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RÉSUMÉ 
Dans l’abondante littérature consacrée à la recherche sur les tsunamis,  on trouve relativement peu d’articles consacrés aux 
questions d’énergie. Nous procédons à une étude théorique de l’énergie des vagues déclenchées par mouvement du fond 
en partant des équations complètes d’Euler avec surface libre puis nous comparons les résultats obtenus par différents 
modèles d’approximation : équations de Saint-Venant, systèmes de Boussinesq. Les effets dispersifs n’apparaissent qu’à un 
ordre supérieur dans le bilan d’énergie. 
 
ABSTRACT 
In the vast literature on tsunami research, relatively few articles have been devoted to energy issues. A theoretical 
investigation on the energy of waves generated by bottom motion is performed here. We start with the full Euler equations in 
the presence of a free surface. Then we compare the results obtained through various approximations : nonlinear shallow 
water equations, Boussinesq systems. It is shown that dispersive effects only appear at higher order in the energy budget. 
 
 
1. INTRODUCTION 
 
Oceanic waves can be devastating as shown by recent 
events. Whilst some areas are more vulnerable than others, 
the recent history shows that catastrophic waves can hit 
even where they are not expected. The tsunami waves 
generated by the huge undersea earthquake in Indonesia 
on 26 December 2004 caused devastation across most of 
the coasts of the Bay of Bengal. The tsunami waves 
generated by the massive submarine landslide in Papua-
New Guinea on 17 July 1998 as well as the 17 July 2006 
Java tsunami and the 2 April 2007 Solomon Islands tsunami 
also caused devastation, but on a smaller scale.  
Unfortunately, such cataclysmic tsunamis are likely to be 
generated again by earthquakes, massive landslides or 
volcano eruptions. 
 
Information on tsunami energy can be obtained by applying 
the normal mode representation of tsunami waves, as 
introduced by Ward (1980). For example, Okal (2003) 
considers the total energy released into tsunami waves. He 
obtains expressions for the energy of tsunamis (see the 
expressions (31) and (36) in his paper). In the case of a 
landslide, he computes the ratio between tsunami energy 
and total change in energy due to the slide. In the present 
paper, we will use the incompressible fluid dynamics 
equations. Tsunamis have traditionally been considered as 
non-dispersive long waves. However various types of data 
(satellite data, hydrophone records – see for example Okal, 
Talandier & Reymond 2007) based on the 2004 Sumatra 
tsunami indicate that tsunamis are made up of a very long 
dispersive wave train, especially when they have enough 
time to propagate. These waves travel across the ocean 
surface in all directions away from the generation region. 
Recent numerical computations using dispersive wave 
models such as the Boussinesq equations show as much as 
20% reduction of tsunami amplitude in certain locations due 

to dispersion (see for example Dao & Tkalich 2007). But one 
has to be careful with the interpretation of satellite data: as 
indicated by Kânoglu & Synolakis (2006), the mid-ocean 
steepness of the 2004 Sumatra tsunami measured from 
satellite altimeter data was less than 10-5. Nonlinear 
dispersive theory is necessary only when examining steep 
gravity waves, which is not the case in deep water.  
 
The wavelength of tsunamis and, consequently, their period 
depend essentially on the source mechanism. If the tsunami 
is generated by a large and shallow earthquake, its initial 
wavelength and period will be greater. On the other  hand, if 
the tsunami is caused by a landslide (which happens less 
commonly but can be devastating as well), both its initial 
wavelength and period will be shorter. From these empirical 
considerations one can conclude that dispersive effects are 
a priori more important for submarine landslide and slump 
scenarios than for tsunamigenic earthquakes. 
 
Once a tsunami has been generated, its energy is 
distributed throughout the water column. Due to the large 
scale of this amazing natural phenomena and limited power 
of computers, tsunami wave modellers have to adopt some 
kind of simplified models which reduce a fully three-
dimensional (3D) problem to a two-dimensional (2D) one. 
This approach is natural, since in the case of very long 
waves the water column moves as a whole. Consequently 
the flow is almost 2D. Among these models one can 
mention the nonlinear shallow water equations, Boussinesq 
type models and Serre equations. Note that there is a wide 
variety of models, depending on whether or not they include 
run-up/run-down, bottom friction, turbulence, Coriolis 
effects, tidal effects, etc. 
 
At present time scientists can easily predict when a tsunami 
will arrive at various places by knowing source 
characteristics and bathymetry data along the paths to those 



 

places. Unfortunately one does not know as much about the 
energy propagation of such waves. Obviously tsunami 
amplitude is enhanced over the major oceanic ridges. As 
emphasized by Kowalik et al. (2007), travel-time 
computation based on the first arrival time may lead to 
errors in the prediction of tsunami arrival time as higher 
energy waves propagate slower along ridges. How is energy 
distributed during the first seconds of a tsunami? The 
purpose of this study is to shed some light on energy 
propagation and to see if the importance of dispersion in 
tsunamis can be studied by looking at the energy rather 
than at wave profiles. 
 
Previous researchers have considered this topic. Recently 
there was an attempt to obtain equations for tsunami energy 
propagation. We can mention here the work of Tinti and 
Bortolucci (2000) devoted to idealized theoretical cases and 
the work of Kowalik et al. (2007) using the energy flux point 
of view to study the changes in the tsunami signal as it 
travelled from Indonesia to the Pacific Ocean. We believe 
that these models can be improved, given the present state 
of the art in wave modelling. 
 
A point of interest is that some of the equations used for 
wave modelling have an infinite number of conserved 
quantities. There has been some confusion in the literature 
on which quantities can be called energy. Indeed there is 
here an interesting question. In incompressible fluid 
mechanics, the internal energy equation is decoupled from 
the equation of continuity and from the fundamental law of 
dynamics. It is used only when one is interested in 
computing the temperature field once the velocity 
distribution is known. In addition to the internal energy 
equation, one can write a total energy (internal energy + 
kinetic energy) equation, or a total enthalpy equation. The 
confusing part is that for perfect fluids one usually defines 
the total energy differently: it is the sum of internal energy, 
kinetic energy, and potential energies associated to body 
forces such as gravitational forces and to the pressure field. 
If in addition the fluid is incompressible, then the internal 
energy remains constant. In the classical textbooks on water 
waves (Stoker 1958, Johnson 1997), one usually introduces 
the energy E as the sum of kinetic energy and potential 
energy and then looks for a partial differential equation 
giving dE/dt (incidentally the meaning of d/dt is not always 
clearly defined). In any case, when one uses a depth-
integrated model such as the nonlinear shallow water 
equations, one can compute the energy a posteriori (the 
potential energy is based on the free-surface elevation and 
the kinetic energy on the horizontal velocity). But one could 
also apply the nonlinear shallow water assumptions on the 
full energy equation to start with. Then one would obtain a 
nonlinear shallow water approximation of the energy 
equations. Are these two approaches equivalent? 
 
First we present the energy equation. Then we see what 
happens to the energy equation under the nonlinear shallow 
water assumptions. Finally we present some numerical 
computations. 
 
 

2. ENERGY EQUATION 
 
The fluid is assumed to be inviscid. Its motion is governed 
by the three-dimensional (3D) Euler equations, written here 
in their incompressible form: 
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where ρ is the fluid density, u the velocity vector, E the total 
energy e + ½ u2, p the pressure and g the acceleration due 
to gravity. The third equation is in fact redundant in 
incompressible fluid mechanics. However we keep it since 
we are going to work directly on it. The fluid domain is 
bounded above by the free surface z = η(x,y,t) and below by 
the moving bottom z =  –  h(x,y,t). After a few manipulations 
and integration across the water column from bottom to top, 
one can write the following energy equation 
 
 

0=Ρ+Φ⋅∇+Ε ⊥t           (2) 
 
 
where E is the energy (sum of kinetic and potential energy) 
in the flow (not to be confused with E, the total energy), per 
unit horizontal area, Φ the horizontal energy flux vector, and 
P the net energy input due to the pressure forces doing 
work on the upper and lower boundaries of the fluid. They 
are given by the following expressions: 
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In the case of a stationary bottom boundary and of a free 
surface on which the pressure vanishes, then as expected 
the net energy input P is identically zero. Energy can be 
brought to the system by a moving bottom or by a pressure 
disturbance on the free surface.  
 
In the next section, we perform the classical shallow water 
approximation and we see what happens to the energy 
equation (2). 



 

 
3. SHALLOW WATER APPROXIMATION 
 
The problem of tsunami propagation possesses two 
characteristic length scales: the average water depth h0 for 
the vertical dimension and a typical wavelength L for the 
horizontal dimensions. These two lengths are used to 
introduce dimensionless independent variables. In order to 
introduce the dimensionless dependent variables we need 
one more length, namely the typical wave amplitude a. The 
shallow water approximation is then based on the 
introduction of two small parameters: ε = a/h0 and μ = 
(h0/L)2. The parameter ε represents the relative importance 
of nonlinear terms and μ measures the relative importance 
of dispersive effects. Following Ursell, we also introduce a 
number which measures the relative importance of 
nonlinear and dispersive effects in long waves: S = ε/μ. 
Then one can write the equations in dimensionless form. 
The energy equation becomes 
 
 

0=Ρ+Φ⋅∇+Ε ⊥εt  
 
 
If the bottom moves according to 
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then the energy equation becomes 
 
 

0=+Φ⋅∇+Ε ⊥ tt εηξε  
 
 
Note that we have simplified the expression for the pressure 
by keeping only its leading order term and assuming that ε 
and μ are of the same order. Terms involving μ show up 
only at next order, so one can conclude that dispersion 
comes as a second-order effect in the energy balance. 
 
 
 
4. NUMERICAL COMPUTATIONS 
 
We integrate numerically the nonlinear shallow water 
equations, including the energy equation that we derived 
above. The system looks like 
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The finite volume method is used to integrate the system 
numerically. For the numerical flux, we use the 
characteristic flux. This scheme is easy to implement, it is 
not based on an exact solution to the Riemann problem and 
it can be extended naturally to multi dimensional problems. 
We generate the waves by moving the sea bottom as it may 
occur in reality. The displacements are constructed in the 
following way. The main ingredient is Okada’s solution 
(Okada 1985). The moving bathymetry is obtained as 
follows: 
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where ζ(x,y) is the seabed static deformation prescribed by 
Okada’s solution. The parameter α is related to the 
characteristic time of the deformation. The figures show the 
free-surface elevation together with the depth-averaged total 
energy. 



 

 

 

 
Figure 1. Free-surface snapshot and energy contour plot 
around the tsunami generation region. At t=31s. 
 
 

 
 
Figure 2. Same as figure 1 at t=41s. 

 

 
 
Figure 3. Same as figure 1 at t=51s. 
 

 
 
Figure 4. Same as figure 1 at t=72s. 



 

 

 

 
Figure 5. Same as figure 1 at t=92s. 
 
 

 
Figure 6. Same as figure 1 at t=123s. 

 

 
Figure 7. Same as figure 1 at t=165s. 
 

 

 
 
Figure 8. Same as figure 1 at t=175s. 



 

 

 
 
Figure 9. Same as figure 1 at t=196s. 
 

 
 
Figure 10. Same as figure 1 at t=217s. 

 

 
 
Figure 11. Same as figure 1 at t=237s. 
 

 
 
Figure 12. Same as figure 1 at t=258s. 



 

 
5. CONCLUSIONS 
 
In this short paper we provide a rigorous treatment of the 
energy equation for tsunami propagation. The resulting 
equation does not coincide exactly with previous equations 
that have been used to study the propagation of tsunami 
energy. Indeed it is not equivalent to try to obtain the energy 
equation from the shallow-water equations. What we do is to 
apply the shallow water approximation directly to the energy 
equation. 
 
The present paper should be considered only as a 
preliminary work on the topic of tsunami wave energy. 
Deeper mathematical and especially physical analysis is 
needed. For example, it seems that it is not the whole  
energy which propagates with the wave. There is a part that 
remains trapped in the generation region, as indicated by 
our numerical computations. 
 
We attempted to understand the energy transfer from the 
moving bottom to the water. The importance of this topic 
can be justified by the hazard that tsunamis represent for 
coastal regions. 
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