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Abstract

This work introduces a new general approach for the numerical analysis of stable equilibria to

second order mean field games systems in cases where the uniqueness of solutions may fail. For

the sake of simplicity, we focus on a simple stationary case. We propose an abstract framework

to study these solutions by reformulating the mean field game system as an abstract equation in

a Banach space. In this context, stable equilibria turn out to be regular solutions to this equation,

meaning that the linearized system is well-posed. We provide three applications of this property:

we study the sensitivity analysis of stable solutions, establish error estimates for their finite element

approximations, and prove the local converge of Newton’s method in infinite dimensions.

1 Introduction

Mean Field Games (MFG for short) were introduced independently by Lasry-Lions [36, 34, 35] and
Huang-Caines-Malhamé [33, 32]. The goal of this theory is to study (stochastic) differential games with
a large number of interchangeable players. We refer the reader to [3, 17, 5, 30, 39] for general references
on this topic.

The numerical analysis of MFG systems introduced in [36, 34, 35] has been extensively studied under
a monotonicity assumption also introduced by Lasry and Lions, see [3, Chapter 4], [1], and the refer-
ences therein. Indeed, the latter provides a sufficient condition for the uniqueness of solutions to MFG
systems, which allows to show the convergence of numerical methods in [2] and error estimates in [8].
In the absence of this monotonicity assumption, uniqueness may fail (see [12, 4, 19, 18]) and the study of
MFG systems with several solutions is delicate both from the theoretical and numerical points of view.
In [12], Briani and Cardaliaguet define a particular notion of solution for potential MFG systems, the
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so-called stable solutions. These solutions may not be unique but the authors show in [12] that they have
some interesting properties motivating their name: stable solutions are isolated and the fictitious play
algorithm, introduced in Cardaliaguet-Hadikhanloo [15], converges locally to these solutions. We also
mention the recent work by Tang-Song [45], where the authors implement a smoothed policy iteration
method to locally approximate stable solutions. In this paper, we provide new results in this direction,
which reinforce the importance of the notion of stable solutions. We are going to prove that stable so-
lutions are indeed stable under perturbations and that local convergence holds for their approximations
by finite element methods and Newton iterations.

This paper is the first in a series of works dealing with the numerical analysis of stable equilibria to
MFG models. Our goal is to introduce a general framework that covers different types of MFG systems
under fairly general assumptions. In order to convey our main ideas, we focus in this paper on the
following stationary MFG system

{

−∆u+ 1
2 |Du|

2
+ λu = f(m) in T

d,

−∆m− div (mDu) + λm = λm0 in T
d,

(1)

where λ > 0 is a given constant andm0 : T
d → R and f : R → R are given functions. This system has

been introduced in the monograph by Bensoussan-Frehse-Yam [5, Chapter 7] and has been furtherly
studied in [24, 29]. We briefly recall its interpretation in Section 2.

In this work we give a definition of stable solutions for system (1) (Definition 2.5 below) and prove
that, except for at most finitely many values of λ > 0, every solution to (1) is stable. Furthermore, if the
coupling f is monotone, then the unique solution to (1) is stable for every λ > 0. As in [12], we prove
that stable solutions are isolated and we are able to slightly improve the result in [12] by considering
weaker norms.

Let us now present the main contribution of this paper. We reformulate system (1) in the form

F (u,m) = 0,

where F : X → X is a nonlinear mapping, defined on a Banach space X , having the form

F = I + T ◦G.

More precisely, given a suitable Banach space Z , we choose T : Z → X as the linear operator defined
by T (f, g) = (v, ρ), where (v, ρ) solves

{

−∆v + λv = f in T
d,

−∆ρ+ λρ = g in T
d,

and G : X → Z the nonlinear mapping defined by

G(v, ρ) =

(

1

2
|Dv|2 − f(ρ),− div (ρDu)− λm0

)

.

We refer the reader to Section 3 for the details of this reformulation. In the case where the mapping
G is differentiable, the mapping F is also differentiable and the stability of a solution (u,m) to (1) is
equivalent to the injectivity of the differential

dF [u,m] = I + T ◦ dG[u,m].
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Thus, if T is a compact operator and (u,m) is a stable solution to (1), then dF [u,m] is an injective
perturbation of the identity by a compact linear operator. Henceforth, by the Fredholm alternative, we
deduce that dF [u,m] is an isomorphism onX . This isomorphism propertywill be rigorously established
below for Banach spaces of the form

X = C2,γ(Td)× C2,β(Td) and X =W 1,p(Td)× Lq(Td),

but many other choices are possible depending on the application in mind.

We now describe three applications of the above isomorphism property for stable solutions.
A first and straightforward application, which follows from the implicit function theorem, concerns

the sensitivity analysis of stable solutions to (1) under perturbations of the coupling function f and the
distribution m0 (Proposition 5.1 below).

In the second application, we make use of the Brezzi-Rappaz-Raviart theory on the approximation
of nonlinear problems (see [11, 28, 20, 13]) to obtain existence and error estimates for finite element
approximations of stable solutions (Theorem 5.4 below). The finite element approximation of a MFG
system similar to (1) has been studied by Osborne and Smears in [42] (see [43] for a parabolic MFG
system), where the convergence of the approximations is established by using compactness arguments
which do not provide error estimates. While finishing this paper, we have learnt about the recent work
[44] by the same authors addressing this issue. The results in [42, 44] deal only with the case where
the coupling term f is (strongly) monotone, which ensures the uniqueness of the solution to the MFG
system. In contrast, our results apply locally around any stable solution without requiring any mono-
tonicity of the coupling and rely on a completely different approach.

In our last application, we provide convergence rates for the iterates of Newton’s method in infinite
dimension applied to (1) in various functional spaces (Theorems 5.8, 5.10 and 5.11 below). Let us also
mention that the analysis of Newton’s method in infinite dimensions to approximate the solution to
a time-dependent MFG system, with monotone couplings, has been recently addressed by Camilli and
Tang [14] using different techniques. Compared with their approach, our result follows directly from
classical convergence results of Newton’s iterates in function spaces (see [31, 47, 21]) which allow us to
deal with non-monotone couplings and to obtain convergence rates in stronger norms.

The paper is structured as follows. In Section 2 we study the well-posedness of (1) and provide some
useful estimates on the solutions. We then introduce the definition of stable solution to (1), which is
similar to the one proposed in [12], and give sufficient conditions for the existence of such solutions.
In Section 3 we reformulate solutions to (1) as zeros of a well-chosen nonlinear mapping F and prove
the isomorphism property of the differential of F at stable solutions under the assumption that F is
continuously differentiable. This assumption is rigorously justified in Section 4 in the case of Hölder and
Sobolev spaces. Finally, applications to the sensitivity analysis of (1), to its finite element approximation,
and to the convergence of Newton’s method, are studied in Section 5.

Notations For k ∈ N and α ∈ (0, 1], we write Ck,α(Td) the usual Hölder space on T
d, i.e.

Ck,α(Td) =
{

u ∈ Ck(Td) : ‖u‖Ck,α < +∞
}

,

where
‖u‖Ck,α =

∑

|j|≤k

∥

∥∂ju
∥

∥

L∞
+
∑

|j|=k

[

∂ju
]

α
,

with

[u]α = sup
y,x∈T

d

x 6=y

|u(x)− u(y)|
|x− y|α .
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Similarly, Ck,α
loc (R) is the space of locally Hölder continuous functions on R, i.e. f ∈ Ck,α

loc (R)
if f ∈ Ck,α(Ω) for every bounded open subset Ω ⊂ R. We also write Ck

b (R) the set of k times
continuously differentiable functions f on R such that the derivatives f (j), for 0 ≤ j ≤ k, are bounded.
We denote by P(Td) the space on probability measures over Td and we always identify a measure
m ∈ P(Td) with its density, which we also denote m, provided that the latter exists. For 1 < p ≤ ∞
the dual of the Sobolev space W 1,p(Td) is denoted by W−1,p′

(Td), where 1/p + 1/p′ = 1, and we
reserve the notation H−1(Td) for the dual ofH1(Td).

For Banach spaces X and Y and a mapping Φ: X → Y , we write dΦ[x] the Fréchet differential of
Φ at x ∈ X , when it exists. We also use the notation Y →֒ X when Y is continuously embedded in X .

By convention, we do not specify integration domains when integrals are considered on T
d, i.e.,

∫

f dx :=

∫

Td

f dx.

2 The mean field game system

In this section we establish some properties of the MFG system (1). We first state existence of solutions
to (1) as well as a uniqueness result under the Lasry-Lions monotonicity condition on the coupling f .
We then define stable solutions to (1) following [12] and prove that they are isolated. Finally, we provide
sufficient conditions to ensure that any classical solution to (1) is stable.

Let us begin by describing the mean field game interpretation of system (1). We consider a typical
player whose dynamics is governed by the following controlled stochastic differential equation

{

dXα
t = α(Xα

t )dt+
√
2dBt for all t > 0,

Xα
0 = x,

where Bt is a d-dimensional Brownian motion and α is a feedback control. Assume that the player
forecasts ρ̂ as being the evolution of the distribution of players, from which it is possible to compute
the weighted averaged density m̂ defined by

m̂(x) = λ

∫ +∞

0

ρ̂(t, x)e−λt dt (2)

for some given λ > 0. Then this player aims to minimize the following cost

J(x, α) = E

[

∫ +∞

0

(

|α(Xα
t )|2
2

+ f(m̂(Xα
t ))

)

e−λt dt

]

.

This yields the Hamilton-Jacobi equation for the value function u(x) := infα J(x, α) :

−∆u+
|Du|2
2

+ λu = f(m̂).

Since all the players are assumed to be interchangeable, they should all play according to the optimal
strategy provided by the Hamilton-Jacobi equation, i.e. α⋆(x) = −Du(x) (see [25, 26, 46]). The player
must then update the forecasted density by solving the Fokker-Planck equation

{

∂tρ−∆ρ− div(ρDu) = 0,

ρ(0) = m0,
(3)
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wherem0 is the initial distribution of agents. This yields and updated averaged density m through (2).
Using integration by parts in (2) one can easily derive the following equation onm

−∆m− div(mDu) + λm = λm0. (4)

As usual we define an MFG equilibrium as being a fix point of this procedure which corresponds
to a solution to (1). Notice that once we have a solutions to (1) it is possible to recover the probability
density function ρ by solving the Fokker-Planck equation (3).

In all of this paper we make the assumption that

m0 ∈ P(Td) ∩ C0,α(Td) for some α ∈ (0, 1). (5)

2.1 Well-posedness

The following result was established in [5, Chapter 7] by approximation. For the sake of self-containedness
we provide a proof in Appendix A based on the classical method introduced by Lasry-Lions.

Theorem 2.1. Assume that f ∈ W 1,∞(R). Then there exists a classical solution (u,m) ∈ C2,α(Td) ×
C2,α(Td) to (1), where the constant α is fixed in (5). Furthermore, if f ′ ≥ 0, then this solution is unique.

We now turn to technical results, which will be used throughout the paper. The first one recalls
some properties of Fokker-Planck type equations.

Lemma 2.2. Let b ∈ L∞(Td;Rd), f ∈ L2(Td), and g ∈ L2(Td;Rd). There exists a weak solution

m ∈ H1(Td) to
−∆m− div(mb) + λm = f + div(g) in T

d.

Moreover,

(i) m is the only element in L2(Td) such that

∫

(−∆ϕ+ b ·Dϕ+ λϕ)m dx =

∫

fϕ− g ·Dϕ dx for every ϕ ∈ H2(Td).

(ii) If f ≥ 0 and div(g) = 0, then, either f = 0 andm = 0, orm > 0.

(iii) If p ≥ 2, g ∈ Lp(Td;Rd), and f ∈ Lq(Td), with











q = dp/(d+ p) if p 6= d and d ≥ 2,

q > d/2 if p = d and d ≥ 2,

q = 1 if d = 1,

thenm ∈ W 1,p(Td) and there exists a positive constant C = C(‖b‖L∞ , λ, d, p, q) such that

‖m‖W 1,p ≤ C (‖m‖L1 + ‖g‖Lp + ‖f‖Lq ) . (6)

(iv) If g ∈ Lp(Td;Rd) and f ∈ Lq(Td) for p > d and q > d/2, then there exists a positive constant

C = C(‖b‖L∞ , ‖f‖Lp/2 , ‖g‖Lp , λ, d, p, q) such that

‖m‖L∞ ≤ C. (7)
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Proof. The existence of a weak solution m ∈ H1(Td) (and its uniqueness in H1(Td)) is standard and
follows from the Lax-Milgram theorem (see [23, 27]).

For (i) let ξ ∈ L2(Td) and let v ∈ H2(Td) be the unique solution (again see [23, 27]) to

−∆v + b ·Dv + λv = ξ in T
d.

Then usingm as a test function for the equation satisfied by v we have

∫

ξm dx =

∫

(−∆v + b ·Dv + λv)m dx =

∫

fv − g ·Dv dx.

If f, g = 0, and since ξ is arbitrary, we obtain m = 0 which proves (i). When ξ ≥ 0, div(g) = 0 and
f ≥ 0 we obtain m ≥ 0 since, in this case, v ≥ 0 by maximum principle (see [27, Theorem 8.1]). The
strict positivity whenm 6= 0 is then a consequence of the Harnack inequality [27, Theorem 8.20]. This
proves (ii)

The W 1,p estimate (iii) is a direct consequence of [6, Theorem 1.7.4] while (iv) follows from De
Giorgi-Nash-Moser estimates [27, Theorem 8.17].

Remark 2.3. We recall from [37, Theorem 10.41] that, for 1 < r ≤ ∞, any element h ∈W−1,r(Td) can

be identifiedwith g1+div(g2) for g1 ∈ Lr(Td), g2 ∈ Lr(Td;Rd) and ‖h‖W−1,r = (‖g1‖rLr + ‖g2‖rLr)
1/r

.
In particular the conclusions of Lemma2.2 can be extended to equationswith right-hand side inW−1,r(Td)
for appropriate values of r.

The following proposition contains a priori estimates on classical solutions to (1).

Proposition 2.4. Assume f ∈ C0
b (R). Then there exists a positive constant K = K(‖f‖L∞ , d) such

that for every classical solution (u,m) to (1) it holds that

‖u‖L∞ ≤ ‖f‖L∞

λ
, (8)

‖Du‖L∞ ≤ K, (9)

and

‖∆u‖L∞ ≤ 2 ‖f‖L∞ +
K2

2
=:M. (10)

Furthermore, if λ > M , then

‖m‖L∞ ≤ λ

λ−M
‖m0‖L∞ . (11)

Proof. Inequality (8) is a direct consequence of the comparison principle for u and (9) is given by [38,
Theorem 1.1], since any classical solution is also a continuous viscosity solution. The estimate (10)
directly follows from the equation satisfied by u. For the last inequality (11), notice that we may rewrite
the second equation in (1) as

−∆m−Du ·Dm+ (λ −∆u)m = λm0 in T
d.

Therefore when λ > M we deduce from (10) that λ−∆u > 0 and therefore the Fokker-Planck equation
satisfies a comparison principle from which the inequality follows.
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2.2 Stable solutions

The following definition is taken from [12].

Definition 2.5 (Stable solutions). Let f ∈ C1
b (R) and let (u,m) be a classical solution to (1). We say

that (u,m) is stable if (v, ρ) = (0, 0) is the unique classical solution to

{

−∆v +Du ·Dv + λv = f ′(m)ρ in T
d,

−∆ρ− div (ρDu) + λρ = div (mDv) in T
d.

(12)

Definition 2.6. Let f ∈ C1
b (R) and let (u,m) be a classical solution to (1). A pair (v, ρ) ∈ H1(Td) ×

L2(Td) is a weak solution to (12) if it satisfies

∫

Dv ·Dϕ+Du ·Dvϕ+ λvϕ dx =

∫

f ′(m)ρϕ dx for every ϕ ∈ H1(Td) (13)

and
∫

(−∆ψ +Du ·Dψ + λψ)ρ dx = −
∫

mDv ·Dψ dx for every ψ ∈ H2(Td). (14)

Lemma 2.7. Let f ∈ C1
b (R)∩C

1,1
loc (R) and (u,m) ∈ C2,α(Td)×C2,α(Td) be a classical solution to (1)

and (v, ρ) ∈ H1(Td)× L2(Td) be a weak solution to (12). Then (v, ρ) ∈ C2,α(Td)× C2,α(Td) and is a
classical solution to (12).

Proof. Notice first that if ρ ∈ C0,α(Td), then by Schauder estimates [27, Corollary 6.3] we have v ∈
C2,α(Td) and then also ρ ∈ C2,α(Td). It is therefore enough to prove that if (v, ρ) ∈ H1(Td)×L2(Td)
is a weak solution to (12) then ρ ∈ C0,α(Td). For this, let 1 < p < ∞, depending on d and α, be such
that Morrey’s inequality yieldsW 1,p(Td) →֒ C0,α(Td). It is now enough to prove that v ∈ W 1,p(Td)
which implies ρ ∈W 1,p(Td) by Lemma 2.2 (iii).

Since ρ ∈ L2(Td) and f ′ is bounded we deduce from standard elliptic regularity that v ∈ H2(Td).
Therefore in the case d = 1, 2 the fact that v ∈W 1,p(Td) directly follows from Sobolev’s inequality. In
the rest of the proof we assume d ≥ 3.

Since v ∈ H2(Td) we have that div(mDv) = Dm ·Dv +m∆v is an element of L2(Td). It is then
well known that the second equation in (12) has a weak solution ρ̃ ∈ H2(Td). Using the property (i)
in Lemma 2.2, we deduce that in fact ρ̃ = ρ and therefore ρ ∈ H2(Td). In the case where d = 3, 4 we
have ρ ∈ Lr(Td) for every 2 ≤ r < ∞ and in particular ρ ∈ Lp(Td). Injecting this information in
the equation satisfied by v we conclude that v ∈ W 2,p(Td) (see [27, Theorem 9.11]) and the conclusion
follows. We may therefore assume that d ≥ 5 and in this case Sobolev’s inequality yields ρ ∈ Lq1(Td),
where q1 = 2d

d−4 and, arguing as above, that v ∈ W 2,q1(Td).

We now know that div(mDv) belongs to Lq1(Td). One may keep this bootstrap argument going
and conclude that either we can obtain that ρ ∈ W 2,d/2(Td) after a finite number of steps, or there
exists a sequence of real numbers 2 ≤ qn < d/2, defined by

{

qn+1 = dqn
d−2qn

,

q0 = 2,

and such that ρ ∈W 2,qn(Td) for every n ≥ 1.
We claim that the latter case cannot happen. Indeed, if it were the case, we notice that

qn+1

qn
=

d
d−2qn

> 1 so that the sequence is increasing. In particular qn ≥ 2 for every n and therefore qn+1

qn
> d

d−4 .

It follows that d
2 > qn ≥ 2

(

d
d−4

)n

which yields a contradiction.
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We must therefore have ρ ∈W 2,d/2(Td) after a finite number of steps and hence, also, ρ ∈ Ls(Td)
for every s ∈ [1,∞). Using elliptic regularity one more time we have v ∈ W 1,p(Td). This concludes
the proof according to the discussion at the beginning of the argument.

The following proposition states that stable solutions to (1), although not unique in general, are
isolated. The result is a straightforward adaptation of [12, Proposition 4.2] with weaker norms. We
provide the proof in Appendix B.

Proposition 2.8 (Stable solutions are isolated). Let f ∈ C1
b (R), let (u,m) be a stable solution to (1), and

let p = max{2, d}. Then there exists R > 0 such that, if (ũ, m̃) 6= (u,m) is another classical solution to

(1), then
‖u− ũ‖W 1,p + ‖m− m̃‖L2 > R.

In the next theorem we establish the fact that for any λ > 0 outside of a finite set, every solution to
the MFG system (1) is stable. Furthermore, we are able to quantify the upper bound on the values of λ
for which this property may fail. This upper bound has the following form

Λ := max

{

2 ‖m0‖L∞ ,
K2

2
+ ‖m0‖L∞ ‖f ′‖L∞

}

. (15)

where the constantK is given in Proposition 2.4

Theorem 2.9. Let f ∈ C1
b (R). Then there exists a finite, and possibly empty, subset Σ ⊂ (0,Λ], where Λ

is given in (15), such that, if λ ∈ (0,+∞) \Σ, then every classical solution to (1) is stable. Furthermore, if

f ′ ≥ 0, then Σ = ∅.

Before proving Theorem 2.9 we establish three necessary technical lemmata.

Lemma 2.10. Assume that f ∈ C1
b (R) and let g ∈ L2(Td), h ∈ H−1(Td) and (u,m) be classical

solution to (1). There exists λ̄ > 0 such that if λ ≥ λ̄, σ ∈ [0, 1] and (v, ρ) ∈ H1(Td)× L2(Td) is a weak
solution to

{

−∆v +Du ·Dv + λv = σ (f ′(m)ρ+ g) in T
d,

−∆ρ− div(ρDu) + λρ = div(mDv) + σh in T
d,

(16)

then there exists a positive constant C > 0 such that

‖v‖H1 + ‖ρ‖L2 ≤ C (‖g‖L2 + ‖h‖H−1 ) .

Proof. Notice first that from Lemma 2.2 and Remark 2.3 we in fact have ρ ∈ H1(Td). Moreover, recall
from Young’s inequality that if a, b ≥ 0, then for every ǫ > 0 there exists a positive constant Cǫ such
that ab ≤ ǫa2 + Cǫb

2. Finally, we recall from Proposition 2.4 that ‖Du‖L∞ ≤ K and we can assume
that λ is large enough so that ‖m‖L∞ ≤ 2 ‖m0‖L∞ .

Using ρ as a test function for the second equation in (16) we have

∫

|Dρ|2 + λ |ρ|2 dx = −
∫

ρDu ·Dρ+mDv ·Dρdx+ σ〈h, ρ〉H−1,H1

≤ ‖Du‖L∞ ‖ρ‖L2 ‖Dρ‖L2 + ‖m‖L∞ ‖Dv‖L2 ‖Dρ‖L2 + ‖h‖H−1 ‖ρ‖H1

≤ 2ǫ ‖Dρ‖2L2 + Cǫ

(

‖Du‖2L∞ ‖ρ‖2L2 + ‖m‖2L∞ ‖Dv‖2L2

)

+ ǫ ‖ρ‖2H1 + Cǫ ‖h‖2H−1

≤ 3ǫ ‖Dρ‖2L2 + ǫ ‖ρ‖2L2 + Cǫ

(

K2 ‖ρ‖2L2 + 4 ‖m0‖2L∞ ‖Dv‖2L2 + ‖h‖2H−1

)

.
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Therefore, if we choose ǫ = 1/3 and if λ > C1/3K
2 + 1/3 we obtain

‖ρ‖2L2 ≤ C1/3

(

λ− C1/3K
2 − 1/3

)−1
(

4 ‖m0‖2L∞ ‖Dv‖2L2 + ‖h‖2H−1

)

. (17)

We set η := C1/3

(

λ− C1/3K
2 − 1/3

)−1
. We now use v as a test function for the first equation in (16)

to obtain the estimate
∫

|Dv|2 + λ |v|2 dx =

∫

−vDu ·Dv + σf ′(m)ρv + σgv dx

≤ ‖Du‖L∞ ‖Dv‖L2 ‖v‖L2 + ‖f ′‖L∞ ‖ρ‖L2 ‖v‖L2 + ‖g‖L2 ‖v‖L2

≤ ǫ
(

‖Dv‖2L2 + ‖ρ‖2L2

)

+ Cǫ

(

‖Du‖2L∞ ‖v‖2L2 + ‖f ′‖2L∞ ‖v‖2L2

)

+
1

2

(

‖g‖2L2 + ‖v‖2L2

)

≤ ǫ
(

1 + 4η ‖m0‖2L∞

)

‖Dv‖2L2 + ǫη ‖h‖2H−1 +
(

1 + Cǫ

(

K2 + ‖f ′‖2L∞

))

‖v‖2L2 + ‖g‖2L2 .

Hence, if we choose ǫ <
(

1 + 4η ‖m0‖2L∞

)−1

and if λ is large enough we deduce that there exists a

positive constant C such that

‖v‖2H1 ≤ C
(

‖h‖2H−1 + ‖g‖2L2

)

.

The conclusion then follows from (17).

Lemma 2.11. Assume that f ∈ C1
b (R), let g ∈ L2(Td), h ∈ H−1(Td), and (u,m) be a classical solution

to (1). There exists λ̄ > 0 such that if λ ≥ λ̄ there exists a weak solution (v, ρ) ∈ H2(Td)×H1(Td) to

{

−∆v +Du ·Dv + λv = f ′(m)ρ+ g in T
d,

−∆ρ− div(ρDu) + λρ = div(mDv) + h in T
d,

(18)

and

‖v‖H2 + ‖ρ‖H1 ≤ C (‖g‖L2 + ‖h‖H−1) .

Proof. The proof relies on the Leray-Schauder fixed point theorem [27, Theorem 11.3]. Fix ρ ∈ L2(Td).
Then there exists a unique solution v ∈ H2(Td) to the equation

−∆v +Du ·Dv + λv = f ′(m)ρ+ g in T
d,

and a unique ρ̃ ∈ H1(Td) satisfying

−∆ρ̃− div(ρ̃Du) + λρ̃ = div(mDv) + h in T
d

in the weak sense. In this way we define a mapping Φ: L2(Td) → L2(Td) by setting Φ(ρ) = ρ̃. This
mapping is continuous and compact. In order to apply the Leray-Schauder theorem we have to prove
that the solutions to ρ = σΦ(ρ) are bounded in L2(Td) for every σ ∈ [0, 1]. This uniform bounded is
provided by Lemma 2.10 since the equation ρ = σΦ(ρ) is equivalent to the system (16). This proves
that Φ has a fixed point which, by construction, provides a solution to (18).

Lemma 2.12. Let f ∈ C1
b (R) and (u,m) be a classical solution to (1). Then (u,m) is stable provided that

one of the following conditions holds:

(i) (Monotonicity of the coupling) f ′ ≥ 0.

9



(ii) (Large discount factor) λ > Λ, where Λ is given in (15).

Proof. Let (v, ρ) be a weak solution to (12). Using Lemma 2.7 we may assume that (v, ρ) ∈ C2(Td) ×
C2(Td). Using ρ as a test-function in (13) and v as a test-function in (14) we get

∫

Dv ·Dρ+ ρDu ·Dv + λvρ dx =

∫

f ′(m)ρ2 dx, (19)

and
∫

Dρ ·Dv + ρDu ·Dv + λρv dx =

∫

−m |Dv|2 dx. (20)

Subtracting (20) from (19) we obtain
∫

m |Dv|2 dx = −
∫

f ′(m) |ρ|2 dx. (21)

In the case where f ′ ≥ 0, and sincem is nonnegative (see Lemma 2.2), this implies that Dv = 0 on the
set wherem > 0, in particularmDv = 0 on T

d. Using Lemma 2.2, we deduce that ρ = 0 on T
d. Using

the uniqueness of the solution to the equation satisfied by v, we conclude that v = 0.
We now assume that λ > Λ. Notice that this and Proposition 2.4 yield ‖m‖L∞ ≤ 2 ‖m0‖L∞ . Then,

using ρ as a test function in (14), it follows from (9), the positivity ofm and (21), that
∫

|Dρ|2 + λ |ρ|2 dx ≤ ‖Du‖L∞ ‖ρ‖L2 ‖Dρ‖L2 + ‖Dρ‖L2 ‖mDv‖L2

≤ K ‖ρ‖L2 ‖Dρ‖L2 + ‖m‖1/2L∞ ‖Dρ‖L2

∥

∥

∥
m1/2Dv

∥

∥

∥

L2

≤ K ‖ρ‖L2 ‖Dρ‖L2 + ‖m‖1/2L∞ ‖Dρ‖L2

(

−
∫

f ′(m) |ρ|2
)1/2

≤ ‖Dρ‖2L2 +
K2

2
‖ρ‖2L2 +

1

2
‖f ′‖L∞ ‖m‖L∞ ‖ρ‖2L2

≤ ‖Dρ‖2L2 +

(

K2

2
+ ‖m0‖L∞ ‖f ′‖L∞

)

‖ρ‖2L2 .

From our assumption on λ, we obtain ‖ρ‖L2 = 0 and the conclusion follows as in the first case.

Proof of Theorem 2.9. Notice first that the case λ > Λ as well as the case f ′ ≥ 0 directly follow from
Lemma 2.12. Therefore, we only have to consider the case λ ∈ (0,Λ] with non-monotone coupling.

Assume that (v, ρ) ∈ H1(Td)×L2(Td) is a nontrivial solution to (12). We define the linear operator
B ∈ L(H1(Td)× L2(Td), L2(Td)×H−1(Td)) by

B(w, µ) = (Du ·Dw − f ′(m)µ,− div(µDu+mDw)) .

Then, with obvious abuse of notations, (v, ρ) is a solution to (12) if and only if

(−∆+ λI +B) (v, ρ) = 0. (22)

Let now λ̄ be as in the conclusion of Lemma 2.10. We may assume that λ̄ > Λ. Then (22) is equivalent
to

(

−∆+ λ̄I +B
)

(v, ρ) =
(

λ̄− λ
)

(v, ρ). (23)

In other words, if (v, ρ) is a nontrivial solution to (12), then λ̄−λ belongs to ev(L), the set of eigenvalues
of the linear operator L := −∆+ λ̄I+B, whereL ∈ L(H2(Td)×H1(Td), L2(Td)×H−1(Td)). From
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Lemmata 2.11 and 2.12, we know that L is invertible and, from the compact embedding of H2(Td) ×
H1(Td) into L2(Td) × H−1(Td), that L−1 is compact as a element of L(L2(Td) × H−1(Td)). It
then follows from standard results on compact operators (see [10, Theorem 6.8] for instance) that the
spectrum sp(L−1) of L−1 is at most countable and can only have an accumulation point at 0. Since, for
µ 6= 0, µ ∈ ev(L) implies µ−1 ∈ sp(L−1), we deduce that the set ev(L) ∩ (λ̄ − Λ, λ̄) is finite. Hence
there can only exist finitely many λ ∈ (0,Λ) such that (23) holds for a nontrivial solution (v, ρ) to (12).

3 Reformulation of the MFG system

We are now going to reformulate (1) as an abstract equation F (u,m) = 0. In order to do this let us
introduce an additional assumption which will be useful to state some results in a general form.

(H) X and Z are Banach spaces such that

C2,α(Td)× C2,α(Td) ⊂ X ⊂ H1(Td)× L2(Td) and Z ⊂ L1(Td)× (W 1,∞(Td))′. (24)

with continuous embeddings. For every (v, ρ) ∈ X , we have

G(v, ρ) :=

(

1

2
|Dv|2 − f(ρ),− div (ρDu)− λm0

)

belongs to Z (25)

and, for every (ξ, ζ) ∈ Z , the equation

{

−∆v + λv = ξ in T
d,

−∆ρ+ λρ = ζ in T
d,

(26)

admits a unique distributional solution T (ξ, ζ) that belongs to X .

Assumption (H) allows to define two mappingsG : X → Z and T : Z → X such that, at least formally,
(u,m) solves (1) if and only

F (u,m) := (u,m) + T (G(u,m)) = 0. (27)

This is made rigorous in the following result.

Proposition 3.1. Assume that f ∈ W 1,∞(R) and that (H) holds. A pair (u,m) ∈ C2,α(Td)×C2,α(Td)
solves (1) if and only if it satisfies (27).

Proof. Assume that (u,m) ∈ C2,α(Td)× C2,α(Td) is a solution to (1). We can rewrite (1) as

{

−∆u+ λu = f(m)− 1
2 |Du|

2
in T

d,

−∆m+ λm = λm0 + div (mDu) in T
d,

or, with an obvious abuse of notation,

(−∆+ λI)(u,m) = −G(u,m). (28)

We can apply T = (−∆+ λI)−1 on both sides of (28) and use the linearity of T to obtain that

(u,m) = −T (G(u,m)).

Conversely if (u,m) satisfies (27) we can apply the operator (−∆+ λI) to get (28).

11



Let now (u,m) be a classical solution to (1) andX and Z be Banach spaces such that (H) holds and
(u,m) ∈ X . Formally, the Fréchet differential of the mapping F defined in (27) at (u,m) is given by

dF [u,m](v, ρ) := (v, ρ) + T (dG[u,m](v, ρ)) (29)

where
dG[u,m](v, ρ) = (Du ·Dv − f ′(m)ρ,− div (ρDu)− div (mDv)) . (30)

The rigorous proof of Fréchet differentiability will be made in Section 4 below. Notice that (v, ρ) solves
(12) if and only if

dF [u,m](v, ρ) = 0. (31)

Theorem 3.2 (Isomorphism property of stable solutions). Let f ∈ C1
b (R) and let X and Z be Banach

spaces such that (H) holds and let Y be a Banach space such that

Y ⊂ X ⊂ H1(Td)× L2(Td) with Y ⊂ X compact.

Assume also that the mapping G : X → Z defined by (25) is continuously differentiable and that T ∈
L(Z, Y ). Then the mapping F : X → X defined by (27) is continuously differentiable with dF = I + T ◦
dG, and, for every stable solution (u,m) ∈ C2,α(Td) × C2,α(Td) to (1), the linear operator dF [u,m] is
an isomorphism on X .

Proof. The differentiability of F is a direct consequence of the chain rule and the differentiability of
G. If (u,m) ∈ C2,α(Td) × C2,α(Td) is a stable solution to (1), then (I + T ◦ dG[u,m]) is injective
on C2,α(Td) × C2,α(Td). By Lemma 2.7 we know that any weak solution (v, ρ) ∈ H1(Td) × L2(Td)
to (12) belongs to C2,α(Td) × C2,α(Td). Hence the operator (I + T ◦ dG[u,m]) is also injective on
H1(Td)× L2(Td), in particular it is injective on X .

Notice now that since dG[u,m] ∈ L(X,Z) and T ∈ L(Z, Y )we have that T ◦dG[u,m] ∈ L(X,Y )
and since Y ⊂ X is compact we deduce that the operator T ◦ dG[u,m] ∈ L(X) is compact. Using
Fredholm’s alternative, we conclude that dF [u,m] is an isomorphism onX .

We now provide two concrete examples of Banach spaces X , Y , and Z , satisfying (H) and the
assumptions of Theorem 3.2. These examples will constitute the building blocks of the applications
studied in Section 5.

Example 3.3. Let f ∈ C1
b (R), let 0 < γ < β < α and set

X = C2,β(Td)× C2,γ(Td), Y = C2,α(Td)× C2,β(Td) and Z = C0,α(Td)× C0,β(Td)

where α is fixed in (5).
Let us check that (H) and the assumptions of Theorem 3.2 are satisfied in this case. From the Arzela-

Ascoli theoremwe have the compact embedding of Y intoX . It is also clear thatX ⊂ H1(Td)×L2(Td).
We fix some stable solution (u,m) ∈ C2,α(Td) × C2,α(Td) to (1). From the Schauder estimates [27,
Corollary 6.3] we have T ∈ L(Z, Y ). It remains to prove that G : X → Z is well-defined. First notice
that

∥

∥

∥
|Dv|2

∥

∥

∥

C0,α
≤ 2 ‖Dv‖2C0,α ≤ C ‖v‖2C2,β .

Since f is Lipschitz continuous we also have

‖f(ρ)‖C0,α ≤ ‖f‖W 1,∞ ‖ρ‖C0,α ≤ C ‖f‖W 1,∞ ‖ρ‖C2,γ

Finally, writting
div(ρDv) = Dρ ·Dv + ρ∆v,
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we obtain that

‖div(ρDv)‖C0,α ≤ 2 ‖Dρ‖C0,α ‖Dv‖C0,α + 2 ‖ρ‖C0,α ‖∆v‖C0,α ≤ C ‖ρ‖C2,γ ‖v‖C2,β .

In conclusion we have

‖G(v, ρ)‖Z ≤ C
(

‖v‖2C2,β + ‖ρ‖2C2,γ

)

≤ C ‖(v, ρ)‖2X ,

and the mapping G is therefore well defined fromX to Z .
In the case where G is also continuously differentiable we have dG : X → L(X,Z) and we can

apply Theorem 3.2 to conclude that dF [u,m] is an isomorphism on C2,β(Td)× C2,γ(Td).

Example 3.4. Let f ∈ C1
b (R) and

X =W 1,p(Td)× Lq(Td), Y =W 2,p/2(Td)×W 1,r(Td) and Z = Lp/2(Td)×W−1,r(Td)

where d < p, q < ∞ and r > 1 are such that 1/r ≥ 1/p + 1/q and we have a compact embedding
W 1,r(Td) →֒ Lq(Td).

We now verify that (H) and the assumptions in Theorem 3.2 are satisfied. Since we assume p > d
the Rellich-Kondrachov theorem gives the compact embedding W 2,p/2(Td) →֒ W 1,p(Td). It follows
that there is a compact embedding from Y into X . Using W 2,p estimates [27, Theorem 9.11] and the
W 1,p estimate (6) from Lemma 2.2 we have that T ∈ L(Z,W 2,p/2(Td) ×W 1,r(Td)). Therefore T ∈
L(Z, Y ) ⊂ L(Z,X). Moreover is is easy to check that G : X → Z is well defined.

Therefore in the case where G is continuously differentiable we obtain from Theorem 3.2 that
dF [u,m] is an isomorphism onW 1,p(Td)× Lq(Td).

We now turn to the particular case of a monotone coupling and prove that the unique classical solu-
tion to (1), which we also know to be stable by Theorem 2.9, satisfies a stronger isomorphism property
than the one resulting from the direct application of Theorem 3.2.

Theorem 3.5 (Isomorphism property for monotone couplings). Let f ∈ C1
b (R)∩C

1,1
loc (R). Assume that

f ′ ≥ 0 and let (u,m) ∈ C2,α(Td)× C2,α(Td), where α is fixed in (5), be the unique classical solution to

(1). Then (H) holds forX = C2,α(Td)×C2,α(Td) andZ = C0,α(Td)×C0,α(Td). Moreover, assume that

G in (H) is continuously differentiable and define F according to (27). Then dF [u,m] is an isomorphism

on X .

Proof. According to Theorem 2.9, (u,m) is a stable solution to (1). Therefore the injectivity of dF [u,m]
follows from the definition of stable solutions.

We now prove its surjectivity. More precisely we prove that for every (w, µ) ∈ C2,α(Td)×C2,α(Td)
there exists (v, ρ) ∈ C2,α(Td)× C2,α(Td) such that

dF [u,m](v, ρ) = (w, µ), (32)

which is equivalent to showing that there exists a unique solution (v, ρ) ∈ C2,α(Td)× C2,α(Td) to

{

−∆v +Du ·Dv + λv = f ′(m)ρ−∆w + λw in T
d,

−∆ρ− div (ρDu) + λρ = div (mDv)−∆µ+ λµ in T
d.

(33)

The argument relies on the Leray-Schauder fixed point theorem and is adapted from [16, Lemma
3.4]. Let us first define the mapping for which we will find a fixed point. Fix some ρ ∈ L2(Td). Then
there exists a solution v ∈ H2(Td) to

−∆v +Du ·Dv + λv = f ′(m)ρ−∆w + λw in T
d,
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and a unique weak solution ρ̃ ∈ H1(Td) to

−∆ρ̃− div (ρ̃Du) + λρ̃ = div (mDv)−∆µ+ λµ in T
d.

This allows us to define a mapping Φ: L2(Td) → L2(Td) by setting Φ(ρ) = ρ̃. In order to apply
the Leray-Schauder fixed point theorem [27, Theorem 11.3] we have to prove that the set of solutions
ρ ∈ L2(Td) to ρ = σΦ(ρ), where σ ∈ [0, 1], is uniformly bounded in L2(Td). This amounts to prove a
uniform bound on the solutions to

{

−∆v +Du ·Dv + λv = σ [f ′(m)ρ−∆w + λw] in T
d,

−∆ρ− div (ρDu) + λρ = div (mDv)− σ [∆µ− λµ] in T
d.

Using ρ as a test function for the equation satisfied by v we obtain that
∫

Dv ·Dρ+ ρDu ·Dv + λvρ dx = σ

∫

f ′(m)ρ2 + ρ (λw −∆w) dx. (34)

Similarly, using v as a test function for the equation satisfied by ρ we obtain that
∫

Dρ ·Dv + ρDu ·Dv + λρv dx =

∫

−m |Dv|2 + σ (λvµ+Dv ·Dµ) dx. (35)

Subtracting (35) to (34) we get
∫

m |Dv|2 dx = σ

∫

−f ′(m)ρ2 − ρ (λw −∆w) + λvµ+Dv ·Dµ dx.

The positivity of f ′ then yields
∫

m |Dv|2 dx ≤ C (‖ρ‖L2 ‖w‖H2 + ‖v‖H1 ‖µ‖H1 ) . (36)

Let now ξ ∈ H−1(Td) and z ∈ H1(Td) be the unique weak solution to

−∆z +Du ·Dz + λz = ξ in T
d.

Using z as a test function for the equation satisfied by ρ and recalling thatm ≥ 0 (see Lemma 2.2-(ii))
we get

〈ξ, ρ〉H−1,H1 =

∫

mDv ·Dz + σ (λzµ+Dµ ·Dz) dx

≤ C
(∥

∥

∥
m1/2Dz

∥

∥

∥

L2

∥

∥

∥
m1/2Dv

∥

∥

∥

L2
+ ‖z‖H1 ‖µ‖H1

)

≤ C ‖z‖H1

(

(‖ρ‖L2 ‖w‖H2 + ‖v‖H1 ‖µ‖H1)
1/2 + ‖µ‖H1

)

≤ C ‖ξ‖H−1

(

(‖ρ‖L2 ‖w‖H2 + ‖v‖H1 ‖µ‖H1)
1/2

+ ‖µ‖H1

)

where we used (36) to obtain the second inequality. Since ξ is arbitrary, we deduce by duality that

‖ρ‖H1 ≤ C
(

(‖ρ‖L2 ‖w‖H2 + ‖v‖H1 ‖µ‖H1)
1/2

+ ‖µ‖H1

)

,

and hence, by Young’s inequality, we get

‖ρ‖H1 ≤ C
(

‖w‖H2 + ‖v‖1/2H1 ‖µ‖1/2H1 + ‖µ‖H1

)

.
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From elliptic regularity we know that

‖v‖H2 ≤ C (‖ρ‖L2 + ‖w‖H2) ≤ C
(

‖w‖H2 + ‖v‖1/2H1 ‖µ‖1/2H1 + ‖µ‖H1

)

,

and hence, after another application of Young’s inequality, we get a uniform bound on v in H2(Td)

‖v‖H2 ≤ C (‖w‖H2 + ‖µ‖H1 ) .

Using standard H1 estimates we can now deduce a uniform on ρ in H1(Td)

‖ρ‖H1 ≤ C (‖w‖H2 + ‖µ‖H1) .

The compactness on Φ then follows from the Rellich-Kondrachov theorem and we can therefore
apply the Leray-Schauder fixed point theorem to obtain a pair (v; ρ) ∈ H2(Td)×H1(Td) solving (12).

Using a bootstrap argument similar to the one used in Lemma 2.7, we can obtain that (v, ρ) ∈
C2,α(Td)× C2,α(Td).

4 Differentiability of the mapping F

In this sectionwe prove the differentiability of themappingF defined by (27) in bothHölder and Sobolev
spaces. This corresponds to the situations considered in Examples 3.3 and 3.4.

4.1 Differentiability in Hölder spaces

The following proposition summarizes the differentiability properties of the Nemytskii operator on
Hölder spaces which we will use to prove the differentiability of the mapping G.

Proposition4.1. Assume that h ∈ C2(R) and let β ∈ (0, 1]. Then the Nemytskii operatorH : C0,β(Td) →
C0,β(Td) defined by

H [u](x) = h(u(x)) for x ∈ T
d

is continuously differentiable and dH [u](v) = h′(u)v. In particular, for every γ ∈ (0, 1] the mapping

C2,γ(Td) ∋ u 7→ H [u] ∈ C0,β(Td)

is also continuously differentiable. Furthermore, if h ∈ C2,1
loc (R), then dH is locally Lipschitz continuous in

L(C2,γ(Td), C0,β(Td)).

Proof. The first statement is proved in [41, Theorem 4.1] (this is where we need the C2 assumption on
f ). For the second one let us write J ∈ L(C2,γ(Td), C0,β(Td)) for the natural injection of C2,γ(Td)
into C0,β(Td). It is enough to notice that H ◦ J is continuously differentiable from the chain rule.

For the local Lipschitz continuity let v ∈ C2,γ(Td). We have

‖(h′(u1)− h′(u2))v‖C0,β ≤ ‖v‖C0,β ‖h′(u1)− h′(u2)‖C0,β ≤ ‖v‖C2,γ ‖h′(u1)− h′(u2)‖C0,β

so that
‖dH [u1]− dH [u2]‖L(C2,γ ,C0,β) ≤ ‖h′(u1)− h′(u2)‖C0,β .

Therefore dH is locally Lipschitz continuous as soon as

C2,γ(Td) ∋ u 7→ h′(u) ∈ C0,β(Td)

is locally Lipschitzian, which is the case if h′ ∈ C1,1
loc according to [41, Theorem 3.1].
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We are now going to prove the differentiability of the mapping F , defined by (27), in the situations
described in Example 3.3 and Theorem 3.5.

Lemma 4.2. Let f ∈ C1
b (R) ∩ C2(R) and 0 < γ ≤ β ≤ α, where α is set in (5). Set X = C2,β(Td) ×

C2,γ(Td) and Z = C0,α(Td)×C0,β(Td). Then the mappingG : X → Z , defined by (25), is continuously
differentiable and, for every (u,m) ∈ X , we have

dG[u,m](v, ρ) = (Du ·Dv − f ′(m)ρ,− div(ρDu)− div(mDv)) .

Furthermore, if f ∈ C2,1
loc (R), then dG is locally Lipschitz continuous.

Proof. From Proposition 4.1, we have that the differentials of

C2,β(Td) ∋ u 7→ |Du|2
2

∈ C0,β(Td)

and
C2,γ(Td) ∋ m 7→ f(m) ∈ C0,β(Td),

are given by
C2,β(Td) ∋ v 7→ Du ·Dv ∈ C0,β(Td)

and
C2,γ(Td) ∋ ρ 7→ f ′(m)ρ ∈ C0,β(Td),

respectively. The second component of dG being continuous and bilinear, its differentiability is also easy
to check. The remaining conclusions follow from the assumptions on f and last assertion in Proposi-
tion 4.1.

Then fact that F is continuously differentiable when f ∈ C1
b (R) ∩ C2(R) is then a direct conse-

quence of Lemma 4.2 and the chain rule.

Proposition 4.3. Let f ∈ C1
b (R) ∩ C2(R) and let 0 < γ ≤ β ≤ α, where α is fixed in (5). Set

X = C2,β(Td) × C2,γ(Td) and Z = C0,α(Td)× C0,β(Td). Then the mapping F : X → X defined by

(27) is continuously differentiable with dF given by (29). Furthermore, if f ∈ C2,1
loc (R), then dF is locally

Lipschitz continuous in L(X).

4.2 Differentiability in Sobolev spaces

We beginwith a preliminary result on the differentiability of theNemytskii operator on Lebesgue spaces.

Proposition 4.4. Let (Ω,A, µ) be a finite measure space and let 1 < p, q, r < ∞ with q < p and

1/r = 1/q − 1/p. Consider a function h ∈ C1(R) such that

|h′(x)| ≤ C
(

1 + |x|p/r
)

(37)

and define the Nemytskii operator H : Lp(Ω, µ) → Lq(Ω, µ) by

H [u](x) = h(u(x)) for x ∈ Ω for µ-a.e.x ∈ Ω.

Then H is continuously differentiable with dH [u](v) = h′(u)v.
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Proof. Let u, v ∈ Lp(Ω, µ). Since h ∈ C1(R), we have

h(u(x) + v(x)) − h(u(x)) = v(x)

∫ 1

0

h′(u(x) + tv(x)) dt

for µ-a.e. x ∈ Ω. Therefore, it follows from Holder’s and Jensen’s inequalities as well as Fubini’s
theorem that

‖H [u+ v]−H [u]− h′(u)v‖qLq =

∥

∥

∥

∥

v

∫ 1

0

h′(u+ tv)− h′(u) dt

∥

∥

∥

∥

q

Lq

≤ ‖v‖qLp

∥

∥

∥

∥

∫ 1

0

h′(u+ tv)− h′(u) dt

∥

∥

∥

∥

q

Lr

≤ ‖v‖qLp

∫ 1

0

‖h′(u+ tv)− h′(u)‖qLr dt.

It follows thatH is Fréchet differentiable at u if we are able to prove that

lim
n→∞

sup
t∈[0,1]

‖h′(u+ tvn)− h′(u)‖Lr = 0. (38)

for every sequence vn in Lp(Ω, µ) converging to 0. Let vn be such a sequence, we may assume that the
convergence also holds in the µ-almost everywhere sense. Using the uniform continuity of h′ on the
set B̄(u(x), supn |vn(x)|) we obtain that

lim
n→∞

sup
t∈[0,1]

|h′(u(x) + tvn(x)) − h′(u(x))|r = 0 for µ-a.e. x ∈ Ω. (39)

For every σ > 1 we denote by cσ the smallest positive constant such that

(a+ b)σ ≤ cσ(a
σ + bσ) for every a, b ≥ 0.

Using (37) we have, for every t ∈ [0, 1],

|h′(u + tvn)− h′(u)|r ≤ cr
(

|h′(u + tvn)|r + |h′(u)|r
)

≤ cr

((

C
(

1 + |u+ tvn|p/r
))r

+
(

C
(

1 + |u|p/r
))r)

≤ c2rC
r (2 + |u+ tvn|p + |u|p)

≤ c2rC
r (2 + cp |vn|p + (1 + cp) |u|p)

so that
sup

t∈[0,1]

|h′(u + tvn)− h′(u)|r ≤ c2rC
r (2 + cp |vn|p + (1 + cp) |u|p) µ-a.e. (40)

Clearly the right-hand side in (40) converges inL1(Ω;µ) and is therefore uniformly integrable according
to the Lebesgue-Vitali theorem [7, Theorem4.5.4]. This proves that the left-hand side of (40) is uniformly
integrable. Combining this last point with (39), we can use the other implication in the Lebesgue-Vitali
theorem to establish

lim
n→∞

∫

sup
t∈[0,1]

|h′(u+ tvn)− h′(u)|r µ(dx) = 0.

Since

sup
t∈[0,1]

∫

|h′(u + tvn)− h′(u)|r µ(dx) ≤
∫

sup
t∈[0,1]

|h′(u+ tvn)− h′(u)|r µ(dx)
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we deduce (38). This proves the differentiability of H .
For the continuity of dH , let un be a sequence in Lp(Ω, µ) converging to u ∈ Lp(Ω, µ). Notice that

‖dH [un]− dH [u]‖L(Lp,Lq) ≤ ‖h′(un)− h′(u)‖Lr .

The continuity can then be proven using the Lebesgue-Vitali theorem similarly to what we did for
differentiability.

We now come back to the differentiability of the mapping F for the situation described in Exam-
ple 3.4.

Proposition4.5. Let f ∈ C1
b (R)∩C

1,1
loc (R),X =W 1,p(Td)×Lq(Td), andZ = Lp/2(Td)×W−1,r(Td),

where d ≤ p, q < ∞, q > p/2, and 1/r ≥ 1/p+ 1/q. Assume also thatW 1,r(Td) →֒ Lq(Td). Then the

mapping F : X → X defined by (27) is continuously differentiable.

Proof. Under these assumptions, we recall from Example 3.4 that (H) holds. From Proposition 4.4 we
have that the mappings

Lq(Td) ∋ m 7→ f(m) ∈ Lp/2(Td)

and
W 1,p(Td) ∋ u 7→ |Du|2 ∈ Lp/2(Td)

are continuously differentiable. Moreover

W 1,p(Td)× Lq(Td) ∋ (u,m) 7→ div(mDu) ∈ W−1,r(Td)

is also continuously differentiable as a continuous bilinear operator. The differentiability of F then
follows from the chain rule.

5 Applications

In this section we provide three applications of the isomorphism property of stable solutions to (1).

5.1 Stability under perturbations of the MFG system

In this section, our goal is to study perturbations of the mean field game system (1), or equivalently (27).
In the case of stable solutions, the isomorphism property obtained in Theorems 3.2 and 3.5 motivates
the use of the implicit function theorem, allowing us to consider a large class of perturbations. In what
follows we provide a simple example of this idea. Namely, we consider the system

{

−∆u+ 1
2 |Du|

2 + λu = f(m) + ǫf̂(m) in T
d,

−∆m− div(mDu) + λm = λ((1 − ǫ)m0 + ǫm1) in T
d,

(41)

where ǫ > 0 is a small parameter and f̂ ∈ C2((0,+∞)) andm1 ∈ C0,α(Td)∩P(Td) are perturbations
of f ∈ C1

b (R) ∩ C2(R) andm0, respectively. We recall that α is fixed in (5).
Let (u,m) ∈ C2,α(Td)×C2,α(Td) be a stable solution to (1) and set 0 < γ < β < α. Sincem0 6= 0

we also havem > 0 from Lemma 2.2 (ii). In particular, there exists a bounded neighborhoodO ofm in
C2,γ(Td) and η > 0 such that, for every m̃ ∈ O, we have m̃ ≥ η. Notice that if we define

EO :=
{

m̃(x) : m̃ ∈ O, x ∈ T
d
}

,
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then we have that EO is bounded in R and inf EO ≥ η > 0. Since f̂ ∈ C2((0,+∞)) is Lipschitz

continuous on EO , we deduce from Proposition 4.1 that the mapping O ∋ m̃ 7→ f̂(m̃) ∈ C0,β(Td) is
well-defined and continuously differentiable.

Let X = C2,β(Td) × C2,γ(Td), Z = C0,β(Td) × C0,γ(Td) and consider the mappings G and T ,
defined by (25) and (26), respectively. We recall that it was checked in Example 3.3 that (H) holds in this
case. We introduce the mapping

Ĝ : C2,β(Td)×O × R+ → C0,β(Td)× C0,γ(Td)

defined by
Ĝ(u,m, ǫ) = G(u,m)− ǫ(f̂(m), λ(m1 −m0)).

Then, setting

F̂ (u,m, ǫ) =
(

Î + T ◦ Ĝ
)

(u,m, ǫ),

where T is defined by (26) and Î(u,m, ǫ) = (u,m), it holds that (uǫ,mǫ) ∈ X solves (41) if and only if

F̂ (uǫ,mǫ, ǫ) = 0.

Arguing as in the proof of Proposition 4.3, we have that F̂ is continuously differentiable on C2,β(Td)×
O× [0,+∞). Moreover, it follows from Theorem 3.2 and Example 3.3 that d(u,m)F̂ [u,m, 0] = dF [u,m]
is an isomorphism on X . We can apply the implicit function theorem to obtain the following result.

Proposition 5.1 (Sensitivity analysis). Let f ∈ C1
b (R) ∩ C2(R), f̂ ∈ C2((0,+∞)),m1 ∈ C0,α(Td) ∩

P(Td), 0 < γ < β < α, where α is fixed in (5), and (u,m) ∈ C2,α(Td) × C2,α(Td) be a stable solution
to (1). Then, for some ǫ0 > 0 and every ǫ ∈ [0, ǫ0), there exists (uǫ,mǫ) ∈ C2,β(Td)×C2,γ(Td) such that

F̂ (uǫ,mǫ, ǫ) = 0,

with

(uǫ,mǫ) = (u,m)− ǫdF (u,m)−1T (f̂(m), λ(m1 −m0)) + o(ǫ),

and

‖uǫ − u‖C2,β + ‖mǫ −m‖C2,γ = O(ǫ).

Furthermore, (uǫ,mǫ) is a stable solution to (41).

Remark 5.2. Wemay choose α = β = γ in Proposition 5.1 under the additional assumption that f ′ ≥ 0.

5.2 Finite Element approximation of the MFG system

Our goal here is to obtain error estimates for the finite element approximation of a stable classical
solution to (1) by applying the following result of Brezzi-Rappaz-Raviart [11] (see also [28, Section
IV.3]).

Theorem 5.3 ([28, Theorem 3.3 and Remark 3.5]). Let V,W be Banach spaces, let T, Th ∈ L(W,V ), for
every h > 0, and let G : V → W be a continuously differentiable mapping such that dG locally Lipschitz

continuous in L(V,W ). Set F = I + T ◦ G and let x ∈ V be such that F (x) = 0 and dF [x] is an
isomorphism on V . If

lim
h→0

‖T − Th‖L(W,V ) = 0, (42)

then there exists h0 > 0 and a neighborhood O of x in V such that, for every 0 < h ≤ h0, there exists
xh ∈ V such that

Fh(xh) := (I + Th ◦G)(xh) = 0. (43)

Furthermore the following properties hold
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(i) dFh[xh] is an isomorphism on V ,

(ii) xh ∈ O for every 0 < h ≤ h0 and there is no other solution to (43) in O,

(iii) there exists a constant K > 0, independent of h, such that

‖x− xh‖V ≤ K ‖(T − Th)G(x)‖V . (44)

We fix d ≤ 3 and consider the following Banach spaces

X =W 1,p(Td)× Lq(Td) and Z = Lp/2(Td)×H−1(Td), (45)

where p, q ∈ (3, 6)with 1
p+

1
q = 1

2 . Notice that under these assumptionswe have q > p/2. Moreover the

Rellich-Kondrachov theorem gives the compact embedding H1(Td) →֒ Lq(Td) since q < 6. Therefore
all the assumptions in Example 3.4 are satisfied (with r = 2). In particular, the linear operator T ∈
L(Z,X), defined by (26), and the mapping G : X → Z , given by (25), satisfy (H). We set r := dp

p+d <

min{p, d} and we notice that Sobolev’s inequality implies thatW 2,r(Td) →֒W 1,p(Td).
For every h > 0, let Th be a quasi-uniform family of periodic triangulations of [0, 1]d (see [9, Defi-

nition 4.4.13]). Let also Vh ⊂W 1,∞(Td) be the associated finite element space induced by P1 Lagrange
finite elements. We define Sh ∈ L(H−1(Td), H1(Td)) by Shξ = vh where vh is the unique element in
Vh such that

∫

Td

Dvh ·Dφh + λvhφh dx = 〈ξ, φh〉H−1,H1 for every φh ∈ Vh.

In addition, we denote by S ∈ L(H−1(Td), H1(Td)) the linear operator defined by Sξ = v, where
v ∈ H1(Td) is the unique weak solution to

−∆v + λv = ξ in T
d. (46)

These linear operators are known to be well defined through the Lax-Milgram theorem and we have

‖S‖L(H−1,H1) , ‖Sh‖L(H−1,H1) ≤
1

min{1, λ} . (47)

We also have from [22, Theorem 3.16, Theorem 3.18] that

‖(S − Sh)ξ‖L2 ≤ Ch ‖(S − Sh)ξ‖H1 ≤ Ch ‖Sξ‖H1 ≤ Ch ‖ξ‖H−1 , (48)

where the constant C is independent of h.
Let ξ ∈ Lr(Td). According to [22, Theorem 3.21] and [9, Theorem 8.5.3], there exists h0 > 0 and a

positive constant C such that, for every h ≤ h0, it holds that

‖Shξ‖W 1,p ≤ C ‖Sξ‖W 1,p . (49)

Using the continuous embeddingW 2,r(Td) →֒ W 1,p(Td) andW 2,p estimates [27, Theorem 9.11], we
have

‖Sξ‖W 1,p ≤ C ‖Sξ‖W 2,r ≤ C ‖ξ‖Lr . (50)

Combining (49) and (50), for every h ≤ h0, we have Sh ∈ L(Lr(Td),W 1,p(Td)), where ‖Sh‖L(Lr,W 1,p)

is bounded from above by a constant which is independent of h. Moreover, up to the choice of a smaller
h0, from [22, Theorem 3.21, Corollary 3.23] and [9, Theorem 8.5.3] we also have, for every h ≤ h0, that
Sh ∈ L(Lp(Td),W 1,p(Td)) with

‖(S − Sh)ξ‖W 1,p ≤ Ch ‖Sξ‖W 2,p ≤ Ch ‖ξ‖Lp , (51)
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where the constant C is independent of h.

We can now define the linear operator

Th ∈ L(Lr(Td)×H−1(Td),W 1,p(Td)×H1(Td)),

with range in Xh := Vh × Vh, by setting

Th(ξ, ζ) = (Shξ, Shζ) for every (ξ, ζ) ∈ Lr(Td)×H−1(Td).

Notice that from (26), (48) and (49), we also have

Th ∈ L(Lp(Td)×H−1(Td),W 1,p(Td)× L2(Td))

with
‖(T − Th)(ξ, ζ)‖W 1,p×L2 ≤ Ch ‖(ξ, ζ)‖Lp×H−1 . (52)

In particular, using Sobolev inequalities ([10, Theorem 9.9, Corollary 9.11, Theorem 9.12], we have ob-
tained that

(T−Th) ∈ L(Lr(Td)×H−1(Td),W 1,p(Td)×Ls(Td)))∩L(Lp(Td)×H−1(Td),W 1,p(Td)×L2(Td)),

where s is the critical Sobolev exponent for the continuous embeddingH1(Td) →֒ Ls(Td), namely











s = 6 if d = 3,

s ∈ [6,∞) if d = 2,

s = ∞ if d = 1.

We set θ = p−d
p and θ⋆ = (p−2)s−2p

(s−2)p so that

2

p
=

1− θ

r
+
θ

p

and
1

q
=
p− 2

2p
=

1− θ⋆

s
+
θ⋆

2
.

Using complex interpolation (see [40, Chapter 2]) we have that

Lp/2(Td) =
[

Lr(Td), Lp(Td)
]

θ
and Lq(Td) =

[

Ls(Td), L2(Td)
]

θ⋆ .

It follows from [40, Theorem 2.6] together with (49), (50), (51), (47) and (48) that that

‖S − Sh‖L(Lp/2,W 1,p) ≤ ‖S − Sh‖1−θ
L(Lr,W 1,p) ‖S − Sh‖θL(Lp,W 1,p) ≤ Chθ

and
‖S − Sh‖L(H−1,Lq) ≤ ‖S − Sh‖1−θ⋆

L(H−1,Ls) ‖S − Sh‖θ
⋆

L(H−1,L2) ≤ Chθ
⋆

.

Noticing that T − Th = (S − Sh, S − Sh), we deduce that

‖T − Th‖L(Lp/2×H−1,W 1,p×Lq) ≤ ‖S − Sh‖L(Lp/2,W 1,p) + ‖S − Sh‖L(H−1,Lq)

≤ C
(

hθ + hθ
⋆
)

.
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Since










θ⋆ = (p− 3)/p if d = 3,

θ⋆ ∈ [(p− 3)/p, (p− 2)/p) if d = 2,

θ⋆ = (p− 2)/p if d = 1,

we have σ := min{θ, θ⋆} = θ⋆. Therefore we obtain that

Th, (T − Th) ∈ L(Z,X)

with

‖T − Th‖L(Z,X) ≤ Chσ, (53)

for every h ≤ h0 ≤ 1.
We can now apply Theorem 5.3 to obtain the following result.

Theorem 5.4 (Local convergence of finite element approximations). Let f ∈ W 2,∞(R) and let (u,m)
be a stable solution to (1). Let X,Z be defined according to (45) with 3 < p, q < 6 and 1/2 = 1/p+ 1/q
and let Thbe defined as above. There exists h0 ∈ (0, 1] and a neighborhoodO of the origin inX such that,

for every 0 < h ≤ h0, there exists a solution (uh,mh) ∈ Xh to

Fh(uh,mh) := (uh,mh) + Th(G(uh,mh)) = 0

satisfying

(i) (u,m)− (uh,mh) ∈ O,

(ii) (uh,mh) is the unique solution to Fh(uh,mh) = 0 in (u,m) +O,

(iii) There exists a positive constant C > 0 such that

‖(u− uh,m−mh)‖X ≤ Chσ,

where










σ = (p− 3)/p if d = 3,

σ ∈ [(p− 3)/p, (p− 2)/p) if d = 2,

σ = (p− 2)/p if d = 1,

(iv) dFh[uh,mh] ∈ L(X) is an isomorphism.

Proof. Using Proposition 4.5 we have that F is continuously differentiable and from Example 3.4 we
know that dF [u,m] is an isomorphism onX . Note that the assumption f ∈ W 2,∞(R) ensures that dG
is locally Lipschitz continuous in L(X,Z). Moreover, from (53) we deduce that (42) is satisfied. We can
therefore apply Theorem 5.3 to obtain the conclusion.

As a direct consequence of Theorem 5.4 (iv) we deduce the local convergence of Newton’s method
for the discretized problem.

Corollary 5.5 (Local convergence of the discrete Newton method). Under the assumptions of Theo-

rem 5.4, let (uh,mh) ∈ Xh be a solution to

Fh(uh,mh) = 0. (54)

Then there exists a neighborhood O of (uh,mh) such that, if (u0h,m
0
h) ∈ O, then the sequence (ukh,m

k
h)

given by Newton’s method applied to (54), i.e.,

(uk+1
h ,mk+1

h ) + Th
(

G(ukh,m
k
h) + dG[ukh,m

k
h](u

k+1
h − ukh,m

k+1
h −mk

h)
)

= 0, (55)

converges quadratically to (uh,mh) inXh.
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Proof. Since Xh ⊂ X is finite dimensional, and since dFh[uh,mh] ∈ L(Xh) is injective on Xh by
Theorem 5.4-(iv), we have that dFh[uh,mh] is also an isomorphism onXh. We conclude using standard
results on Newton’s method (see Theorem 5.7 below).

Remark 5.6. Relation (55) amounts to finding (vh, ρh) ∈ Xh such that

∫

Dvh ·Dφ+Dukh ·Dvhφ+ λvhφ dx =

∫

f ′(mk
h)(ρh −mk

h)φ+
∣

∣Dukh
∣

∣

2
φ dx, (56)

∫

Dρh ·Dψ + ρhDu
k
h ·Dψ + λρhψ dx =

∫

mk
h

(

Dukh −Dvh
)

·Dψ dx, (57)

for every (φ, ψ) ∈ Xh.

5.3 Newton’s method

We recall here the convergence results Newton’s method, see [31, Corollary 2.1 p.120], [47, Proposition
5.1], and [21, Theorem 6E.2] for instance.

Theorem 5.7 (Classical Newton method). Let X and Y be Banach spaces and F : X → Y be continu-

ously differentiable. Let x̄ ∈ X be such that F (x̄) = 0 and dF [x̄] ∈ L(X,Y ) is an isomorphism. Then

there exists a neighborhoodO of x̄ in X such that the sequence defined by

{

x0 ∈ O,
F (xk) + dF [xk](xk+1 − xk) = 0,

(58)

converges superlinearly to x̄. Furthermore, if dF is locally Lipschitz continuous in L(X,Y ), then the

convergence is quadratic.

Let 0 < γ < β < α, where α is given in (5), and set

X = C2,β(Td)× C0,γ(Td) and Z = C0,α(Td)× C0,β(Td)

so that (H) is satisfied and consider the mapping T, G, andF defined by (26), (25), and (27), respectively.
From Proposition 4.3 we know that the mapping F is continuously differentiable with dF given by (29).
Moreover, if we fix a stable solution (u,m) ∈ C2,α(Td) × C2,α(Td), then we know from Example 3.3
that dF [u,m] is an isomorphism onX .

A direct application of Theorem 5.7 yields the following theorem.

Theorem 5.8. Consider f ∈ C1
b (R) ∩ C2(R), let 0 < γ < β < α and (u,m) ∈ C2,α(Td) × C2,α(Td)

be a stable solution to (1). Then there exists a neighborhood O of (u,m) in C2,β(Td) × C2,γ(Td) such
that, if (u0,m0) ∈ O, then the sequence (uk,mk) generated by Newton’s method applied to (27), i.e.,

(uk+1,mk+1) + T (G(uk,mk) + dG[uk,mk](uk+1 − uk,mk+1 −mk)) = 0, (59)

converges super-linearly to (u,m) in C2,β(Td)×C2,γ(Td). Furthermore, if we also assume f ∈ C2,1
loc (R),

then the convergence is quadratic.

Remark 5.9. At each iteration, the relation (59) amounts to solving the linear system

{

−∆v +Duk ·Dv + λv = f ′(mk)(ρ−mk)− |Duk|2 in T
d,

−∆ρ− div(ρDuk) + λρ = div(mkDv)− div(mkDuk) in T
d.

(60)
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In the case where f ′ ≥ 0, we may use Theorem 3.5 instead of Example 3.3 to obtain a slightly better
result than Theorem 5.8.

Theorem 5.10. Let f ∈ C1
b (R) ∩ C2(R) with f ′ ≥ 0. Let (u,m) ∈ C2,α(Td) × C2,α(Td) be a stable

solution to (1). Then there exists a neighborhood O of of (u,m) in C2,α(Td) × C2,α(Td) such that if

(u0,m0) ∈ O then the sequence (uk,mk) generated by Newton’s method (59) converges super-linearly to

(u,m) in C2,α(Td) × C2,α(Td). Furthermore, if we also assume f ∈ C2,1
loc (R), then the convergence is

quadratic.

Finally we may also set X = W 1,p(Td) × Lq(Td) and Z = Lp/2(Td) ×W−1,r(Td), where d <
p, q <∞ and r > 1 is such that 1/r = 1/p+1/q and large enough so that there is a compact embedding
W 1,r(Td) →֒ Lq(Td). Then, we may replace Proposition 4.3 and Example 3.3 by Proposition 4.5 and
Example 3.4, respectively, in the discussion above to obtain the convergence of Newton’s method in
Sobolev spaces. The point being that in this case the neighborhood for the initial guess is expected to
be less restrictive.

Theorem 5.11. Let f ∈ C1
b (R)∩C

1,1
loc (R), letX and Z be as above and (u,m) ∈ C2,α(Td)×C2,α(Td)

be a stable solution to (1). Then there exists a neighborhoodO of (u,m) inW 1,p(Td)×Lq(Td) such that,

if (u0,m0) ∈ O, then the sequence (uk,mk) generated by Newton’s method (59) converges superlinearly
to (u,m) inW 1,p(Td)× Lq(Td). Furthermore, if f ∈ W 2,∞(R), then the convergence is quadratic.

A Proof of Theorem 2.1

We are going to apply Schauder’s fixed point theorem inC0,β(Td) for some β ∈ (0, α] to be determined.
Fix some m ∈ C0,β(Td). Since f is assumed to be Lipschitz continuous, we have that f(m) ∈

C0,β(Td). From the standard theory of elliptic equation (see [27, Theorem 15.12], using the gradient
bound in Proposition 2.4, for the result with Dirichlet boundary conditions) we know that there exists
a unique classical solution u ∈ C2,β(Td) to

−∆v +
1

2
|Dv|2 + λv = f(m) in T

d. (61)

Then from standard Schauder theory (see [27, Corollary 6.3]) and Lemma 2.2, we also have a unique
solution m̃ ∈ C2,β(Td) to

−∆ρ− div (ρDu) + λρ = λm0 in T
d. (62)

This defines a mapping Φ: C0,β(Td) → C0,β(Td) by setting Φ(m) = m̃.
We now prove that Φ is continuous. Let (mn)n≥0 be a sequence in C0,β(Td) converging to some

m in C0,β(Td). In particular, this sequence is bounded in C0,β(Td). Using the fact that f is Lipschitz
continuous it follows that f(mn) is also bounded inC

0,β(Td). From the inequality (9) in Proposition 2.4,
we have the existence of a positive constant K such any solution classical solution un to (61), with m
replaced bymn, satisfies

‖Dun‖L∞ ≤ K

and the constantK depends on the right-hand side of (61) only through ‖f‖L∞ (and hence is indepen-

dent of n). Then, from [27, Theorem 13.6] we deduce that there exist constants γ ∈ (0, 1) and K̃ > 0,
depending onK and independent of n, such that

‖Dun‖C0,γ ≤ K̃.

Using Schauder estimates [27, Corollary 6.3], one has that the sequence un of solutions to (61) associ-
ated to mn is bounded in C2,β(Td) for β = min{α, γ}. From the Arzela-Ascoli theorem, it admits a
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subsequence converging in C2(Td) to a solution u to (61) associated tom. Since this solution is unique
the whole sequence must converge to this limit u. Then, using again Schauder estimates we also have
that Φ(mn) is bounded in C

2,β(Td) by a constant depending on K̃ , and a similar argument shows that
it must converge to Φ(m).

We now claim the Φ(C0,β(Td)) is bounded in C0,γ(Td) for γ ∈ (β, 1). Indeed let us choose 1 <
p < ∞, depending only on d and γ, such thatW 1,p(Td) →֒ C0,β(Td). From theW 1,p estimates (6) in
Lemma 2.2, we have that Φ(C0,β(Td)) is bounded inW 1,p(Td) and therefore also in C0,γ(Td). Using
the Arzela-Ascoli theorem we deduce that Φ(C0,β(Td)) is compact in C0,β(Td).

We can now apply Schauder’s fixed point theorem [27, Corollary 11.2] to obtain a classical solution
to (1).

The argument for uniqueness is a straightforward adaptation of the one introduced in [36].

B Proof of Proposition 2.8

The argument is adapted from [12, Proposition 4.2]. We only prove the case d > 2, the other ones being
simpler, in particular in what follows we have p = d. Assume that the conclusion is false, then there
exists a sequence (un,mn) of classical solutions to (1) converging to (u,m) in W 1,p(Td) × L2(Td).
Note that we may assume that the convergence also holds in the almost everywhere sense. We then set

δn = ‖(un,mn)− (u,m)‖W 1,p×L2

and
vn = δ−1

n (un − u), ρn = δ−1
n (mn −m).

Then for every n the pair (vn, ρn) is a classical solution to
{

−∆vn + λvn = gn in T
d,

−∆ρn + λρn = div(hn) in T
d,

(63)

where

gn = δ−1
n

(

f(mn)− f(m) +
1

2
|Du|2 − 1

2
|Dun|2

)

and
hn = δ−1

n (mnDun −mDu) .

We then notice that

‖gn‖L2 ≤ δ−1
n (‖f ′‖L∞ ‖mn −m‖L2 +K ‖Dun −Du‖L2) ≤ ‖f ′‖L∞ +K

and
‖hn‖L2 ≤ δ−1

n (K ‖mn −m‖L2 + ‖m‖L∞ ‖Dun −Du‖L2) ≤ C,

where K is given in Proposition 2.4 and C is a constant independent of n. Applying standard elliptic
regularity to (63) is follows that (vn, ρn) is bounded inH

2(Td)×H1(Td). From the Rellich-Kondrachov
theorem we deduce that it converges, up to a subsequence, to some (v, ρ) in W 1,q(Td) × L2(Td) for
every 2 ≤ q < 2d

d−2 . We may also assume that (vn, ρn) converges weakly to (v, ρ) inH
2(Td)×H1(Td).

Moreover vn is bounded inW 1,d(Td) (recall that we consider the case p = d) so that wemay also assume
that it converges weakly to v inW 1,d(Td). We now claim that the following fact holds















δ−1
n (f(mn)− f(m)) −→ f ′(m)ρ in L2(Td),

(2δn)
−1
(

|Du|2 − |Dun|2
)

−→ Du ·Dv in L2(Td),

δ−1
n (mnDun −mDu)⇀ ρDu+mDv weakly in L

2d
d+2 (Td;Rd).

(64)
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Let us prove the first line of (64). Since f ∈ C1
b (R) we have that

δ−1
n (f(mn)− f(m)) = ρn

∫ 1

0

f ′(λmn + (1− λ)m) dλ a.e. in T
d. (65)

We then decompose

∥

∥

∥

∥

∫ 1

0

f ′(λmn + (1− λ)m)ρn − f ′(m)ρ dλ

∥

∥

∥

∥

L2

≤
∥

∥

∥

∥

ρn

∫ 1

0

f ′(λmn + (1− λ)m) − f ′(m) dλ

∥

∥

∥

∥

L2

+ ‖f ′(m)(ρn − ρ)‖L2 . (66)

Since we assume that f ′ is bounded, the convergence to zero of the second term in the right-hand side
of the last inequality follows from the convergence of ρn to ρ in L2(Td). Recalling that we assume

that d > 2, it follows from Sobolev’s inequality that H1(Td) embeds continuously in L
2d

d−2 (Td). Using
Hölder’s inequality we can write

∥

∥

∥

∥

ρn

∫ 1

0

f ′(λmn + (1− λ)m) − f ′(m) dλ

∥

∥

∥

∥

L2

≤ C ‖ρn‖H1

∥

∥

∥

∥

∫ 1

0

f ′(λmn + (1− λ)m)− f ′(m) dλ

∥

∥

∥

∥

Ld

. (67)

Using Jensen’s inequality and Fubini’s theorem we have

∥

∥

∥

∥

∫ 1

0

f ′(λmn + (1− λ)m)− f ′(m) dλ

∥

∥

∥

∥

d

Ld

≤
∫ 1

0

‖f ′(λmn + (1− λ)m)− f ′(m)‖dLd dλ. (68)

Using the fact that f ′ is bounded and continuous and that mn converges a.e. to m one may apply
Lebesgue’s convergence theorem to obtain

lim
n→∞

∫ 1

0

‖f ′(λmn + (1− λ)m) − f ′(m)‖dLd dλ = 0.

This, together with (65), (66), (67), and (68), proves the first line in (64).
For the second line of (64), we write

∥

∥

∥
(2δn)

−1
(

|Du|2 − |Dun|2
)

−Du ·Dv
∥

∥

∥

L2
=

1

2
‖(Du+Dun) ·Dvn − 2Du ·Dv‖L2

≤ 1

2
‖Du · (Dvn −Dv)‖L2 +

1

2
‖Dun ·Dvn −Du ·Dv‖L2

≤ 1

2
‖Du‖L∞ ‖Dvn −Dv‖L2 +

1

2
‖Dun · (Dvn −Dv)‖L2 +

1

2
‖(Dun −Du) ·Dv‖L2

≤ K ‖Dvn −Dv‖L2 +
1

2
‖(Dun −Du) ·Dv‖L2 ,

where the constantK is given in Proposition 2.4. Using Hölder’s inequality we have

‖(Dun −Du) ·Dv‖L2 ≤ ‖Dun −Du‖Ld ‖Dv‖
L

2d
d−2

.

It follows that
∥

∥

∥
(2δn)

−1
(

|Du|2 − |Dun|2
)

−Du ·Dv
∥

∥

∥

L2
≤ K ‖Dvn −Dv‖L2 + ‖Dun −Du‖Ld ‖Dv‖

L
2d

d−2
.
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Since v ∈ H2(Td) →֒W 1, 2d
d−2 (Td) the right-hand side converges to 0.

For the third line of (64), we first notice that

hn = δ−1
n (mnDun −mDu) = mnDvn + ρnDu.

Let ϕ ∈ L
2d

d−2 (Td;Rd) =
(

L
2d

d+2 (Td;Rd)
)′

. From convergence of mn to m in L2(Td) and Hölder’s

inequality it is easy to see that mnϕ converges to mϕ in L
d

d−1 (Td;Rd) = (Ld(Td;Rd))′. Since vn
converges weakly to v in W 1,d(Td), we have that Dvn converges weakly to Dv in Ld(Td;Rd). It
follows that

lim
n→∞

〈ϕ,mnDvn〉
(L

2d
d+2 )′,L

2d
d+2

= lim
n→∞

∫

mnϕ ·Dvn dx = lim
n→∞

〈mnϕ,Dvn〉(Ld)′,Ld

= 〈mϕ,Dv〉(Ld)′,Ld = 〈ϕ,mDv〉
(L

2d
d+2 )′,L

2d
d+2

.

Since ρn converges to ρ in L
2d

d−2 (Td) we have that ρnDu converges to ρDu in L
2d

d−2 (Td), and be-
cause 2d

d−2 ≥ 2d
d+2 , we also have the strong (and therefore also weak) convergence of ρnDu to ρDu in

L
2d

d+2 (Td). This proves the third line of (64) and concludes the proof of the claim.
We can now pass to the limit in theweak formulation of (63) to obtain that (v, ρ) ∈ H1(Td)×L2(Td)

is a weak solution to (12). Indeed, for ϕ ∈ H1(Td) we have

lim
n→∞

∫

Dvn ·Dϕ+ λvnϕ dx =

∫

Dv ·Dϕ+ λvϕ dx

and

lim
n→∞

∫

gnϕ dx =

∫

f ′(m)ρϕ−Du ·Dvϕ dx,

so that
∫

Dv ·Dϕ+Du ·Dvϕ+ λvϕ dx =

∫

f ′(m)ρϕ dx for every ϕ ∈ H1(Td).

Let now ψ ∈ H2(Td) and recall that this implies that Dψ ∈ L
2d

d−2 (Td;Rd). Then we have

lim
n→∞

∫

(−∆ψ + λψ)ρn dx =

∫

(−∆ψ + λψ)ρ dx

and

lim
n→∞

∫

hnDψ dx =

∫

(ρDu+mDv) ·Dψ dx,

so that
∫

(−∆ψ +Du ·Dψ + λψ)ρ dx =

∫

mDv ·Dψ dx for every ψ ∈ H2(Td).

This proves that (v, ρ) is a weak solution to (12). According to Lemma 2.7, (v, ρ) is a classical solution
and, since (u,m) is assumed to be stable, we must have (v, ρ) = (0, 0). This contradicts the fact that
‖(v, ρ)‖W 1,p×L2 = 1 and concludes the proof.

Acknowledgement. Thisworkwas partially supported by theANR (AgenceNationale de la Recherche)
through the COSS project ANR-22-CE40-0010 and the Centre Henri Lebesgue ANR-11-LABX-0020-
01. The third author was partially supported by KAUST through the subaward agreement ORA-2021-
CRG10-4674.6.

27



References

[1] Y. Achdou. “Finite Difference Methods for Mean Field Games”. In: Y. Achdou et al. Hamilton-

Jacobi Equations: Approximations, Numerical Analysis and Applications. Vol. 2074. Lecture Notes
in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 1–47.

[2] Y. Achdou, F. Camilli, and I. Capuzzo-Dolcetta. “Mean Field Games: Convergence of a Finite Dif-
ference Method”. In: SIAM Journal on Numerical Analysis 51.5 (Jan. 2013), pp. 2585–2612.

[3] Y. Achdou et al. Mean Field Games: Cetraro, Italy 2019. Ed. by P. Cardaliaguet and A. Porretta.
Vol. 2281. Lecture Notes in Mathematics. Cham: Springer International Publishing, 2020.

[4] M. Bardi and M. Fischer. “On non-uniqueness and uniqueness of solutions in finite-horizon mean
field games”. In: ESAIM Control Optim. Calc. Var. 25 (2019), Paper No. 44, 33.

[5] A. Bensoussan, J. Frehse, and P. Yam. Mean Field Games and Mean Field Type Control Theory.
SpringerBriefs in Mathematics. New York, NY: Springer New York, 2013.

[6] V. Bogachev et al. Fokker–Planck–Kolmogorov Equations. Vol. 207. Mathematical Surveys and
Monographs. Providence, Rhode Island: American Mathematical Society, Dec. 17, 2015.

[7] V. I. Bogachev.Measure Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007.

[8] J. F. Bonnans, K. Liu, and L. Pfeiffer. “Error Estimates of a Theta-Scheme for Second-Order Mean
Field Games”. In: ESAIM:Mathematical Modelling and Numerical Analysis 57.4 (July 2023), pp. 2493–
2528.

[9] S. C. Brenner and L. R. Scott. The Mathematical Theory of Finite Element Methods. Red. by J. E.
Marsden, L. Sirovich, and S. S. Antman. Vol. 15. Texts in Applied Mathematics. New York, NY:
Springer New York, 2008.

[10] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer,
New York, 2011, pp. xiv+599.

[11] F. Brezzi, J. Rappaz, and P. A. Raviart. “Finite Dimensional Approximation of Nonlinear Problems:
Part I: Branches of Nonsingular Solutions”. In: Numerische Mathematik 36.1 (Mar. 1980), pp. 1–25.

[12] A. Briani and P. Cardaliaguet. “Stable Solutions in Potential Mean Field Game Systems”. In: Non-
linear Differential Equations and Applications NoDEA 25.1 (Feb. 2018), p. 1.

[13] G. Caloz and J. Rappaz. “Numerical analysis for nonlinear and bifurcation problems”. In: Hand-
book of numerical analysis, Vol. V. Vol. V. Handb. Numer. Anal. North-Holland, Amsterdam, 1997,
pp. 487–637.

[14] F. Camilli and Q. Tang. “A Convergence Rate for the Newton’s Method for Mean Field Games
with Non-Separable Hamiltonians”. In: arXiv preprint arXiv:2311.05416 (2023).

[15] P. Cardaliaguet and S. Hadikhanloo. “Learning in Mean Field Games: The Fictitious Play”. In:
ESAIM: Control, Optimisation and Calculus of Variations 23.2 (Apr. 2017), pp. 569–591.

[16] P. Cardaliaguet et al. The Master Equation and the Convergence Problem in Mean Field Games.
Princeton University Press, Aug. 13, 2019.

[17] R. Carmona and F. Delarue. Probabilistic Theory of Mean Field Games with Applications I-II. Prob-
ability Theory and Stochastic Modelling 83-84. Springer Cham, 2018.

[18] M. Cirant. “On the existence of oscillating solutions in non-monotone mean-field games”. In: J.
Differential Equations 266.12 (2019), pp. 8067–8093.

[19] M. Cirant and D. Tonon. “Time-dependent focusing mean-field games: the sub-critical case”. In:
J. Dynam. Differential Equations 31.1 (2019), pp. 49–79.

28



[20] M. Crouzeix and J. Rappaz. On numerical approximation in bifurcation theory. Vol. 13. Recherches
enMathématiquesAppliquées [Research inAppliedMathematics].Masson, Paris; Springer-Verlag,
Berlin, 1990, pp. x+165.

[21] A. L. Dontchev and R. T. Rockafellar. Implicit Functions and Solution Mappings: A View from Vari-

ational Analysis. Springer Series in Operations Research and Financial Engineering. New York,
NY: Springer New York, 2014.

[22] A. Ern and J.-L. Guermond. Theory and Practice of Finite Elements. Red. by S. S. Antman, J. E.
Marsden, and L. Sirovich. Vol. 159. Applied Mathematical Sciences. New York, NY: Springer New
York, 2004.

[23] L. Evans. Partial Differential Equations. Second. Vol. 19. Graduate Studies in Mathematics. Provi-
dence, Rhode Island: American Mathematical Society, Mar. 2, 2010.

[24] R. Ferreira and D. Gomes. “Existence of weak solutions to stationary mean-field games through
variational inequalities”. In: SIAM J. Math. Anal. 50.6 (2018), pp. 5969–6006.

[25] W. H. Fleming and R. W. Rishel. Deterministic and Stochastic Optimal Control. Vol. 1. Springer
Science & Business Media, 2012.

[26] W. H. Fleming and H. M. Soner. Controlled Markov Processes and Viscosity Solutions. Vol. 25.
Springer Science & Business Media, 2006.

[27] D. Gilbarg and N. S. Trudinger. Elliptic Partial Differential Equations of Second Order. Vol. 224.
Classics in Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001.

[28] V. Girault and P.-A. Raviart. Finite Element Methods for Navier-Stokes Equations. Vol. 5. Springer
Series in Computational Mathematics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986.

[29] D. A. Gomes, H. Mitake, and K. Terai. “The selection problem for some first-order stationary
mean-field games”. In: Netw. Heterog. Media 15.4 (2020), pp. 681–710.

[30] D. A. Gomes and J. Saúde. “Mean Field Games Models—A Brief Survey”. In: Dynamic Games and

Applications 4.2 (June 2014), pp. 110–154.

[31] M. Hinze et al. Optimization with PDE Constraints. Vol. 23. Mathematical Modelling: Theory and
Applications. Dordrecht: Springer Netherlands, 2009.

[32] M. Huang, P. E. Caines, and R. P. Malhame. “Large-Population Cost-Coupled LQG ProblemsWith
Nonuniform Agents: Individual-Mass Behavior and Decentralized ε-Nash Equilibria”. In: IEEE
Transactions on Automatic Control 52.9 (Sept. 2007), pp. 1560–1571.

[33] M. Huang, R. P. Malhamé, and P. E. Caines. “Large Population Stochastic Dynamic Games: Closed-
LoopMcKean-Vlasov Systems and theNash Certainty Equivalence Principle”. In:Communications

in Information and Systems 6.3 (2006), pp. 221–252.

[34] J.-M. Lasry and P.-L. Lions. “Jeux à champ moyen. I – Le cas stationnaire”. In: Comptes Rendus

Mathematique 343.9 (Nov. 2006), pp. 619–625.

[35] J.-M. Lasry and P.-L. Lions. “Jeux à champ moyen. II – Horizon fini et contrôle optimal”. In:
Comptes Rendus Mathematique 343.10 (Nov. 2006), pp. 679–684.

[36] J.-M. Lasry and P.-L. Lions. “Mean Field Games”. In: Japanese Journal of Mathematics 2.1 (Mar.
2007), pp. 229–260.

[37] G. Leoni. A first course in Sobolev spaces. Vol. 105. Graduate Studies in Mathematics. American
Mathematical Society, Providence, RI, 2009, pp. xvi+607.

[38] O. Ley and V. D. Nguyen. “Lipschitz Regularity Results for Nonlinear Strictly Elliptic Equations
and Applications”. In: Journal of Differential Equations 263.7 (Oct. 2017), pp. 4324–4354.

29



[39] P.-L. Lions. “Cours Au College de France”. In: Available at www. college-de-france. fr (2007).

[40] A. Lunardi. Interpolation Theory. Pisa: Scuola Normale Superiore, 2018.

[41] R. Nugari. “Further Remarks on the Nemitskii Operator in Hölder Spaces”. In: Commentationes

Mathematicae Universitatis Carolinae 34.1 (1993), pp. 89–95.

[42] Y. A. P. Osborne and I. Smears. “Analysis and Numerical Approximation of Stationary Second-
Order Mean Field Game Partial Differential Inclusions”. In: SIAM J. Numer. Anal. 62.1 (2024),
pp. 138–166.

[43] Y. A. P. Osborne and I. Smears. Finite element approximation of time-dependent Mean Field Games

with non-differentiable Hamiltonians. 2023.

[44] Y. A. P. Osborne and I. Smears. Near and full quasi-optimality of finite element approximations of

stationary second-order mean field games. 2024.

[45] Q. Tang and J. Song. “Learning Optimal Policies in Potential Mean Field Games: Smoothed Policy
Iteration Algorithms”. In: SIAM J. Control Optim. 62.1 (2024), pp. 351–375.

[46] J. Yong and X. Y. Zhou. Stochastic Controls. New York, NY: Springer New York, 1999.

[47] E. Zeidler. Nonlinear Functional Analysis and Its Applications: Fixed-point Theorems. Springer-
Verlag, 1993.

30


	Introduction
	The mean field game system
	Well-posedness
	Stable solutions

	Reformulation of the MFG system
	Differentiability of the mapping F
	Differentiability in Hölder spaces
	Differentiability in Sobolev spaces

	Applications
	Stability under perturbations of the MFG system
	Finite Element approximation of the MFG system
	Newton's method

	Proof of thm:wellposed
	Proof of prop:isolated

