23G (46) 14.53M (43)
Hinge [24] H 74.70 N/A 2.17G (47) N/A
HRank-1 [34] P 74.98 92.33 2.30G (44) 16.15M (37)
DECORE-6 [30] P 74.58 92.18 2.36G (42) 14.10M (45)
PFP [53] P 75.21 92.43 2.29G (44) 17.82M (30)
RGP-64 36 [9] P 75.30 92.55 2.30G (44) 14.34M (44)
WhiteBox [29] P 75.32 92.43 2.22G (46) N/A
MFP [72] P 75.67 92.81 2.37G (42) N/A
EZCrop [31] P 75.68 92.70 2.26G (45) 15.09M (41)
LeGR [50] P 75.70 92.70 2.37G (42) N/A
C-SGD-60 [68] P 75.80 92.65 2.19G (47) 14.58M (43)
DepGraph [70] P 75.83 N/A 2.09G (49) N/A
SCOP [51] P 75.95 92.79 2.24G (45) 14.59M (43)
CATRO [52] P 75.98 92.79 2.21G (46) N/A
WHC [47] P 76.06 92.86 2.37G (42) N/A
CHIP [32] P 76.15 92.91 2.10G (49) 14.23M (44)
DNCP [54] P 76.30 N/A 2.20G (46) N/A
NORTON (Ours) H 76.58 93.43 2.08G (50) 13.51M (47)

HRank-2 [34] P 71.98 91.01 1.55G (62) 13.77M (46)
TRP [39] D 72.86 91.58 1.78G (56) N/A
FilterSketch-0.4 [73] P 73.04 91.18 1.51G (63) 10.40M (59)
WhiteBox [29] P 74.21 92.01 1.50G (63) N/A
EZCrop [31] P 74.33 92.00 1.52G (63) 11.05M (57)
DAIS [69] P 74.45 92.21 1.83G (55) N/A
CC-0.6 [6] H 74.54 92.25 1.53G (63) 10.58M (59)
RGP-64 30 [9] P 74.58 92.09 1.92G (53) 11.99M (53)
Phan et al. [2] D 74.68 92.16 1.56G (62) N/A
MFP [72] P 74.86 92.43 1.88G (54) N/A
TPP [46] P 75.12 N/A 1.60G (61) N/A
Yeom et al. [25] P 75.25 92.49 1.52G (63) 11.05M (57)
SCOP [51] P 75.26 92.53 1.86G (55) 12.29M (52)
CHIP [32] P 75.26 92.53 1.52G (63) 11.04M (57)
ASTER [26] P 75.27 92.47 1.51G (63) N/A
C-SGD-60 [68] P 75.29 92.39 1.82G (55) 12.37M (52)
LeGR [50] P 75.30 92.40 1.92G (53) N/A
ResRep [49] P 75.30 92.47 1.52G (62) N/A
WHC [47] P 75.33 92.52 1.88G (54) N/A
EDP [8] H 75.34 92.43 1.92G (53) 14.28M (44)
APIB [27] P 75.37 N/A 1.56G (62) 10.71M (58)
HTP-URC [67] P 75.81 N/A 1.88G (54) 15.81M (38)
NORTON (Ours) H 75.95 92.91 1.49G (64) 10.52M (59)

HRank-3 [34] P 69.10 89.58 0.98G (76) 8.27M (68)
DECORE-5 [30] P 72.06 90.82 1.60G (61) 8.87M (65)
Yeom et al. [25] P 72.28 90.93 0.95G (77) 8.02M (67)
ABCPruner-50% [56] P 72.58 90.91 1.30G (68) 9.10M (64)
CHIP [32] P 72.30 90.74 0.95G (77) 8.01M (69)
CLR-RNF-0.44 [48] P 72.67 91.09 1.23G (70) 9.00M (65)
EPruner-0.81 [75] P 72.73 91.01 1.29G (68) N/A
NORTON (Ours) H 74.00 92.00 0.96G (77) 7.96M (69)

FilterSketch-0.2 [73] P 69.43 89.23 0.93G (77) 7.18M (72)
DECORE-4 [30] P 69.71 89.37 1.19G (71) 6.12M (76)
RGP-64 16 [9] P 72.68 91.06 1.02G (75) 6.38M (75)
CURL [78] P 73.39 91.46 1.11G (73) 6.67M (74)
NORTON (Ours) H 73.65 91.64 0.92G (78) 5.88M (77)

Faster/Mask/Keypoint-RCNN. To assess NORTON’s ef-
ficacy in downstream tasks, we employed our com-
pressed ResNet-50/Imagenet as the backbone for training
Faster/Mask/Keypoint-RCNN on COCO, as detailed in Tab.
V. Our method enhances both precision and recall relative to
the baseline, achieving a remarkable reduction of 17% MACs
and at least 19% parameters. Notably, NORTON substantially
elevates inference throughput, delivering over a 2× FPS im-
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TABLE V: Compression results of Faster/Mask/Keypoint-RCNN-ResNet50-FPN on COCO-2017

Model AP0.5:0.95 AP0.5 AP0.75 AR1 AR10 AR100 MACs (CR) Params (CR) FPS Latency(ms)

FasterRCNN [64], [79] 0.37 0.58 0.39 0.31 0.48 0.51 134.85G (00) 41.81M (00) 12 85
NORTON (Ours) 0.38 0.59 0.42 0.32 0.50 0.52 111.47G (17) 30.72M (27) 19 53
NORTON (Ours) 0.32 0.52 0.34 0.29 0.46 0.48 93.39G (31) 22.01M (47) 25 41

MaskRCNN [65], [79] 0.34 0.55 0.36 0.29 0.45 0.47 134.85G (00) 44.46M (00) 9 111
NORTON (Ours) 0.35 0.57 0.37 0.30 0.46 0.48 111.47G (17) 33.36M (25) 14 73
NORTON (Ours) 0.32 0.52 0.33 0.28 0.44 0.46 93.39G (31) 24.65M (45) 20 50

AR0.5:0.95 AR0.5 AR0.75

KeypointRCNN [65], [79] 0.65 0.86 0.71 0.71 0.90 0.77 137.42G (00) 59.19M (00) 8 125
NORTON (Ours) 0.65 0.86 0.71 0.72 0.91 0.77 114.04G (17) 48.10M (19) 13 76
NORTON (Ours) 0.63 0.85 0.69 0.69 0.90 0.75 95.97G (30) 39.39M (34) 17 59

provement compared to the baseline models. For instance,
FasterRCNN sees the end-to-end latency drop from 85 ms
to 41 ms, reaching a real-time framerate of 25 FPS. It’s
essential to highlight that these performance assessments were
conducted on an RTX 3060 GPU, providing robust evidence of
our approach’s real-world utility in complex tasks of computer
vision based on NORTON’s network compression.

V. DISCUSSIONS

A. The Role of the Rank

As the rank directly relates to the approximation error
and the gain of compression rate, we conduct additional
experiments on VGG16/CIFAR10 to investigate the effect of
the rank selection. First, we only apply the CPD testing all
possible ranks (see Tab. VI). To measure the approximation
error between the original model and the decomposed model,
we employ the normalized mean square error (NMSE) defined
as:

NMSE =
1

N∑
i=1

Oi

·
N∑
i=1

Oi∑
j=1

∥∥∥Wj
i − Ŵ

j

i

∥∥∥2
F∥∥∥Wj

i

∥∥∥2
F

, (15)

where Wj
i is the j-th 3-order filter in the i-th layer composed

of Oi filters, Ŵ
j

i is its approximation, and N is the number
of layers.

TABLE VI: Complexity reduction, approximation error, and
accuracy with and without fine-tuning with respect to the rank

Rank MACs Params NMSE Accuracy (%)

CR CR Without FT With FT

1 88.03 87.06 0.6265 10.00 93.84
2 76.44 75.98 0.4114 10.00 94.11
3 64.85 64.91 0.2760 68.37 94.18
4 53.27 53.84 0.1837 88.30 94.07
5 41.69 42.76 0.1173 92.44 94.22
6 30.10 31.69 0.0698 93.45 94.15
7 18.51 20.61 0.0372 93.90 94.11
8 6.93 9.54 0.0137 94.03 94.03

Tab. VI shows the complexity reduction, approximation
error, and accuracy before and after fine-tuning. Obviously,
without fine-tuning, the higher the rank is, the better the
weights are approximated but with less compression obtained.
With 5 ≤ R, our filter decomposition method produces com-
parable accuracies (maximum 1.46% drop) with the original

model without fine-tuning. This suggests that our decom-
position step behaves well without fine-tuning. In addition,
we demonstrate that our decomposition step can effectively
work when followed by a fine-tuning step. The results show
that after fine-tuning, the accuracy is completely restored
for all cases. However, it should be noted that the achieved
compression ratios are not as favorable as those obtained with
the proposed hybrid strategy.

Notably, our proposed method has not met the degeneracy
problem (i.e., instability issue when training a CNN with
decomposed layers in the CP format) as in a reshaped decom-
position approach [2]. We suspect that the filter decomposition
method is more fine-grained than the reshaped one. The
trend of NMSE demonstrates a strong correlation between the
approximation error and the accuracy (without fine-tuning).
This observation aligns with recent work [80].
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Fig. 6: Comparison of complexity reduction and accuracy with
respect to the rank and the pruning ratio.
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B. The Effect of Rank and Pruning Ratio Selection

To evaluate the effect of pruning ratios and rank on compres-
sion and accuracy, we conducted additional simulations de-
picted in Fig. 6. These simulations involve three compression
levels, namely None (N), Soft (S), Moderate (M), and Hard
(H) pruning ratios. Each level represents a different degree
of pruning, allowing us to examine the impact of different
compression settings on the decomposed models.

These experiments provide a comprehensive understanding
of how the selection of rank and pruning ratio impacts com-
plexity reduction and model performance. With a predefined
complexity reduction goal, there are multiple choices for the
rank and pruning ratio, resulting in different outcomes. For
example, to eliminate about 65% of MACs, as shown in
Fig. 6, possible choices are 3N, 4S, 6M, and 8H which
produce 94.18%, 93.67%, 92.77%, and 93.15% accuracy after
fine-tuning, respectively. Notably, these combinations, despite
similar MACs reductions, lead to different levels of parameter
reduction: 64.91%, 68.33%, 78.34%, and 87.49%, respectively.
This observation raises questions about the optimal combina-
tion of rank and pruning ratio, warranting further investigation,
particularly for hybrid compression approaches.

C. Component Analysis

Given that NORTON operates as a hybrid method, a detailed
examination of the efficacy of its individual components
becomes imperative. We conducted an experiment on the
VGG-16-BN/CIFAR-10, focusing on the accuracy vs. MACs
reduction Pareto curves of six approaches. These approaches
were organized into three direct comparisons: our decompo-
sition part versus Tucker decomposition [12], our pruning
part versus Taylor pruning [3], and our hybrid approach
versus the combination of Taylor pruning and TD [4]. It’s
worth noting that we selected these approaches based on their
relevance to our work, especially [4], as detailed in subsection
II-C, and their components (TD and Taylor pruning) being
representative in network compression. Due to the absence
of results for this architecture in the referenced papers, we
reproduced the results for Taylor pruning [3], TD [12], and
their combination [4]. The outcomes are presented in Fig. 7.

Effectiveness: In terms of pairwise comparisons, our com-
ponents consistently outperform their counterparts from [4].
For instance, our CPD consistently achieves higher perfor-
mance than TD at similar compression ratios. Additionally,
CPD demonstrates greater stability than TD, meaning its
accuracy does not drop significantly as the CR increases
(up to 88%, see Tab. VI). TD, a layer decomposition ap-
proach, experiences a rapid loss of performance beyond a 50%
compression ratio, suggesting potential information loss due
to its neglect of spatial dimensions of the kernel (3rd and
4th modes). This comparison underscores the effectiveness of
our proposed filter decomposition method compared to layer
decomposition and reshaped-based decomposition approaches.
The subspace-based pruning method proves more effective
and efficient than the Taylor pruning method. However, both
pruning methods experience a significant performance drop at
a 70% compression ratio threshold. Notably, the combination

of Taylor pruning and TD exhibits suboptimal performance,
even worse than its individual components at many points. In
contrast, NORTON effectively synthesizes the strengths of its
components, yielding higher accuracy at various points and
achieving higher compression (beyond 90%). This experiment
not only strengthens the motivation of our hybrid approach
but also reaffirms that our decomposition/pruning proposal can
stand alone as a promising candidate for network compression.
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Fig. 7: The accuracy-MACs reduction Pareto curves of indi-
vidual components in hybrid approaches.

Efficiency: Theoretical computational complexities for the
proposed CPD and subspace pruning were detailed in Section
III. Notably, the overheads associated with both the decompo-
sition and pruning stages are deemed insignificant, each requir-
ing less than 10 seconds in our simulation. This is notably less
than the time spent on the fine-tuning step, which can extend
up to 100 hours when using ResNet50/Imagenet. Additionally,
our choice of a single-shot compression scheme ensures that
the compression process occurs only once. In contrast, the
hybrid method in [4] employs an iterative scheme, incur-
ring higher costs as the decomposition and filters’ saliency
estimation need recalculation in each round. It’s essential
to emphasize that the critical metric lies in the inference
speed during the deployment of the compressed model, aptly
represented by the reduction in MACs, where our approach
has proven to be particularly efficient.

This comprehensive evaluation shows that NORTON, as a
hybrid approach, excels not only in synthesizing the strengths
of its individual components but also in outperforming com-
parable methods in terms of accuracy and compression.

D. Visualizing Feature Preservation

We qualitatively assess feature preservation in NORTON,
complementing the established efficiency from numerical re-
sults in Section IV. We randomly selected 5 images from the
ImageNet validation dataset and evaluated three compression
levels for the original ResNet-50 model: 50%, 64%, and
78% (see Table IV). Using GradCAM [81] for interpretation,
we visualize and analyze feature maps in the original and
compressed models in Fig. 8. It can be observed that at
different CRs, NORTON consistently proves robust in cap-
turing and preserving essential features across diverse classes.
This robustness implies sustained effectiveness and reliability
across varying scenarios and CR, establishing NORTON as a
versatile choice for network compression.
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(a) Input (b) CR = 0% (c) CR = 50% (d) CR = 64% (e) CR = 78%

Fig. 8: Qualitative assessment of feature preservation in com-
pressed models.

VI. CONCLUSION

In this work, we have introduced NORTON, a novel hybrid
network compression method that combines the strengths
of tensor decompositions and structured pruning. Through
extensive experiments and analyses, we have demonstrated the
effectiveness and superiority of NORTON in achieving signifi-
cant model compression while preserving critical features and
maintaining performance. By leveraging filter decomposition
and the integration of structured pruning, NORTON offers a
powerful approach for reducing model complexity and the
number of parameters, pushing the limits of network com-
pression. For instance, our method achieved a simultaneous
MACs/Params CR of 99% since current SOTAs only report to
91% to the best of our knowledge. Our results have shown that
NORTON outperforms existing SOTA compression techniques
in terms of compression ratios and accuracy retention. The
combination of tensor decompositions and structured pruning
in NORTON provides a versatile framework that allows for
fine-grained control over the compression process. Moreover,
NORTON’s ability to handle scaling and permutation ambigu-
ities further enhances its practicality and flexibility. The eval-
uation of NORTON on various architectures and datasets has
demonstrated its scalability and generalizability. Furthermore,
we have analyzed the impact of rank and pruning ratios on the
compression and performance trade-offs, providing valuable
insights for selecting optimal configurations.
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