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Abstract
The distributed naming problem, assigning unique names to the nodes in a distributed system, is a
fundamental task. This problem is nontrivial, especially when the amount of memory available for
the task is low, and when requirements for fault-tolerance are added.

The considered distributed communication model is population protocols. In this model, a priori
anonymous and indistinguishable mobile nodes (called agents), communicate in pairs and in an
asynchronous manner (according to a fairness condition). Fault-tolerance is addressed through
self-stabilization, in terms of arbitrary initialization of agents.

This work comprises a comprehensive study of the necessary and sufficient state space conditions
for naming. The problem is studied under various combinations of model assumptions: weak or
global fairness, arbitrary or uniform initialization of agents, existence or absence of a distinguishable
agent (arbitrarily initialized or not), possibility of breaking symmetry in pair-wise interactions
(symmetric or asymmetric transitions). For each possible combination of these assumptions, either
an impossibility is proven or the necessary exact number of states (per mobile agent) is determined
and an appropriate space-optimal naming protocol is presented.
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1 Introduction

The population protocol model was introduced as a minimalist model for mobile sensor net-
works where the computational devices, called agents, communicate by pair-wise interactions
without (almost) any control on their communication schedule [1].2 The model originally
assumed that the memory of agents is constant, i.e., independent of the population size n.
Due to this, agents are prohibited from storing unique identifiers.

Many limitations have been discovered due to this restriction, and a lot of work has
been devoted to study the power added by relaxing it. For example, it was obtained in [10]
that a non-semi-linear predicate can be computed starting from Θ(log log n) bits of agent’s
memory (allowing Θ(logO(1) n) identifiers), while the original population protocols compute
only exactly the semi-linear predicates [2]. Furthermore, it was shown that using Θ(log n)

1 corresponding author
2 Basically, at each step a pair of agents is scheduled to interact (subject to a fairness condition) and each

agent observes the other’s state updating its own according to the transition function.
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9:2 Space-Optimal Naming in Population Protocols

bits per agent, allowing to assign unique identifiers (names) to agents, already permits
to compute exactly all the symmetric predicates in the class NSPACE(n log n) (what is
equivalent to the power of O(n log n) space Turing machine) [15, 10]. Following these results,
a comprehensive study in [7] provided a complete hierarchy establishing complexity classes
for the cases going from non-identified agents (the original population protocol model) to
uniquely identified ones, passing by the case of homonyms.

Another line of works where the possibility of having names plays an important role
concerns fault-tolerant population protocols. As a motivating scenario one can think of
reliability critical mobile sensor networks (not necessary of a very large scale), which may be
hardly accessible and have to recover automatically to the correct behavior after faults. In
the framework of self-stabilization [13, 3], i.e. when the reliability concerns transient faults
(e.g., memory or communication errors), it was shown that a linear (on n) state space is
necessary for the realization of many tasks. Interestingly, in these cases, many proposed
solutions perform a sort of naming mechanism. This concerns for example the self-stabilizing
tasks of leader election [9], counting [5, 16, 4] and deterministic oscillation [11]. In [12], for
computing semi-linear predicates while tolerating a known constant number of transient and
crash faults, the algorithm approximately divides the population into a predefined number of
groups, actually creating named homonyms. Finally, some other fault-tolerant population
protocols assume that names are given a priori, e.g., [15, 18].

These observations suggest that the task of naming in population protocols should receive
a particular attention. This work presents a comprehensive study of this problem. It
focuses on the necessary and sufficient state space conditions for naming under all possible
combinations of a set of classical model assumptions, like existence of a leader, weak or global
fairness, uniform or arbitrary initialization and symmetry of transition rules. Note that a
choice of a combination affects the type and the level of difficulty of breaking symmetry or of
achieving fault-tolerance. These parameters, their interest and effect are all discussed below.

The first parameter is the nature of the assumed fairness, weak or global. The formal
definitions and an example illustrating the difference between the two appear in the model
section. Intuitively, while global fairness ensures that an infinitely often reachable configura-
tion is unavoidable, weak fairness only ensures that every pair of agents interacts infinitely
often. Global fairness can be viewed as a way for modeling randomized systems (without
introducing randomization explicitly in the model). This explains why it is generally easier
to get solutions under this fairness. However, such randomization cannot be always assumed
to be available, in particular in reliability critical systems.

A second parameter is the symmetry nature of the (transition) rules of a protocol. With
symmetric rules, two interacting agents in the same state stay in identical states. With
asymmetric rules, they can take different states. This latter assumption was the original one
proposed for population protocols and motivated by asymmetric wireless communications.
The symmetric rules assumption is more general (weaker), and many motivating scenarios
can be found for it in nature inspired population protocols, social networks (when equity is
an issue) or in networks with symmetric wireless communication.3

A third parameter is the presence or absence of a unique leader (a distinguishable agent),

3 Note that an asymmetric population protocol can be transformed into a symmetric one using the
transformer of [6]. However, this transformer requires global fairness and doubles the number of states
per agent. This makes it frequently inadequate for obtaining a space efficient symmetric solution from
an asymmetric one (in terms of exact space complexity), and certainly inadequate under weak fairness.



J. Burman, J. Beauquier, and D. Sohier 9:3

which is obviously also useful for the sake of breaking symmetry. In the context of sensor
networks, this agent may represent a (possibly mobile) base station, having augmented
resources comparing to the tiny mobile agents. From this perspective and similarly to
previous studies (e.g., [20, 4, 16]), we are not concerned with the space complexity of
this agent.

A fourth parameter is related to the initialization of system agents, i.e., of the leader (if
present) and of the other agents (called here mobile). In case of mobile agents, if initialization
is assumed, it is always uniform, i.e., to the same value for every mobile agent. In case of
arbitrary initialization, the given solution stabilizes starting from an arbitrary configuration
(i.e., resulting from any number of transient faults). In this case it is called self-stabilizing [13].
The weaker initialization assumption is (e.g., only the leader is initialized, or nobody), the
stronger the system is against transient faults and the more adapted to repetitive execution
of a task (requiring less or no re-initialization).

Finally, the focus of this work is on deterministic protocol design, useful whenever random
behavior is inappropriate or deterministic guarantees are required. Moreover, as many
previous works [20, 11, 4, 16, 5], we perform an exact state space analysis. On the negative
side, this requires especially careful analysis and design, in contrast to, e.g., the asymptotic
analysis case. On the positive side, the exact analysis is extremely relevant in the cases
of particularly memory-limited devices, small sized networks and self-stabilizing protocols.
The less volatile memory is used by a self-stabilizing protocol, the less (probabilistically less
frequently) it is vulnerable to corruptions.

Contribution

Thus, we investigate the naming problem under all the possible combinations of the parameters
described above. All the negative results (impossibilities and lower bounds) are presented
in Section 3, while all the positive ones (state-optimal solutions) are given in Section 4.
Table 1 gives a synthetic view of these results. For each case, it indicates first the statement
establishing the feasibility, either by proving impossibility or by construction of a space-
optimal protocol. In the latter case, the table also indicates the optimal (used) number of
states and the relevant statement of the lower-bound.

The results are expressed in terms of P - a known upper bound on the number of
mobile agents n (i.e., the maximum number of agents destined to be named). This technical
assumption is done for dealing with bounded protocols (similarly to the related studies,
e.g., [16, 5]). P can be seen as a function of the manufactured memory size in each
(undistinguishable) mobile agent.4 Nevertheless, the results (and the lower bounds in
particular) can be equivalently expressed in terms of n, when considering a particular
population size.

Notice that, first of all, the table concerns the case of arbitrarily initialized mobile agents.
Together with that, it is also relevant to the case of uniform initialization of mobile agents. It
is obvious for the positive results (the protocols stay correct). However, somewhat surprisingly,
the impossibilities and lower bounds also hold under this stronger assumption, but with only
one exception. The exception concerns symmetric rules under weak fairness and with an
initialized leader, i.e., when a leader is present and can be initialized together with the other
agents (refer to the table). Then, there is a simple naming protocol with only P states per

4 The parameter P is used in the protocols, but this explicit usage can be frequently replaced by an alert
mechanism announcing that the bound will be shortly reached.
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9:4 Space-Optimal Naming in Population Protocols

mobile agent (Proposition 14), instead of the necessary P + 1 states with arbitrary initialized
mobile agents. In contrast with this simple protocol for completely initialized case, the
analysis of tight negative and positive results assuming no initialization of mobile agents is
much more complex (see Section 3.1 and Propositions 16 and 17).

Additional remarks can be made about the table. First, under weak fairness and without
leader, no symmetric deterministic protocol is capable of breaking symmetry, and thus naming
is impossible. Second, if asymmetric rules are allowed, in all cases, there is a space-optimal
solution with P states. On the contrary, with symmetric rules, the norm is P + 1 states,
excluding two cases: when there is an initialized leader (in both cases) and (1) either global
fairness or (2) uniform initialization of mobile agents is assumed. In both cases, the problem
can be solved with P states per agent.

Table 1 Synthesis of the relevant statements establishing the feasibility of naming and the
necessary (optimal) state space, under different model parameters. If not stated otherwise, the
indicated results hold for both arbitrarily an uniformly initialized mobile agents.

symmetric rules asymmetric rules

weak fairness global fairness weak/global fair-
ness

no leader impossible (Prop. 1) Prop. 13, with P + 1
states (Prop. 3)

Prop. 12, with P

states

non-initialized leader Prop. 16, with P + 1
states (Prop. 4)

Prop. 13, with P + 1
states (Prop. 4)

Prop. 12, with P

states

initialized leader

non-initialized agents:
Prop. 16, with P + 1
states (Theorem 11);
initialized agents:
Prop. 14, with P

states

Prop. 17, with P

states
Prop. 12, with P

states

Note. Due to the space constraints, several proofs and the additional related work discussion
have been moved to [8]. Though, the most relevant work is mentioned above.

2 Model and Notations

We adopt the model of population protocols [1] as a basic model. A system consists of a
collection A of pairwise interacting agents, also called population. Each agent can represent
a sensing and communicating mobile device. Among the agents, there can be a unique
distinguishable agent called the leader which can be as powerful as needed, in contrast
with the resource-limited non-leader agents. The non-leader agents are also called mobile,
interchangeably. The size of the population n is the number of the mobile agents. It is
unknown (a priori) to the agents, contrary to the upper bound parameter P ≥ n. Each agent
has a state taken from a set of states Q (depending on P ), the same for all mobile agents,
but generally different for the leader.

A (population) protocol can be modeled as a finite transition system defined by transitions
between configurations, where a configuration is a vector of states of all the agents. The
transitions between configurations are defined by pairwise interactions between agents. If, in
a configuration C, two agents x and y interact (meet), s.t. x is in state p and y in state q,
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they execute a transition rule (p, q)→ (p′, q′). As a result, x changes its state from p to p′

and y from q to q′. The new configuration C ′, resulting from this state changes, is said to be
reachable from C (in one step), denoted by C → C ′. If p = p′ and q = q′, the corresponding
transition is said null (such transition rules are specified by default), and non-null otherwise.5
If there is a sequence of configurations C = C0, C1, . . . , Ck = C ′, such that Ci → Ci+1 for all
i, 0 ≤ i < k, we say that C ′ is reachable from C, denoted C

∗→ C ′.
The transition rules are deterministic, if for every pair of states (p, q), there is exactly

one (p′, q′) such that (p, q)→ (p′, q′). We consider only deterministic transitions and thus,
only deterministic protocols. Transitions and protocols can be symmetric or asymmetric.
Symmetric means that, if (p, q)→ (p′, q′) is a transition rule, then (q, p)→ (q′, p′) is also a
transition rule. In particular, if (p, p)→ (p′, q′) is symmetric, p′ = q′. A protocol is called
symmetric, if all its transition rules are symmetric, and asymmetric otherwise.

Let (p1, q1)→ (p2, q2), (p2, q2)→ (p3, q3), . . ., (pk−2, qk−2)→ (pk−1, qk−1), (pk−1, qk−1)→
(pk, qk) be a sequence of rules of a protocol. Then, we shortly write (p1, q1) ∗→ (pk, qk) to
denote the successive application of the rules of the sequence, to the same pair of agents,
initially in states p1 and q1, leading them to pk and qk, respectively. We sometimes call an
agent in state p a p-state agent, or just a p-agent.

An execution of a protocol is an infinite sequence of configurations and transitions
C0, t1, C1, t2, C2, t3, . . . such that C0 is the starting configuration and for each i ≥ 0,
Ci → Ci+1, ti being the transition between two particular agents used to reach Ci+1 from
Ci. When the actual transitions are irrelevant, we denote the execution by C0, C1, C2, . . ..
A segment or a sub-execution is a sub-sequence of an execution. The trace of transitions
of a sub-execution C0, t1, C1, t2, C2, . . . tk, Ck is a sequence t1, t2, t3, . . . tk of transitions, and
the corresponding trace of transition rules is the sequence r1, r2, r3, . . . rk such that ri is the
transition rule applied in ti. In a real distributed execution, interactions of distinct agents
are independent and could take place simultaneously (in parallel), but when writing down
an execution we order those simultaneous interactions arbitrarily.

An execution is said weakly fair, if every pair of agents in A interacts infinitely often. An
execution is said globally fair, if for every two configurations C and C ′ such that C → C ′, if
C occurs infinitely often in the execution, then C ′ also occurs infinitely often in the execution.
This also implies that, if in an execution there is an infinitely often reachable configuration,
then it is infinitely often reached [2]. Note that an execution where pairs of agents interact
according to some probabilistic distribution is globally fair with probability 1 [17].

A simple example allows to better understand the difference between weak and global (or
probabilistic) fairness. Consider a population of 3 agents. Each agent can be white or black,
and initially one agent is black and the two others are white. Consider also the protocol
in which, when two white agents interact, they both become black and when two agents
of different colors interact, they exchange their colors. It is easy to see that there is an
infinite weakly fair execution in which there is always one black and two white agents (the
black color “jump” indefinitely from agent to agent). On the contrary, every globally fair
execution terminates in a configuration in which the 3 agents are black, because otherwise
there would be infinitely many configurations during an execution from which the “all black”
configuration could be reached, without ever being reached (contradicting global fairness).

A (static) problem is defined by a predicate D on configurations. A population protocol

5 For simplicity, in some cases, we do not present protocols under the form of transition rules, but under
the equivalent form of a pseudo-code.
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9:6 Space-Optimal Naming in Population Protocols

P is said to solve a problem D, if and only if every execution of P reaches a configuration
satisfying the conditions defining D and stays in such configurations forever after. When this
happens, we say that the protocol has stabilized (or terminated), and a terminal configuration
has been reached. A self-stabilizing protocol is a protocol that stabilizes from an arbitrary
configuration (i.e., from a configuration where any agent, including the leader, can be in any
possible state).

In the naming problem, each mobile agent x has a variable, also called a name, that
eventually does not change and such that no two agents have the same name. Mobile agents
having the same state (thus the same name) are called homonyms.

We consider uniform or semi-uniform protocols (cf. [14, 19]) in the sense that all agents,
except the leader (whence semi-), are a priori indistinguishable and interact according to
the same transition rules. Moreover, given an upper bound P on n, the protocol functions
similarly for any n. Thus, given the bound P , by the definition of naming, an obvious lower
bound on the state space of a mobile agent (for solving naming) is P .

3 Negative Results

In this section, we clarify some boundaries on the possibility to obtain symmetric naming.
They are summarized in Table 1 and useful for establishing the space-optimality (tightness)
of the solutions presented in the next section. We proceed from simple to more intricate
results, gradually adding assumptions helping in breaking symmetry (making harder to proof
impossibilities). We conclude this section by Theorem 11 - a subtle result stating impossibility
to get a P state symmetric protocol even with an initialized leader, but non-initialized mobile
agents and under weak fairness.

The first result is obtained by observing a completely symmetric weakly fair execution
where at each step the population transits from one uniform configuration (all agents are in
the same state) to the other, by applying each time a symmetric rule between two homonyms.

I Proposition 1. Under weak fairness and without leader (even with a uniform initialization
of mobile agents), symmetric naming is impossible in the population protocol model.

Proof. By contradiction, assume that such a symmetric protocol PP exists. With or without
an initialization, consider a possible starting configuration where each agent is in state s1
and the population size is even (this also corresponds to a uniform initialization). We build
a weakly fair infinite execution of PP during which no configuration with agents in distinct
states is reached. This execution can be described by phases. In the first phase, the agents
are matched in pairs and interact accordingly. As the protocol is symmetric, after this first
phase, each agent is in some state s2, the same for all agents. In the next phase, the agents
are matched again in pairs, but differently from the previous phase, and interact accordingly.
After this phase, each agent is in some state s3, the same for all agents. The execution
continues in such phases such that eventually every agent has interacted with every other.
From now on, such interaction sequence is repeated infinitely often, satisfying weak fairness.
However, this execution never assigns distinct names to agents. J

The following lemma states properties of the transition rules of any P state symmetric
naming protocol. Its short proof is given below. The lemma is used in the proofs of the
next two propositions: the first one assumes no existing leader, while the second one proves
impossibility of a self-stabilizing symmetric naming even with a leader.

I Lemma 2. In any symmetric naming protocol using only P states per agent, the only
possible non-null transition rules between two non-leader agents are between two homonyms.
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Proof. Otherwise, in a population of P agents, after stabilization (every state in {1, . . . , P}
is assigned to some agent), mobile agents would be able to change their states and hence
their names. This is a contradiction to the assumed stabilization. J

Under the conditions of the next proposition and by the lemma above, the only non-null
transitions are between two homonyms (resulting in another two homonyms). Such transitions
are useless for eliminating repeated names, implying the result.

I Proposition 3. Even with a uniform initialization of agents, but without a leader, and
using only P states per agent, it is impossible to obtain symmetric naming in the population
protocol model, under weak or global fairness.

I Proposition 4. There is no symmetric naming protocol with P states per agent with an
arbitrarily initialized leader (or without it), under weak or global fairness.

Proof. Assume by contradiction that such a protocol exists. By Proposition 3, a leader is
necessary. Consider a population of P mobile agents and a starting configuration C0 (with
possibly uniformly initialized mobile agents) that has homonyms (with states in {1, . . . , P}).
By Lemma 2, only transitions with a leader can eliminate homonyms (the only possible non-
null symmetric transition rules between homonyms create necessarily two other homonyms).
Thus, there is a finite execution sequence e, starting from C0, during which the leader renames
interacting mobile agents, and finally stabilizes to a correct naming (where every name from
{1, . . . , P} is assigned to some mobile agent). Denote by Ce and by se the configuration and
the state of the leader, respectively, at the end of e.

Then, assume a starting configuration C ′0 (with possibly uniformly initialized mobile
agents, as before) containing only homonyms in state s (in {1, . . . , P}) and with the leader
in state se. There must be a sequence of interactions between the leader and mobile
agents starting from C ′0 which ends up with a transition during which an interacting agent
changes its name. Such a sequence of interactions exists also starting from Ce (with either
weak or global fairness), because in Ce any possible state exists in the population. This
contradicts the assumption that the protocol has stabilized starting from Ce in e. Hence, the
proposition follows. J

3.1 Impossibility of P state symmetric naming of arbitrarily initialized
mobile agents, under weak fairness, even with an initialized leader

For proving this stronger impossibility result, let us assume, for the sake of contradiction,
that such a solution exists. Thus, denote by Name any symmetric protocol solving the
naming problem under weak fairness (for any n ≤ P ), with arbitrarily initialized P -state
mobile agents. By Proposition 3, under such conditions, a leader is necessary. Moreover, by
Proposition 4, such an agent has to be initialized. So, in this sub-section, we assume such
initialized unique leader. In the following, some additional necessary properties of protocol
Name are proven and finally imply the impossibility of its existence (see Theorem 11).

Using the lemma below, the next proposition establishes an important property of any
protocol Name - the existence of a unique state m, called sink. This particular state satisfies
the following three conditions: (1) (m, m)→(m, m); (2) for every state s ∈ Q, there is a
transition rule sequence (s, s) ∗→ (m, m); (3) for any n < P , no mobile agent is assigned a
name m at stabilization (i.e., m does not appear infinitely often in executions with n < P ).

I Lemma 5. Consider any weakly fair execution e = C1, C2, C3, . . . , Cj , . . . of Name on a
population A of size n < P . There is an integer k such that, for any j ≥ k, no mobile agent
is in a state m ∈ Q such that there is a sequence of transitions of Name (m, m) ∗→ (m, m).

DISC 2019



9:8 Space-Optimal Naming in Population Protocols

Proof. Let us assume, by contradiction, that there are infinitely many configurations in e

with a mobile agent in state m. Since there is a finite number of agents, there is a particular
mobile agent x in A which is in state m in infinitely many configurations. Let Cj1 , Cj2 , Cj3 , . . .

be these configurations such that e = e1, Cj1 , e2, Cj2 , e3, Cj3 , . . . W.l.o.g., we choose these
configurations such that, in every execution segment ei, every agent in A interacts with every
other (this is possible with weak fairness).

Now consider a population A′ = A ∪ {x′} of size n + 1. To prove the lemma, we will
construct a weakly fair execution e′ of Name in population A′ where no agent can distinguish
e′ from e, and where consequently Name wrongly names the agents. Precisely, in e′, x and
x′ will be simultaneously in state m in infinitely many configurations.

We construct e′ based on e. First, we assume that in e′, x′ is in state m in the
starting configuration, and e′ = e′1, C ′j1

, em, e′2, C ′j2
, em, e′3, C ′j3

, em, . . . Every segment e′i
follows exactly the same transition sequence as in ei. In every segment e′2r+1, C ′j2r+1

(for
r ≥ 0) the interactions are exactly the same as in e2r+1, Cj2r+1 , and x′ does not interact.
However, in e′2r, C ′j2r

, all the interactions are as in e2r+2, Cj2r , but the interactions with x. In
this case, x is replaced by x′ in the appropriate state, and x does not interact. Finally, em is
an execution segment where only x and x′ interact. They both start in state m, performing
the sequence (m, m) ∗→ (m, m). The configurations at the beginning and at the end of em are
identical. The construction of e′ ensures that in every C ′ji

, both x and x′ are in the state m.
It is easy to verify that e′ is possible. In particular, this is because, at the end of every

segment e′i, C ′ji
, em, both x and x′ are in the state m, so they can be exchanged in the

following transitions of e′i+1. Moreover, e′ is weakly fair, because x′ interacts with x in every
em; in every e′2r+1 and e′2r+2, x and x′, respectively, interact with every other agent (by the
assumption on ei); and all the other agents interact with all the others infinitely often, by
the later arguments and by weak fairness of e.

Finally, in e′, Name does not name x and x′ differently. This is a contradiction to the
assumption that Name is a correct naming protocol. J

I Proposition 6. In any protocol Name, there is a sink state.

Proof. As Name is symmetric, two interacting agents, both in some state s ∈ Q, execute
some symmetric transition of the form (s, s)→ (s1, s1). If they meet several times successively,
there is a possible sequence of transitions (s, s)→ (s1, s1)→ (s2, s2)→ (s3, s3) . . . As mobile
agents are finite state, for some j > i ≥ 1, si = sj , i.e. (si, si)

∗→ (si, si). By Lem. 5, si = m

s.t. m does not appear infinitely often in executions with n < P . As there are at least P − 1
states appearing infinitely often in an execution with n = P − 1 , there is at most one such
possible state m in a P state protocol. This implies correctness of conditions (2) and (3) of
the sink definition.

Finally, by contradiction, if (m, m)→(s, s) s.t. s 6= m, then the previous part of the proof
implies (s, s) ∗→ (s, s). As m is proved (above) to be unique, this is a contradiction, implying
the correctness of condition (1) of the sink definition. J

From now on, the proof assumes the sink state denoted by m, and shows the impossibility
for a particular kind of executions, called here reduced. In any segment of a reduced
execution, each time a pair of s 6= m homonyms appears, it is immediately reduced to m,
i.e., by applying the sequence of transition rules (s, s) ∗→ (m, m), whose transitions and by
extension the sequence itself are called (homonym) reducing. Thus, other transitions can
take place only when there are no more homonyms. Naturally, any configuration without
any homonyms except those in state m is called reduced. Notice that, in a reduced execution,
there are non-reduced configurations, but only during the reducing transition sequences. For
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example, consider the following reduced sub-execution (where li represents a leader state):
[1, 2, 3, 4, m, l1], (l1, 1)→ (l2, 2), [2, 2, 3, 4, m, l2], (2, 2)→ (m, m), [m, m, 3, 4, m, l2], (l2, m)→
(l3, 3), [m, 3, 3, 4, m, l3], (3, 3) → (m, m), [m, m, m, 4, m, l3]. In this example, the reduced
configurations are [1, 2, 3, 4, m, l1],
[m, m, 3, 4, m, l2] and [m, m, m, 4, m, l3].

Forcing a reducing sequence of transitions whenever possible, as in a reduced (sub-)
execution, does not prevent an execution from being weakly fair. Thus, we can prove the
following corollary.

I Corollary 7. Given protocol Name, any reduced sub-execution of Name can be prolonged
to a reduced weakly fair execution of Name, i.e., in which Name stabilizes.

Proof. First, recall that, by Prop. 6, and Lemma 2, the only non-null-transitions of Name

are the homonym reducing transitions between non-m-mobile agents and the transitions with
the leader. Given a reduced segment, we prolong the execution by forcing mobile agents
to interact with every other agent (including the leader) in a “round-robin fashion” (not
necessarily in consecutive interactions). Whenever homonyms are created, this interaction
pattern is interrupted by the homonym reducing sequence of transitions, and then resumed
after the reduction. The execution constructed that way is weakly fair and uses only
transitions of Name, hence it stabilizes towards a naming. J

The following lemma states a basic property of Name, in a population of P agents. It uses
the notion of equivalent configurations. Two configurations are equivalent if both correspond
to the same multi-set of states6 (e.g., C1 = [2, 3, 2, m, l] is equivalent to C2 = [2, 2, 3, m, l],
where l stands for the leader state). This notion is naturally extended to equivalent executions.
The lemma shows that, in a population of P agents, if there is a reduced sub-execution in
which some particular state s 6= m never appears (in its reduced configurations), than there
is also an equivalent sub-execution where a particular m-agent never interacts.

I Lemma 8. In a population of P agents, consider a reduced sub-execution e = CC1C2 . . . Ck

of Name, starting from a reduced configuration C and such that no agent in state s 6= m (for
some s) exists in any reduced configuration of e. Then, there exists a reduced sub-execution
e′ = CC ′1C ′2 . . . C ′k of Name in which a particular m-agent x never interacts, and, as in e, no
agent in state s 6= m exists in any reduced configuration of e′. Moreover, every configuration
C ′i of e′ is equivalent to the configuration Ci in e.

Proof. In a population of P agents, in any reduced configuration (of a reduced execution of
Name), there is at least one m-state agent. Thus in any reduced configuration of e there are
at least two m-state agents. Consider C and call one of these two agents agent x.

Let us construct now e′, starting in C, with exactly the same trace of transition rules of e.
By Prop. 6, and Lemma 2, the only non-null-transitions are homonym reducing transitions
between non-m-mobile agents and the transitions with the leader. By a simple induction
below, one can see that every transition rule in a trace of e, step by step, can be executed
without participation of agent x, and thus added to e′. Since no transition of e creates an
s-agent, no such added transition can create an s-agent.

Thus, starting in C, the first transition of e can be executed with any agent, except
x, and thus can be added to e (the base of induction). The resulting configuration C ′1 is

6 or if one is a permutation of the vector components of the other (recall that a configuration is a vector
of states of the agents)
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equivalent to C1. Then, by induction, assume that after k transitions added to e′, the reached
configuration is equivalent to the one reached after transition k in e (without any s-state
agent in a reduced configuration). For k + 1, if a homonym reducing transition takes place in
e, x does not participate (it is already reduced) and thus the same transition can be added to
e′, and an equivalent configuration is reached. Otherwise, if this is a reduced configuration,
there is an additional m-state agent, different from x, so any transition with the leader can
be executed excluding x, and an equivalent configuration is reached. By such construction of
e′, every configuration C ′i is equivalent to Ci in e. J

Now, we want to prove that Name, in a population of size P , can reach a terminal
configuration C (with uniquely named agents and in particular with an agent x in some state
s 6= m), but such that the leader may be unaware of that. Then, the leader should manage
to create the possibly missing s-agent for stabilizing towards a configuration where naming
is realized. But, once created, this s-agent can disappear by a reduction with the “hidden”
s-agent x. This contradicts the fact that the reached configuration C is terminal (see the
proof of Theorem 11). This proof uses the following two technical lemmas.

The first lemma (Lem. 9) states that, in some conditions, from a reduced configuration
with an s-agent, a reduced configuration without such an agent is reachable. The second
symmetric lemma (Lem. 10) states that, if there is some constrained sub-execution to a
latter configuration without an s-agent, then there also exists a particular sub-execution
from the configuration without an s-agent to the one with it. We use the following definitions
to describe these aspects formally.

A configuration C1 is said to be far away from C2 by one state s 6= m (in agent x),
if there is an agent x such that C1[x] = m, C2[x] = s 6= m and ∀y ∈ A \ {x}, C1[y] =
C2[y] 6= s. Then, C1 is denoted by C−s

2 and C2 by C+s
1 . Agent x is called the pivot. For

example, C1 = [1, m, 3, 4, m, l1] is far away by one state 2 from C2 = [1, 2, 3, 4, m, l1], and
C1 = C−2

2 , C2 = C+2
1 .

I Lemma 9. Consider a population of size P and two reduced configurations C1 and C−s
1 ,

far away by state s, in agent x. Consider a given reduced sub-execution C−s
1 e−s

1 C2 of Name

where: (i) there is no s-agent in every reduced configuration in the segment C−s
1 e−s

1 , (ii)
agent x does not interact in C−s

1 e−s
1 C2, (iii) C2 is reduced and has exactly one s-agent. Then,

there exists a reduced sub-execution C1e1C−s
2 of Name such that exactly one agent in state s

exists in every reduced configuration in C1e1, and agent x does not interact in C1 e1 C−s
2 ,

except in the very last (s-homonym) reducing sequence.

Proof. Given a sub-execution C−s
1 e−s

1 C2, the sub-execution C1e1 is constructed, starting
from a configuration C1, by applying exactly the trace of transition rules of C−s

1 e−s
1 C2, on the

population excluding the s-state agent x (recall that agent x does not interact in C−s
1 e−s

1 C2).
At the end of the execution constructed till now, there are exactly two s-state homonyms
(x and another s-agent). Now, the transitions reducing these homonyms to m are added to
reach the desired configuration C−s

2 . In this way, the sub-execution C1e1C−s
2 is obtained.

Notice that agent x interacts only in the very last (s-homonym) reducing sequence. J

I Lemma 10. Consider a population of size P and two reduced configurations C1 and C−s
1 ,

far away by state s, in agent x. Consider a given reduced sub-execution C1e1C−s
2 of Name

where exactly one agent in state s exists in every reduced configuration in the segment C1e1,
and agent x does not interact in C1 e1 C−s

2 , except in the very last (s-homonym) reducing
sequence. Then, there exists a reduced execution C−s

1 e−s
1 C2 of Name such that there is no

s-agent in any reduced configuration in the segment C−s
1 e−s

1 , and C2 is reduced and has
exactly one s-agent.
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Proof. In a given execution C1e1C−s
2 agent x does not interact, except in the very last

(s-homonym) reducing sequence. Starting from C−s
1 we construct an execution C−s

1 e−s
1 C2,

by using first exactly the same prefix of the trace of transition rules of C1e1C−s
2 , until and

excluding the very last (s-homonym) reducing sequence. In the given configuration, before
this very last reducing sequence, two s-agents necessarily exist, one of them being till now the
non-interacting agent x. However, in the sub-execution constructed at this point, x does not
interact either, but is in state m, so exactly one s-agent exists at the end of the constructed
sub-execution. Hence, C2 is reached and the required C−s

1 e−s
1 C2 is obtained. J

I Theorem 11. Under weak fairness, without the initialization of mobile agents, there is no
symmetric naming protocol with P states per agent.

Proof. By contradiction, assume that such a protocol Name exists. Consider a population
of P agents. Assume an agent x that does not communicate (for long enough), while the
protocol is stabilizing with only P − 1 mobile agents. By Proposition 6, when this happens,
no agent, except possibly x, is in state m. Thus, consider two possible configurations. In
one, C1, the state of x is m, and in another, x is in state s 6= m. In the latter case, reduce
the s-state homonyms (to m) (possible by Prop. 6). The reached configuration is C−s

1 .
Assume that the actual obtained configuration is C−s

1 . By the correctness of Name,
starting from C−s

1 , any execution e stabilizes to a configuration C∗ where all agents are in
different states and no state changes thereafter. Moreover, by Corollary 7, there is such an
execution, which is reduced. Furthermore, any such e can be decomposed s.t.
e = C−s

1 e−s
1 C2 e2 C−s

3 e−s
3 C4 e4 C−s

5 . . . C−s
k e−s

k C∗C∗ . . .. For every odd i, no s-agent exists
in any reduced configuration of C−s

i e−s
i , and C−s

i is reduced. For every even i, exactly one
s-state agent exists in every reduced configuration in Ciei, and Ci is reduced. By Lemma 8,
for every odd i, one can choose a segment C−s

i e−s
i such that a particular m-agent xi never

interacts in this segment.
Furthermore, e is chosen such that, for every segment CieiC

−s
i+1 with an even i, a particular

s-state agent yi 6= xi does not interact, except in the very last (s-homonym) reducing sequence.
Let us show (by induction) that such e exists. First, since in C−s

i e−s
i , for odd i, there is

an m-agent y 6= xi in every reduced configuration. Thus, in the following Ci+1 (even i + 1)
configuration, any such agent or other non-m-agent yi 6= xi can become an s-agent. This
implies that every agent in e has the opportunity to interact repeatedly. Second, by Lemma 9,
C1e1C−s

2 exists (such that there is exactly one agent in state s in every reduced configuration
of C1e1).Thus, starting from C1, at the end of C1e1C−s

2 , no s-agent would exist. Then, by
correctness of Name, there exists C−s

2 e−s
2 C3 (where no s-agent exists in C−s

2 e−s
2 ), and by

Lemma 8, such that, in C−s
2 e−s

2 , a particular m-state agent does not interact, e.g., the pivot
agent of C−s

2 and C2. Thus, by Lemma 9, there exists e, such that, in C2e2C−s
3 , a particular

s-state agent y2 does not interact, except in the very last (s-homonym) reducing sequence
(this proves the base of induction).

Now, one can repeat the same arguments, for any segment C−s
i e−s

i Ci+1ei+1C−s
i+2, for an

odd i, in e, and show (by induction) that the chosen e exists. Recall that we assumed that
Name has stabilized in C∗ and then, the leader has to stop renaming the agents. In addition,
C∗ is reduced (all agents are distinctly named). Hence, from this point, only null-transitions
are possible.

Notice that the conditions of Lemma 9 are satisfied for the segments C−s
i e−s

i Ci+1 with
an odd i, and the conditions of Lemma 10 are satisfied for the segments CieiC

−s
i+1e−s

i with
an even i. Hence, by applying these lemmas repeatedly to the segments of e, one inductively
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builds the execution segment e′ = C1e1C−s
2 e−s

2 C3e3 . . . CkekC−s
∗ . However, C−s

∗ is reduced,
and far away by only one state from C∗. No agent except the pivot, can distinguish
C−s
∗ from C∗, since each one is in the same state in both configurations. In particular,

C−s
∗ [leader] = C∗[leader]. Thus, and by Lemma 2 and Prop. 6, the only possible transitions

with the leader are null transitions, as well as the transitions involving mobile agents (there
are no non-m-homonyms). Obviously, in C−s

∗ , the protocol has not stabilized yet. But, no
transition can change the configuration C−s

∗ . This contradicts the assumption that Name

is correct. J

4 Positive Results

We start by a proposition that illustrates the power of asymmetric transition rules, compared
to symmetric ones. Basically, with asymmetric rules, a leader is not necessary for breaking
symmetry, even under weak fairness. Moreover, P states are sufficient and no initialization
is necessary, i.e., self-stabilizing space-optimal naming is possible.

The proof is by construction of a protocol with a single asymmetric type of rule,
(s, s)→ (s, (s + 1) mod P ). This idea is known in the literature, e.g., [9, 5]. It aimed at
solving other (than naming) problems, but provided naming as a by-product. [9] considers
self-stabilizing leader election, assuming that the exact size of the population n is known
(an assumption proven to be necessary). Under this assumption, the presented protocol also
solves naming. In [5], a similar idea is used to count the arbitrarily initialized mobile agents,
assuming an initialized leader, and realizes also naming.

The asymmetric space-optimal naming protocol presented below is proven under more
general assumptions (with upper bound P , instead of exact knowledge of n, without a leader,
and under both fairness assumptions). Its proof uses the novel technique of hole and hole
distance in a configuration.

I Proposition 12. Even if agents cannot be initialized, asymmetric naming (under global or
weak fairness) is possible using an optimal number of states (P ) per agent and without leader.

Proof. Consider the following asymmetric protocol with P -state agents and only one type of
transition rules: (s, s)→ (s, (s + 1) mod P ).

To prove its correctness let us use the following definitions. A hole in a configuration C

is an integer i such that no agent is in state i in C. The hole distance of an agent, in state i,
in a configuration C, is the minimum positive integer j such that i + j mod P is a hole, if
such an integer j exists, and 0 otherwise. The hole distance of a configuration C is the sum
of the hole distances of the agents in C. Let f be the function mapping each configuration
C to a pair of integers (number of holes in C, hole distance of C).

Let C and C ′ be two different configurations such that C → C ′. Let us show that, for the
lexicographical order, f(C) > f(C ′). First, remark that C ′ cannot have more holes than C.
If C ′ has one hole less than C, we are done. If not (C ′ has the same holes as C), there is
an agent in state i in C that has changed its state to i + 1 mod P in C ′. Thus, the hole
distance of C ′ is the hole distance of C minus 1. We are done also in this case.

Since f is upper bounded (e.g., by (P, P (P − 1))), there is a sequence of transitions that
reaches a configuration from which only null transitions are possible, making no effect on
agents’ states, that are thus necessarily distinct. Then, naming is achieved. J

Now we consider one of the most difficult cases for symmetric protocols – assuming no
leader and no initialization - impossible under weak fairness. Recall that global fairness
mimics, in some sense, the behavior of randomized environments. The following proposition
shows that this pseudo randomization is sufficient for breaking symmetry, and that a
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distinguishable agent is not needed for that. Thus, we propose below the first symmetric
space-optimal self-stabilizing naming obtained without a leader (the complete proof is in [8]).
Notice, that by Proposition 3, at least P + 1 states per agent have to be used in this case.

I Proposition 13. Even if agents cannot be initialized and without a leader, symmetric
(self-stabilizing) naming under global fairness, for n > 2, is possible using P + 1 states
per agent.

Proof Sketch. Consider the following symmetric protocol with state space Q = {0, 1, . . . , P}
and defined by three types of transition rules:
1. if s 6= P : (s, P )→ (s, (s+1) mod P ); 2. if s 6= P : (s, s)→ (P, P ); 3. (P, P )→ (1, 1).

From a configuration with homonyms, rule 2 can be applied repeatedly to obtain a
configuration C ′ where there are only P -state homonyms, and possibly some other uniquely
named agents. If, in C ′, no uniquely named agents exist, let us force transitions using rules 3
and then 1, to create at least one uniquely named agent. Then, rule 2 is applied again, to
reach a configuration C with only P -state homonyms and with at least one uniquely named
agent. Then, whenever there are still some P -state homonyms in C, pick an agent with a
unique name s such that no agent with a unique name (s + 1) mod P exists. Make the
s-agent interact with some P -agent, applying rule 1. The obtained configuration contains
one more unique name than in C. If naming is not yet reached, this scenario is repeated until
it is reached. Such an execution segment is possible from any configuration with homonyms.
Hence, naming is reached in any globally fair execution. J

Up to this point, we have covered the possible positive cases assuming that no leader is
present. Now, we show that the impossibility results of Section 3 can be circumvented by the
assumption of a distinguishable agent. This allows to obtain three space-optimal symmetric
protocols: 1) a simple P state protocol with all agents being initialized, including the leader
(Prop. 14; its proof is in [8]); and two more intricate protocols: 2) a self-stabilizing one (with
P + 1 states) under weak fairness (Prop. 16); and 3) a protocol using only P states under
global fairness (Prop. 17).

I Proposition 14. Given a unique initialized leader, and uniform initialization of mobile
agents, symmetric naming is possible using only P states per agent, under weak or global
fairness.

The next two results (Prop. 16 and 17) exploit the existing space-optimal counting
protocol from [4], which uses P states per mobile agent, and (deterministically and exactly)
counts such non-initialized agents under weak fairness, assuming an initialized leader . Let
us denote it by CountP . It was not originally intended to be a naming protocol, neither a
self-stabilizing one. However, it can be observed that, for the case of n < P , it performs (a
non self-stabilizing) naming. This property is reflected in Theorem 15 below.

I Theorem 15 ([4]). Protocol CountP in [4] solves the counting problem, under weak fairness,
for up to P mobile agents, each with P states. Moreover, for any n < P , the protocol names
(up to P − 1) mobile agents with distinct names in {1, . . . n}.

By augmenting the mobile agents’ state space to P + 1 and adapting CountP accordingly,
one obtains a naming protocol (also correct in the case where n = P ), though using a
non-optimal P + 1 number of states. Let us denote the resulting protocol by CountP +1.
This protocol is adapted here further for solving the naming problem in a self-stabilizing
way – Prop. 16, while the protocol of Prop. 17 is based on the original CountP .
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For presenting these protocols, some more details of Count have to be given. First,
note that, in the new protocols here, an appropriate Count protocol is a priori executed
independently, by every agent. The leader (also assumed in Count) manages an estimate
for the population size. Let us denote it here by Count.N (or just N when the particular
version of Count is clear from the context). In the original version of Count, N is initialized
to 0 and incremented until reaching the actual size n (N is non-decreasing). Each mobile
agent x in Count has an arbitrary initialized variable namex, which eventually contains a
unique name (in {1, . . . , n}), with CountP +1 (for any n ≤ P ), or with CountP for any n < P .
Only the leader can assign a new (non 0) name to an interacting agent in state 0. This
state plays the role of the sink state (see definitions in Sect. 3.1). The only action of mobile
agents is to reduce homonym states to the sink. Because of that, 0-agents appear along an
execution until naming with names in {1, . . . , n} is reached. Notice that, even though naming
may not be reached in CountP (0-agents may persist forever), it terminates, i.e., agents will
eventually execute only null-transitions. This happens whenever a reduced configuration
satisfying CountP .N = n is reached (this is used in Protocol 1, Prop. 17).

I Proposition 16. Self-stabilizing (every agent state is initialized arbitrary) symmetric
naming under weak fairness is possible using P + 1 states per mobile agent, given a unique
(non-initialized) leader.

Proof. By Theorem 15, for any n ≤ P , CountP +1 assigns unique names in {1, . . . , n} to
mobile agents, if the leader is well initialized. However, to get a self-stabilizing version, one
have to abandon this latter assumption (the leader cannot be initialized). Then, it may
happen that CountP +1.N starts in a non 0 value and reaches P + 1, before the naming (and
the correct count) is realized. Notice that in this case, mobile agents in state 0 exist (since a
naming is not yet reached).

To overcome this case, we incorporate a reset technique. When a mobile agent x in state
0 (namex = 0) interacts with the leader and the estimate CountP +1.N is bigger than P ,
the leader resets its internal variables (together with N) to the initialization values of the
original CountP +1. It is clear that, whenever such a reset is executed, the required naming
is eventually and correctly obtained, by the correctness of CountP +1. This solves the only
problematic case described above. Hence, the proposition follows. J

Now, for proving Prop. 17, a protocol using only P states per mobile (non-initialized)
agent is constructed. It is done by modifying protocol CountP and by exploiting the global
fairness assumption. The resulting protocol is not self-stabilizing, as the leader is initialized
(and otherwise impossible by Prop. 4 - with only P states). Notice that this case is similar
to the conditions of Theorem 11 (stating impossibility of naming) except for the fairness
condition. In fact, it is not easy to see why a similar reasoning used to prove Th. 11 (roughly
the fact that the leader can never detect whether the naming is achieved or not) does not
also hold in the current case (with global fairness). Intuitively, this is because the power of
global fairness allows to eventually reach a favorable (for stabilization) sub-execution even
using a deterministic protocol (though a particular one), while with weak fairness unfavorable
sub-executions may persist forever.

I Proposition 17. With an initialized leader (without initialization of mobile agents), sym-
metric naming under global fairness is possible using only P states per mobile agent.

Proof. The proposed protocol is a modification of CountP in the code of the leader. The
mobile agents are reducing homonyms to the sink state as in the original CountP . The
modified code is given below - Protocol 1. For every n < P , the new protocol works in
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the same way as CountP . Hence, by Theorem 15, it eventually stabilizes to naming for
every n < P . The case of n = P is treated separately, in lines 3 - 8. For this case, a
variable name_ptr with possible values in {0, . . . , P} is used for indicating to the leader
the name to assign to a mobile agent x interacting with it (using variable namex, from the
original protocol). The variable name_ptr is initialized to 0. Below we consider only the
case of n = P .

Whenever n = P , the leader increments name_ptr each time it meets a mobile agent
whose name is the current value of name_ptr. Otherwise, the agent is named by the value
of name_ptr, and name_ptr is reset.

Let us consider only reduced (to 0) executions (see the definition in Sec. 3.1). From any
non-terminal configuration, there is the following possible sequence of interactions during
which the leader first resets name_ptr (if not 0 due to initialization), and then meets the
existing j < P uniquely named agents in the increasing order of their names 0, 1, 2, 3, . . . j−1.
Variable name_ptr is then increased to j (≥ 1). After, the leader meets an agent in a state
different from j. It names the agent by the current value of name_ptr (= j), and resets
name_ptr again. Then, the scenario repeats, until name_ptr (and j) reaches P . No value
can be changed thereafter, and all agents are named by names in {0, . . . , P − 1}. By global
fairness, this terminal naming configuration is eventually reached. J

Algorithm 1 Space-Optimal Naming under Global Fairness (P states per mobile agent).

Variables at the leader:
name_ptr: [0, . . . , P ], initialized to 0

Variable at a mobile agent x:
namex: non-negative integer in [0, . . . , P − 1], initialized arbitrarily

1: when a mobile agent x interacts with the leader do
2: execute CountP

3: if CountP .N = P ∧ name_ptr < P then
4: if namex = name_ptr then
5: name_ptr ← name_ptr + 1
6: else
7: namex ← name_ptr

8: name_ptr ← 0
9: when two mobile agents x and y interact do
10: execute CountP

5 Conclusion and Perspectives

This paper studies a strong form of symmetry breaking, giving distinct names to indistin-
guishable agents in population protocols. It provides a comprehensive overview of the results
in terms of possibility, impossibility and space optimality, and some insights on the trade-offs
between criteria (global vs. weak, symmetric vs. asymmetric, need of a leader, initialization).

A continuation of this work could be the study of the time complexity aspects of naming
and, overall, of the trade-offs between time and space. Another perspective would be to
consider other forms of symmetry breaking (compact naming, leader election, coloring, two-
hop coloring, majority, etc.), under constraints of optimal memory space and requirements
of fault-tolerance.
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