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ARTICLE

Artificial intelligence exceeds humans in
epidemiological job coding
Mathijs A. Langezaal 1,2✉, Egon L. van den Broek 2✉, Susan Peters3, Marcel Goldberg 1, Grégoire Rey 4,

Melissa C. Friesen5, Sarah J. Locke5, Nathaniel Rothman5, Qing Lan 5 & Roel C. H. Vermeulen 3

Abstract

Background Work circumstances can substantially negatively impact health. To explore this,

large occupational cohorts of free-text job descriptions are manually coded and linked to

exposure. Although several automatic coding tools have been developed, accurate exposure

assessment is only feasible with human intervention.

Methods We developed OPERAS, a customizable decision support system for epidemiolo-

gical job coding. Using 812,522 entries, we developed and tested classification models for the

Professions et Catégories Socioprofessionnelles (PCS)2003, Nomenclature d’Activités

Française (NAF)2008, International Standard Classifications of Occupation (ISCO)-88, and

ISCO-68. Each code comes with an estimated correctness measure to identify instances

potentially requiring expert review. Here, OPERAS’ decision support enables an increase in

efficiency and accuracy of the coding process through code suggestions. Using the For-

maldehyde, Silica, ALOHA, and DOM job-exposure matrices, we assessed the classification

models’ exposure assessment accuracy.

Results We show that, using expert-coded job descriptions as gold standard, OPERAS

realized a 0.66–0.84, 0.62–0.81, 0.60–0.79, and 0.57–0.78 inter-coder reliability (in Cohen’s

Kappa) on the first, second, third, and fourth coding levels, respectively. These exceed the

respective inter-coder reliability of expert coders ranging 0.59–0.76, 0.56–0.71, 0.46–0.63,

0.40–0.56 on the same levels, enabling a 75.0–98.4% exposure assessment accuracy and an

estimated 19.7–55.7% minimum workload reduction.

Conclusions OPERAS secures a high degree of accuracy in occupational classification and

exposure assessment of free-text job descriptions, substantially reducing workload. As such,

OPERAS significantly outperforms both expert coders and other current coding tools. This

enables large-scale, efficient, and effective exposure assessment securing healthy work

conditions.
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Plain language summary
Work can expose us to health risks,

such as asbestos and constant noise.

To study these risks, job descriptions

are collected and classified by

experts to standard codes. This is

time-consuming, expensive, and

requires expert knowledge. To

improve this coding, we created

computer code based on Artificial

Intelligence that can both automate

this process and suggest codes to

experts, who can then check and

change it manually if needed. Our

system outperforms both expert

coders and other available tools. This

system could make studying occu-

pational health risks more efficient

and accurate, resulting in safer work

environments.
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Occupation is a major component of adult life and is an
important determinant of overall health. Workers are
exposed to negative conditions such as prolonged sitting,

stress, and chemical and physical agents including diesel engine
exhaust and asbestos1. Such occupational exposures globally
account for 2.8% of deaths and 3.2% of disability-adjusted life
years from all causes2. For example, about 26% of low back pain
has been estimated to be work-related and 3.2% to 4.6% of all
cancer deaths are due to occupational exposure. Occupational
epidemiological studies that assess exposure-response associa-
tions fuel interventions to promote workers’ health. Such studies
rely on high-quality exposure assessments to secure correct or
unbiased results3.

Occupational data in population-based cohorts is collected
from respondents via open-ended surveys where they report their
job title as they know it in a free-text format4. Subsequently, Job-
Exposure Matrices (JEMs) can be used to assign a wide range of
exposures to occupations5. A JEM comprises of estimated prob-
abilities and intensities of exposure to harmful agents by stan-
dardized occupational titles and industries. Through the use of
occupational and industry classification systems, free-text job
descriptions are translated into such standardized occupational
titles and industries6.

Occupational coding is performed manually by expert coders. To
ensure high quality and consistency of coding, documentation, pro-
cedures, and training are provided4. Nevertheless, consistent coding
of job descriptions remains challenging, given the large number of
different outcome categories. After three months of extensive coding
and training, the coding efficiency of an expert coder can reach
~2700 codes per month7. Furthermore, because of the repetitive
nature of the task, prolonged occupational coding sessions result in
reduced coding accuracy due to fatigue. Hence, given the large scale
of many occupational epidemiological cohorts, multiple expert coders
need to be deployed. This introduces a 44–89% inter-coder reliability
range for the most detailed coding level8, with more recent studies
reporting ranges between 42–71%9–12.

Tools have been developed to support manual assignment of
occupational codes to job descriptions13,14. Additionally, tools
have been developed that enable completely automatic coding,
achieving a prediction accuracy ranging 15–64% on the highest
coding level with an out-of-distribution accuracy ranging 17–26%
(see Table 1)10,15–20. Although some coding tools achieve a
human-coder level prediction accuracy, their exposure assess-
ment accuracy may be lower. Research on automatic coding tools
reports inter-coder reliability of 51% with an exposure assessment
Cohen’s Kappa score between 0.4–0.87. However, a separate study
reports higher minimum human exposure assessment Cohen’s
Kappa ranges between 0.66 and 0.84 with only 36–50% inter-
coder reliability21. Hence, human intervention is required during
or after the automatic coding process to ensure reliable exposure
assessment. However, current (semi-)automatic coding tools
either lack the implementation of machine learning techniques,
which are essential for achieving human-level prediction
accuracy16,22 or are limited to one national occupational coding
classification system10. This implies that only JEMs using these
national classifications can be applied, limiting the use of these
tools in global exposure assessment studies requiring other clas-
sifications. Consequently, we developed, tested, and validated
OPERAS, a decision support system for epidemiological job
coding that utilizes ML-based classification models for four
(inter)national classification systems. Its goal is to support expert
coders during occupational coding through both automatic cod-
ing as well as decision support through code suggestions. Our
evaluation shows that OPERAS outperforms existing automatic
coding tools and expert coders, leading to a substantial workload
reduction and highly accurate exposure assessment.

Methods
OPERAS has been developed via six phases. First, we acquired
datasets and identified classification performance barriers. Addi-
tionally, we specify the origin, available input classes, and used
occupational classification systems. Second, to enable complete
code suggestions, we removed missing and incomplete codes
during data preparation. Furthermore, to ensure optimal classi-
fication performance, we reduced the dimensionality and retained
crucial information of the free-text job descriptions through
multiple Natural Languange Processing (NLP) techniques. Third,
using state-of-the-art gradient tree boosting, we trained the
classification models. We optimized for generalizability by using
pre-defined parameter settings and the inclusion of generally
described job descriptions from the coding index in the training
set. Fourth, using prediction accuracy and Cohen’s kappa, we
evaluated the classification models on their classification perfor-
mance and present its impact on the occupational coding process.
Fifth, based on two occupational inter-coder reliability studies, we
compared OPERAS’ inter-coder reliability to expert coders. Sixth,
using four JEMs, we evaluated the NAF, PCS, ISCO-88, and
ISCO-68 classification models on their exposure assessment for
two groups: 1) all individuals, and 2) exposed individuals. In the
following subsections, each phase will be explained in detail.

Datasets. Using French23, Asian24, and Dutch25 datasets, we
developed OPERAS’ classification models. These datasets
respectively contain French, English, and Dutch manually expert-
coded free-text job descriptions in four hierarchically structured
occupational/activity sector coding classifications. Each classifi-
cation consists of multiple numbers and/or letters (e.g., “211A”)
where each added (combination of) character(s) provides addi-
tional detail about the job description. For example, the major,
sub-major, minor, and unit groups of the ISCO-88 code “2221”
are “Professionals” (2), “Life Sciences and Health Professionals”
(22), “Health Professionals” (222), and “Medical Doctors” (2221),
respectively. For insufficiently detailed job descriptions the expert
coder will replace not codable levels with a pre-defined character
(e.g., “#”). In the following paragraphs, each dataset and coding
classification will be further described. The descriptive statistics of
each dataset can be found in Tables 2 and 3.

Constances is a general-purpose cohort of French adults aged
18–69 with a focus on occupational and environmental factors23.
The dataset contains free-text answers to open-ended questions
regarding participants’ occupations held and sector of activity.
This information was manually coded into the French Nomen-
clature d’Activités Française (NAF)2008 and Professions et
Catégories Socioprofessionnelles (PCS)2003 classifications by
expert coders using a dedicated application showing the entire
summary of a participant’s occupational history26. Here, a NAF
code describes one’s activity sector and consists of four digits and
one letter (e.g., “4231A”), whereas a PCS code describes
occupation and consists of three digits and a letter (e.g.,
“211A”). The Constances cohort has been reviewed and approved
by the Institutional Review Boards of the French Institute of
Medical Research and Health, the “Commission Nationale de
l’Informatique et des Libertés”, and the “Conseil National de
l’Information Statistique”. Written informed consent was
obtained from all participants. Access and permission to reuse
the restricted data for the current study were provided by the
Principal Investigators (PIs) of the original study.

The AsiaLymph dataset is a hospital-based case-control study
of lymphoma among Chinese in Eastern Asia24. This dataset
contains free-text traditional and simplified Chinese occupations,
tasks, employers, and products that were translated into English.
They were manually coded using the International Standard
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Table 1 Supported occupational classification(s), applied classification algorithm, and accuracy (%) of the currently available
automatic occupational coding tools.

Coding tool Occupational Classification(s) Classification algorithm Accuracy

CL (OC) Acc.

ACA-NOC15 Canadian NOC2016 Multiple search strategies 1 (10) 82
2 (40) 72
3 (140) 65
4 (500) 59

CASCOT16 UK SOC(2010, 2000, 90), String similarity 4 (412) 64a

UK SIC(2007, 2003, 92, 80),
ISCO-08

NIOCCS17 US SOC2010 Deterministic supervised machine learning algorithm 1-2 (23) 45
3 (97) 22
4-5 (461) 19
6 (840) 15

Procode18 French PCS2003, Complement Naive Bayes PCS2003:
French NAF2008 1 (8) 81

2 (24) 73
3 (42) 70
4 (497) 57
NAF2008:
1 (21) 82
2 (88) 79
3 (272) 68
4 (615) 66
5 (732) 63

SOCcer10 US SOC2010 Stacked ensemble classifier 3 (97) 64
6 (840) 51

SOCEye7 US SOC2010 Global and local classification approaches 1-3 (97) 85
4-5 (461) 72
6 (840) 51

Accuracy is given for each coding level (CL) and occupational classification specified in the original study. The number of outcome categories (OC) is specified for each coding level.
aReports on CASCOT claim that 80% of the suggested codes have a confidence score of 40 or higher, of which 80% are correct. However, the used occupational classification, methods, and detailed
results are not mentioned and can thus not be verified.

Table 2 Descriptive statistics of viable entries from the Constances, AsiaLymph and Lifework datasets (IQR = interquartile
range).

Statistic Constances AsiaLymph Lifework

NAF PCS ISCO-88 ISCO-68

Original nr. of entries 637,148 637,148 36,179 12,120
Nr. of viable entries 281,418 483,090 36,007 12,007
Nr. of viable outcome categories 732 497 389 653
Nr. of input classes 2 2 4 3
Min. class size of outcome category 1 1 1 1
Max. class size of outcome category 77,639 27,103 2251 1220
Median. class size of outcome category (IQR) 64 (196) 471 (1003) 26 (69) 3 (8)

Table 3 Minimum, 25%, 50%, 75% quantiles, and maximum word count of job descriptions per input class for AsiaLymph,
Constances, and Lifework datasets.

Word count Constances AsiaLymph Lifework

Profession Sector Occupation Task Employer Product Job name Job description Company

Minimum 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
25% quantile 1.0 1.0 1.0 2.0 2.0 2.0 1.0 2.0 1.0
50% quantile 2.0 1.0 2.0 2.0 3.0 2.0 1.0 3.0 1.0
75% quantile 3.0 2.0 2.0 4.0 4.0 3.0 2.0 5.0 2.0
Maximum 14.0 16.0 24.0 21.0 19.0 27.0 15.0 24.0 13.0
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Classifications of Occupation (ISCO)-88 coding classification,
which consists of four hierarchical levels of detail, each
represented with a number (e.g., “4521”). The occupational data
were independently coded by two study centers, where discordant
codes were resolved by a third expert coder. The AsiaLymph
study was approved by the institutional review boards at each of
the four participating sites, the U.S. National Institutes of Health,
and the U.S. National Cancer Institute. Written informed consent
was obtained from all participants. Access and permission to
reuse the restricted data in the current study were provided by the
PIs of the original study.

The Lifework cohort is a large federated prospective cohort
from the Netherlands that quantifies the health effects of
occupational and environmental exposure25. The dataset includes
job names, descriptions, and company types that were manually
coded into ISCO-68 occupational codes, which is an earlier
version of ISCO-88. This version has an additional level of detail
to describe a job description (e.g., “1-21.10”). Contrastingly,
instead of supplemented incomplete codes, only the levels that
can be coded are given (e.g., “1-21” instead of “1-21.##”). The
coding was performed by expert coders, where uncertain initial
codes were resolved by a second expert coder (see manual coding
procedures in the Supplementary Methods). The Lifework cohort
and contributing subcohorts were reviewed and approved by the
committee at the University Medical Center Utrecht, the
committee at TNO (Dutch Organization for Applied Scientific
Research) Nutrition and Food Research, and the committee at the
Netherlands Cancer Institute. Participants signed an informed
consent form for each subcohort prior to enrolment. Access and
permission to reuse the restricted data in the current study were
provided by the steering group of the Lifework study.

Data preparation. The Constances, Asialymph, and Lifework
datasets contain 637,148, 36,179, and 12,120 entries, respectively.
To ensure complete code suggestions, entries with incomplete
codes were considered nonviable for classification model training.
After data cleaning, 281,418, 483,090, 36,007, and 12,007 viable
entries remained to train the NAF, PCS, ISCO-88, and ISCO-68
models, respectively. A large number of incomplete NAF and PCS
entries were removed using this strategy due to the insufficiently
detailed descriptions before occupational coding. However, this
was warranted as it ensures optimal decision support during the
occupational coding process through complete code suggestions.

As all data were collected in an open-ended format, tokenizing,
removing punctuation marks, converting all input to lowercase,
and stemming all words to their root form allowed for the
reduction of the random noise and dimensionality of the data27.
Compared to other automatic text-classification systems, we
noticed a low word count of the descriptions, and high variability
between descriptions of the same occupation27–29. Hence, to
allow for the retention of important information and similar
representation of similar job descriptions, we embedded all
descriptions into numerical feature vectors using sentence
embedding30. Sentence embeddings are fixed-length vector
representations of sentences that allow for comparison and
computation with other sentences. These embedders have been
trained on large corpora of textual data to learn highly generic
semantic relations between sentences. The goal is to encode the
sentence so that similar sentences (in terms of meaning) are close
in the embedding space, and dissimilar sentences are far apart. In
the current context, this would result in similar job descriptions
being represented as such. When multiple input classes per
occupational code were required for classification model training
(e.g., job description and sector), we summed the resulting feature
vectors to combine all information31. To increase the

generalizability of the models, we randomly split up the prepared
data from each dataset into a training (60%), test (30%), and
validation (10%) set, and supplemented the training set of each
occupational classification with job descriptions from their
respective coding indexes.

As classification models tend to overly represent majority
classes, the class sizes of the outcome categories should be
balanced32. However, algorithms that synthetically provide data
balance could not be applied to the current datasets due to the
difference in class size being too large33,34. Oversampling
algorithms could not compute synthetic samples due to the
minority classes having too few samples. Contrastingly, under-
sampling resulted in the loss of too much information due to the
majority classes being reduced to only a few samples.

Classification model training. Using the state-of-the-art gradient
tree boosting algorithm XGBoost, we developed the NAF, PCS,
ISCO-88, and ISCO-68 classification models35 (see Fig. 1). We
chose this algorithm due to a study performed by Schierholz and
Schonlau22, where multiple Machine Learning (ML) algorithms
were evaluated on their classification performance based on five
occupational datasets. They found that, when the training data
was supplemented with the job descriptions from the coding
index, the XGBoost algorithm performed best.

XGBoost generates an ensemble of weak Classification and
Regression Trees (CARTs) and combines their predictions to
produce a strong, accurate model35. The model is trained by
minimizing a regularized objective function, which includes a loss
function to measure the error between the target class (i.e., the
‘gold-standard’ occupational code), and a regularization term to
prevent overfitting. For multi-class problems such as the current
one, XGBoost builds a binary outcome ensemble for each class.
The ensemble is trained in an additive manner, where a new
CART is added to the ensemble in each iteration to fit the residual
errors of the previous iteration. Furthermore, XGBoost uses
several techniques to prevent overfitting, such as the addition of
the regularization term, subsampling of training data and
columns, and the penalization of large weights. These strategies
can be fine-tuned using several adjustable hyperparameters. A
more extensive description of the algorithm and its hyperpara-
meters can be found in the Supplementary Methods and in the
original paper from Chen and Guestrin35.

Schierholz and Schonlau22 empirically optimized the hyper-
parameters for the largest occupational dataset and proposed a
default setting. As the datasets used in ref. 22 are similar to the
current datasets in terms of data collection (i.e., free-text job
descriptions), (number of) outcome categories (i.e., occupational
codes), and average word count, we expected similar relative
performance when the proposed default set of hyperparameters is
used in the current study36. Following the instructions from
Schierholz and Schonlau22 we have set lower values for η and
max_depth for optimal classification performance. Hence, we
adopted and used the following hyperparameter settings for the
development of each classification model: Early stopping if
performance does not improve for 1 round, η = 0.6, max_delta_-
step = 1, max_depth = 20, γ = 1.5, λ = 1e−4, min_child_weight =
0, subsample = 0.75, colsample_by_tree = 1, and
colsample_by_level = 1.

We trained the NAF, PCS, and ISCO-68 classification models
in the original language of the corresponding dataset, whereas we
trained the ISCO-88 model using its English translation. Here, the
classification models were solely trained using the training data.
The validation set was used during training to allow for early
stopping of training to reduce the chance of overfitting37. We
performed feature selection to find the combination of input
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classes that yield the best predictive performance for each dataset.
Here, we used an exhaustive wrapper approach, where a
classification model is trained for each combination of input
classes in a dataset and evaluated to find the combination which
provides the best predictive performance38. Using exclusively the
test set, we measured the performance of the classification
models.

Evaluation metrics. Using the entries in the test set of the cor-
responding datasets, we assessed the accuracy and inter-coder
reliability of OPERAS’ classification models using accuracy and
Cohen’s Kappa (κ), respectively. Here, we consider the manually
expert-coded job descriptions from the aforementioned datasets
as the gold standard.

We deem accuracy to be an important metric in the current
study, as it indicates the proportion of occupational codes which
will potentially require less coding time during the occupational
coding process. We define accuracy as the number of correctly
predicted codes relative to the total number of predicted
codes39,40.

Accuracy ð%Þ ¼ Number of correct predictions
Total number of predictions

´ 100% ð1Þ

For each classification model, we computed the accuracy per code
level and major occupational group.

Since OPERAS autonomously codes the entries from the test
set, it can be considered an (automatic) coder. Hence, OPERAS’
inter-coder reliability can be calculated using κ, which takes into
account the correct prediction occurring by chance. This is

defined as:

ðPo � PeÞ=ð1� PeÞ; ð2Þ
where Po represents the probability of overall agreement over the
label assignments between the classifier and true process. Pe
represents the chance agreement over the labels. This is defined as
the sum of the proportion of examples assigned to a class times
the proportion of true labels of that class in the dataset41.

OPERAS contains a feature to automatically process predicted
codes with a confidence score above a pre-defined threshold. This
confidence score is obtained through XGBoost’s class probability
prediction function35. As little to no time will be spent reviewing
the codes above the threshold, we grouped predicted codes based
on their confidence score in intervals of 5% ranging from 0% to
100% and evaluated the accuracy of each group. Here, we
estimate a minimum workload reduction by correcting the
automatically processed codes above a threshold for the
percentage of correct codes.

Human-model cross-validation. We compared OPERAS’ inter-
coder reliability to two occupational inter-coder reliability
studies9,11. Maaz et al.9 studied the inter-coder reliability of two
professional coding institutions and two in-house expert-coders
in Germany. Here, the self-reported occupations of 300 students’
mother and father were coded (2 × n= 300) into ISCO-88 codes,
resulting in n= 12 coder pairs. They found mean inter-coder
reliability (in κ) on the first, second, third, and fourth coding level
of 0.71 (range: 0.68–0.76; SD = 0.04), 0.66 (range: 0.63–0.72;
SD = 0.03), 0.57 (range: 0.53–0.63; SD = 0.04), and 0.51 (range:
0.48–0.57; SD = 0.03), respectively. Similar results were found in

Fig. 1 Flowchart of the data preparation and training strategy of OPERAS’ classification models. An arbitrary example (i.e., “Service Employee.” and
“Electronic Retail.'') of two input classes (i.e., job description and sector) of the same entry in an occupational database is given.
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Massing et al.11 where occupational data from a German social
survey (n= 5,130) and a German field test for adult competencies
(n= 4, 159) (ALLBUS and PIAAC) were separately coded into
ISCO-08 by three and two agencies, respectively. This resulted in
n= 4 coder pairs, where they found mean inter-coder reliability
(in κ) of 0.65 (range: 0.59–0.70; SD = 0.03), 0.60 (range:
0.56–0.65; SD = 0.02), 0.53 (range: 0.46–0.59; SD = 0.03), and
0.46 (range: 0.40–0.55; SD = 0.04), on the same coding levels,
respectively.

Using an independent sample t-test, we compared the mean
inter-coder reliability of each coder pair from these studies to
OPERAS’ inter-coder reliability on all coding levels. Here, we
provide a two-sided p value where the statistical significance level
was set at p < 0.05. To account for the difference in coding levels
and to ensure a fair comparison, we used coding levels 2-5 for the
NAF classification model. Given the small sample size, we report
the effect sizes in Hedges g42.

Exposure assessment evaluation. Using the Formaldehyde-
JEM43 and Silica-JEM44, we evaluated the exposure assessment
accuracy and κ for the NAF and PCS classification models. For
the ISCO-88, and ISCO-68 classification models, we performed
the exposure assessment evaluation using the ALOHA-JEM45 and
DOM-JEM46, respectively.

We performed the evaluation for two groups, 1) all individuals
and 2) exposed individuals. For the first group, we calculated the
accuracy using all individuals in the test set. For the second
group, we only included job episodes in the evaluation that were
deemed exposed according to the gold-standard expert codes. For
each JEM, we considered an episode exposed if the total exposure
level is higher than 0. This was done to account for the chance
level of a non-exposure assignment being substantially higher
given the many occupational codes in the JEM resulting in no
exposure. Furthermore, assigning an exposed individual a not-
exposed status often has the largest effect on the following
epidemiological study. Hence, performing an evaluation for this
group will give more insight into the applicability of these
classification models in real-world scenarios. The accuracy and κ
in both groups are calculated using Eq. (1) and Eq. (2)
respectively. Additionally, we grouped the predicted exposure
assessments on the confidence score of the original code in
intervals of 5% ranging from 0% to 100% and evaluated the
accuracy of each group. To resemble OPERAS’ real-world usage
of the automatic coding function, we used the minimum
confidence score of the NAF or PCS code for the
Formaldehyde-JEM and Silica-JEM. In the following sections,
we provide additional information on the content and application
of the JEMs.

Formaldehyde-JEM. The Formaldehyde-JEM has been developed
by “Santé Publique France” (the French National Health Sur-
veillance Agency), as part of its “Matgéné” program to assess
formaldehyde exposure in the French population43. It has been
developed by a team of occupational experts through a meta-
analysis of 469 scientific, medical, and technical sources. This
resulted in a matrix evaluating formaldehyde exposure based on
occupational history describing occupation, sector, and corre-
sponding dates between 1950 and 2018. The occupational history
was coded using the NAF2008 and PCS2003 and provides three
exposure indices for each combination: the probability of expo-
sure, the intensity of exposure, and the frequency of exposure.
These respectively refer to the percentage of exposed workers, the
mean exposure dose during tasks, and the percentage of working
time performing tasks with exposure. Additionally, exposure
indices are provided for different calendar periods to account for

variations due to changes in exposure over time. As this study
concerned a meta-review, no approval by an Institutional Review
Board was needed.

We applied the Formaldehyde-JEM to the gold standard
manually coded NAF and PCS codes and OPERAS’ predictions to
obtain the formaldehyde exposure for each job episode. This is
obtained by multiplying the probability, intensity, and frequency
of exposure. We used these to calculate the exposure assessment
accuracy of OPERAS’ NAF and PCS classification models.
Further, after applying a JEM to manually coded occupational
codes stemming from the same job activity, similar exposure
levels are expected47. Here, even unequal exposure levels from
these codes are still considered relevant for subsequent occupa-
tional epidemiological studies. Hence, to assess OPERAS’
performance in such real-world exposure assessment scenarios,
we also performed the evaluation using a dichotomous status of
’exposed’ or ’not exposed’. Further, we measured the rank
correlation between the formaldehyde exposure levels of gold-
standard manual coding and OPERAS’ coding using the Kendall
rank correlation coefficient (τ)48.

Silica-JEM. The Silica-JEM assesses the crystalline silica exposure
in the French population44. Similar to the Formaldehyde-JEM, it
has been developed by a team of occupational experts from “Santé
Publique France”, as part of its “Matgéné” program through a
meta-analysis of 469 scientific, medical, and technical sources.
This resulted in a matrix evaluating exposure to crystalline silica
based on occupational histories describing occupation, sector, and
corresponding dates between 1947 and 2007. Similar exposure
indices, namely the probability, intensity, and frequency of
exposure are provided for each combination of NAF2008 and
PCS2003 codes for different calendar periods. As this study
concerned a meta-review, no approval by an Institutional Review
Board was needed.

For each job episode, we applied the Silica-JEM to the gold
standard manually coded and OPERAS-predicted NAF and PCS
codes. To obtain the total exposure, we multiplied the probability,
intensity, and frequency of exposure and used this to calculate the
exposure assessment accuracy. Here, we also calculated the
accuracy and κ for the dichotomous ’exposed’ or ’not exposed’
status and calculated τ for the silica exposure levels.

ALOHA-JEM. The ALOHA-JEM has been developed for a study
assessing the association of occupational exposure and symptoms
of chronic bronchitis and pulmonary ventilatory defects in a
general population-based study of five areas in Spain45. Subjects
completed a respiratory questionnaire on symptoms and occu-
pation and underwent baseline spirometry. Based on expert
knowledge, The JEM was developed ad hoc by two occupational
experts. It contains a job axis, and an exposure estimate for 12
generic industrial exposures, namely: biological dust, mineral
dust, gas fumes, VGDF (i.e., vapors, gases, dust, and fumes), all
pesticides, herbicides, insecticides, fungicides, aromatic solvents,
chlorinated solvents, other types of solvents, and metals. Expo-
sure estimates for each aforementioned exposure can be obtained
for all ISCO-88 codes. Here, three levels of exposure can be
assigned, namely 0: no exposure, 1: low exposure, and 2: high
exposure. This study protocol was approved by the Institutional
Review Board of the participating centers. All patients gave
written informed consent.

For each gold standard manually coded and OPERAS-
predicted ISCO-88 code, we applied the ALOHA-JEM to obtain
a level of exposure for each aforementioned exposure. Here, we
deemed OPERAS’ exposure assessment correct if all exposures
matched this gold standard for each job episode. Consequently, if
a single exposure level is inaccurate, it will deem the entire
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exposure assessment incorrect. This provides a baseline measure
of performance. To allow for the evaluation and comparison of
single exposures, we calculated accuracy and κ individually for
each exposure. Additionally, we calculated accuracy per exposure
level for each exposure in the JEM.

DOM-JEM. The DOM-JEM has been developed for the assess-
ment of the inter-method reliability of retrospective exposure
assessment related to occupational carcinogens46. Based on a
multi-center lung cancer case-control study conducted in seven
European countries, it contains estimations of nine related
exposures for each ISCO-68 code. These are asbestos, chromium,
DME, nickel, Polycyclic Aromatic Hydrocarbons (PAH), silica,
animals, biological dust, and endotoxin. The DOM-JEM has been
developed based on expert knowledge by three independent
occupational exposure experts assigning exposure levels to each
manually coded ISCO-68 code from the original study. Similar to
the ALOHA-JEM, exposure levels ranging 0–2 were used,
respectively signifying no exposure, low exposure, and high
exposure. This study was approved by the ethics review board of
the International Agency for Research on Cancer. Informed
consent was obtained for all participants.

We applied the DOM-JEM to the gold standard manually and
OPERAS-predicted ISCO-68 codes to obtain a level of exposure
for each exposure in the DOM-JEM. Here, we deemed OPERAS’
exposure assessment correct if it matched the gold standard for all
exposures. Similar to the evaluation conducted with the ALOHA-
JEM, we determined overall accuracy and κ for each exposure and
computed accuracy per exposure level.

Reporting summary. Further information on research design is
available in the Nature Portfolio Reporting Summary linked to
this article.

Ethics statement
Since the datasets used in the current study do not contain any
information that could be used to identify a person, ethical review
from an Institutional Review Board was not required.

Results
After data cleaning, 281,418 (Constances)23, 483,090 (Con-
stances), 36,007 (Asialymph)24, and 12,007 (Lifework)25 entries
were available to train NAF, PCS, ISCO-88, and ISCO-68 clas-
sification models, respectively. Additionally, using the
Formaldehyde-JEM (NAF&PCS)43, Silica-JEM (NAF&PCS)44,
ALOHA-JEM (ISCO-88)45 and DOM-JEM (ISCO-68)46 exposure
assessment evaluation was conducted (see Supplementary
Tables S1 and S2). This evaluation was conducted for two groups:
all individuals, providing OPERAS’ performance in real-world
exposure assessment scenarios, and exposed individuals, to
account for the chance level of a non-exposure assignment being
substantially higher.

Using the expert codes as the gold standard, we used prediction
accuracy and Cohen’s Kappa (κ) as evaluation metrics (see
Table 4 and Supplementary Tables S3-S6). Additionally, OPERAS
provides a confidence score indicating the probability of cor-
rectness of a suggested code for each prediction. This is used to
interpret the quality and usefulness of a classification model (see
Fig. 2).

Model evaluation. NAF and PCS use Constances’ input-classes
occupation and sector with an accuracy per major occupational
group ranging between 52.17–95.91% and 32.45–90.56%,
respectively. 57.41% of the suggested NAF codes have a con-
fidence score in the 95–100% range, with an accuracy of 97.02%.
43.11% of the suggested PCS codes are within this range, with
94.47% correctly predicted. Using the Formaldehyde-JEM and
Silica-JEM, exposure assessment for all individuals gave 98.09%
(κ = 0.84) and 98.41% (κ = 0.67) accuracy, respectively. Here,
31.28% of the suggested codes had a 95–100% minimum con-
fidence score for both the Formaldehyde-JEM and Silica-JEM,
with 99.32% and 99.77% accurate exposure assessment, respec-
tively. Evaluation for the dichotomous ‘exposed’ or ‘not exposed’
status for this group gave 98.30% (κ = 0.85) and 98.51% (κ =
0.68) accurate exposure assessment for the Formaldehyde-JEM
and Silica-JEM, respectively. Kendall rank correlation for the
exposure levels of the same JEMs respectively was τ = 0.85 (p <
0.01) and 0.68 (p < 0.01). For exposed individuals (6.30% and
2.58% of job episodes, respectively), exposure assessment using
the same JEMs respectively gave 81.85% (κ = 0.81) and 61.82%
(κ = 0.61) accuracy. 54.22% and 20.27% of these codes had a
95–100% confidence score, of which 98.59% and 93.33% had
correct exposure assessment, respectively. Here, the dichotomous
evaluation resulted in 85.18% and 65.54% accurate exposure
assessment for the Formaldehyde-JEM and Silica-JEM,
respectively.

ISCO-88 uses Asialymph’s input-classes occupation, task,
employer, and product with an accuracy per major occupational
group ranging between 63.53–96.11%. 21.54% of the predicted
codes have a confidence score in the 95–100% range, with 94.57%
accuracy. Using the ALOHA-JEM, exposure assessment for all
individuals gave 75.05% accuracy (range: 83.69–98.03%) and
κ = 0.70, where 21.54% of the suggested codes had a 95–100%
confidence score with 97.68% correct exposure assessment. For
the exposed individuals (62.53% of job episodes), exposure
assessment gave 65.58% (range: 57.12–87.68%) accuracy,
κ= 0.63, with 22.35% of the suggested codes having a 95–100%
confidence score, where 96.88% had a correct exposure
assessment.

ISCO-68 uses Lifework’s job name input-class, where the
accuracy per major occupational group ranged 53.58–80.67%.
20.65% of the suggested codes have a 95–100% confidence score,
with a 95.38% correct prediction. Using the DOM-JEM, exposure
assessment for all participants gave 84.19% accuracy (range:
91.84–98.90%) and κ= 0.59 where 20.65% of the suggested codes

Table 4 Per coding level (CL), the outcome categories (OC), accuracy (Acc., %), and inter-coder reliability (Cohen’s Kappa, κ)
are given for the NAF, PCS, ISCO-88, and ISCO-68 classification models.

NAF PCS ISCO-88 ISCO-68

CL OC Acc. κ OC Acc. κ OC Acc. κ OC Acc. κ

1 21 88.28 0.85 8 84.42 0.79 10 76.50 0.73 8 70.91 0.66
2 88 84.74 0.84 24 77.23 0.76 28 72.69 0.71 83 63.71 0.62
3 272 81.80 0.81 42 72.47 0.72 116 66.82 0.65 284 60.88 0.60
4 615 79.57 0.79 497 68.79 0.69 390 60.95 0.60 1,506 58.31 0.57
5 732 78.94 0.78 - - - - - - - - -
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Fig. 2 Confidence score distribution and accuracy of the classification performance and exposure assessment evaluation. The proportion (%) of codes
in a confidence score interval is denoted by the bars in the histogram. The mean accuracy (%) and standard deviation of codes (n= 4 independent
accuracy scores) in an interval are respectively represented by the dotted and vertical lines in the continuous graph. Here, the dots denote the individual
accuracy of each classification model in an interval. The grey area represents the accuracy range over the intervals. Colors correspond to the different
classification models. a Results of the classification performance evaluation. b Results of the exposure assessment evaluation of all individuals and
c exposed individuals.
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had a 95–100% confidence score, with 99.32% correct exposure
assessment. For the exposed individuals (24.54% of job episodes),
exposure assessment gave 49.97% (range: 25.00–59.71%) accuracy
and κ= 0.46, with 17.98% of the suggested codes having a
95–100% confidence score and 98.11% correct exposure
assessment.

Human-model cross-validation. Human inter-coder reliability
studies including coder pair level inter-coder reliabilities report
ranges (in κ) of 0.51–0.719 and 0.46–0.6511. We compared this to
OPERAS’ inter-coder reliability (see Table 4).

The Shapiro-Wilk Test for Normality and Levene’s Test for
Equality of Variances reveal that all coding levels are normally
distributed, where coding levels 3 and 4 do not have equal
variances across groups. Hence, to compare OPERAS’ inter-coder
reliability to the aforementioned human inter-coder reliability
studies we use the independent sample t-test while correcting for
the inequality of variances of coding levels 3 and 4. We find that
OPERAS significantly outperforms expert coders on all coding
levels (see Table 5).

Human workload reduction. OPERAS improves the efficiency of
the occupational coding process by enabling the automated
processing of codes with a confidence score above a custom
threshold. Figure 2 shows the confidence score distribution of the
NAF, PCS, ISCO-88, and ISCO-68 classification models in
intervals of 5%, ranging from 0% to 100%. The (mean) prediction
accuracy within each interval is also displayed.

An estimated minimum workload reduction can be calculated
through the percentage of automatically coded job descriptions
above a threshold while correcting for incorrectly coded job
descriptions. Given a confidence score threshold of 95% for the
NAF, which has 57.4% of the suggested codes above this
threshold of which 97.0% are correct, a minimum workload
reduction of 55.7% (57.41 × 0.9702) could be realized. Although
the overall prediction accuracy of the PCS, ISCO-88, and ISCO-
68 classification models is lower, their accuracy within the
95–100% confidence score interval remains similar. Hence, given
the same confidence score threshold, a minimum workload
reduction of 40.7%, 20.4%, and 19.7% could be realized using
OPERAS’ PCS, ISCO-88, and ISCO-68 classification models,
respectively.

Discussion
To build robust generic classification models, we refrained from
tweaking hyperparameter settings. Instead, we used default values
and included generalized job descriptions from the coding
indexes in the training data22. This provided us with a good
baseline performance that can be expected to generalize to other
datasets36. Further, OPERAS proposes a limited set of probable
codes for similar job descriptions. This holds the potential for
improved inter-coder reliability among expert coders utilizing

OPERAS13, which can contribute to the occupational coding
process’ robustness. Moreover, OPERAS’ adaptable automatic
coding can enable a substantial workload reduction for a wide
range of applications. For example, the default 95% confidence
score threshold could be lowered to increase workload reduction
for applications that are tolerant to less accurate codes or solely
require high accuracy on lower coding levels.

Differences in classification performance can be attributed to
the difference in available job descriptions per classification
model. The NAF and PCS were respectively trained with 281,418
and 483,090 entries, whereas the ISCO-88 and ISCO-68 models
were trained with respectively 36,007 and 12,007 entries. Addi-
tionally, the difference in combined job description length
between datasets could also have contributed to the difference in
classification performance. Longer job descriptions decrease
coding reliability if the additional information does not directly
correspond to the definition of the occupational code12. This is
due to an increase in potential occupational codes that can be
assigned to a job description. In classification model training, the
information increases variance within outcome categories,
resulting in decreased classification performance49. The accuracy
of OPERAS’ classification models shows a comparable non-
monotonic downward trend with an increase in description
length. However, the very small number of entries for the larger
description lengths of the used input classes (see Table 3) war-
rants being careful with definitive conclusions on the association
between prediction accuracy and description length.

The difference in exposure assessment performance could be
attributed to the Formaldehyde-JEM and Silica-JEM containing
specific occupational exposures that are relatively rare in the
general population. Hence, the chance of discordant codes
resulting in a non-exposed status is relatively high50. When the
prevalence of exposed individuals increases, or when only
exposed individuals are considered in the comparison, inter-rater
reliability tends to decrease (see Fig. 2b, c). However, a moderate
increase in reliability can be observed during the dichotomous
evaluation for exposed individuals of the Formaldehyde-JEM and
Silica-JEM. The correlation coefficients for all exposure levels also
show strong and moderate correlation for respectively the same
JEMs. However, they are not near perfect as evidenced by their
inter-rater reliability for all individuals. Hence, to ensure reliable
health outcomes it is crucial to take these factors into account
during (semi-automatic) occupational coding47,50.

The class imbalance in current datasets presents a substantial
challenge for the development and deployment of the classifica-
tion models. This is due to the fact that ML models tend to over-
classify the majority class, thereby compromising the classifica-
tion performance of minority classes32. This is a large issue,
particularly in the current domain where the misclassification of
minority classes can have critical implications on health out-
comes. Traditional methods designed to tackle this issue, such as
SMOTE, are in this case inadequate as the representation of the
minority class in the datasets is excessively low33,51. As such, it is

Table 5 Per coding level (CL*) the mean, range, standard deviation (SD), and comparison (including Hedges g) of expert coders
(N= 16) with OPERAS (N= 4) are given.

Expert coders OPERAS t-test

CLa Mean Range SD Mean Range SD t(df) p g

1 0.67 0.59–0.76 0.04 0.75 0.66–0.84 0.08 3.17 (18.00) 0.005 0.36
2 0.62 0.56–0.71 0.04 0.72 0.62–0.81 0.08 3.68 (18.00) 0.002 0.43
3 0.54 0.46–0.63 0.04 0.69 0.60–0.79 0.08 3.53 (3.37) 0.032 0.62
4 0.47 0.40–0.56 0.05 0.65 0.57–0.78 0.08 3.71 (3.36) 0.028 0.64

aFor NAF, CL 2-5 were used (see Table 4).
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important that alternative data augmentation techniques are
developed that can effectively enhance the representation of
minority classes in datasets where the representation of the
minority class is (close to) one. This will contribute to a more
balanced and accurate performance of ML models, thereby
increasing their generalizability and applicability in critical
domains.

OPERAS’ classification models are trained using one occupa-
tional dataset each. However, job description characteristics often
differ between occupational datasets, possibly resulting in a lower
out-of-distribution performance11,20. Additionally, OPERAS has
been trained and tested on expert-coded occupational data coded
on the least aggregated level. Although OPERAS’ data pre-
processing pipeline can manage and produce predictions for
ambiguous or incomplete data, its performance in such scenarios
remains untested. Hence, to assess the generalizability of
OPERAS’ classification models, its evaluation could be extended
using external validation sets. To further improve the classifica-
tion model performances, other classification techniques, hyper-
parameter settings, and the use of additional datasets could be
considered52. Additionally, OPERAS’ human-model cross-vali-
dation is currently based on external occupational inter-coder
reliability studies containing different occupational characteristics
compared to the current ones9,11,23–25. Hence, to gain more
insight into OPERAS’ performance against expert-coders, addi-
tional cross-validations using the same underlying datasets could
be performed.

With OPERAS, a decision support system for epidemiological
job coding of free-text job descriptions is introduced, which
outperforms both expert coders9,11 and state-of-the-art coding
tools18,53. This is achieved through the ML-based classification
models for four (inter)national classification systems. OPERAS’
codes are accompanied by confidence scores that can be used by
the expert coder to partially automate the coding process with
accurate exposure assessment, resulting in a substantial workload
reduction. Additional insight into OPERAS’ classification per-
formance can be gained through the use of external data sets and
comparisons with expert coders using the same underlying data.
As such, OPERAS supports custom occupational coding, enabling
large-scale occupational health research in an efficient, effective,
accurate, and stable manner.

Data availability
The Constances23, Asialymph24, and Lifework25 datasets are not publicly available.
Access to these datasets should be requested from the authors of the original studies. The
Formaldehyde43 and Silica44 JEMs can be consulted on the Exp-pro portal of “Santé
publique France” at https://exppro.santepubliquefrance.fr/matgene. Access to the
computer files of the matrices for their use in the context of epidemiological studies
should be requested from the authors of the original study. The ALOHA45 and DOM46

JEMs are not publicly available and should be requested from the authors of the original
study. Source data underlying the graphs in Fig. 2 are available as Supplementary Data 1.

Code availability
The development and evaluation code of the current classification models is available at
https://zenodo.org/records/839081154. The used test sets from the Constances,
Asialymph, and Lifework datasets can only be obtained with permission from the authors
of the original studies. The code has been developed in Python 3.8 using the following
Python packages: flair 0.8.0.post1, nltk 3.6.2, numpy 1.19.5, pandas 1.2.4, scikit-learn
0.24.1, tokenizers 0.10.2, and XGBoost 1.5.2. The OPERAS software is still in
development and future versions might use classification models utilizing different
packages and techniques than the ones currently described.
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