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The goal of this paper is to give a survey on the various computational and mathematical issues and progress

related to the problem of providing efficient correctly-rounded elementary functions in floating-point arith-

metic. We also aim at convincing the reader that a future standard for floating-point arithmetic should require

the availability of a correctly-rounded version of a well-chosen core set of elementary functions. We discuss

the interest and feasibility of this requirement. We also give answers to common objections we have received

over the last 10 years.
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1 MOTIVATION AND GENERAL ORGANIZATION OF THE ARTICLE
Motivation. The first goal of this paper is to present an overview of the various computational

and mathematical issues and progress related to the table-maker’s dilemma, i.e., the problem of

providing efficient, correctly-rounded elementary functions in floating-point arithmetic. The second

goal is to support the idea that future standards for floating-point arithmetic should require the

availability of a correctly rounded version of a well-chosen core set of elementary functions. The

exact contour of that set is still to be discussed, but it should contain the most frequently called

functions, such as exp, sin (at least between −𝜋 and 𝜋 ), log, etc., from which the other ones can

be built. A possible good starting point is the set of the functions given in Table 9.1, Additional
mathematical operations, of the IEEE 754-2019 Standard for Floating-Point Arithmetic [34, pp

58–59]:

𝑒𝑥 , 𝑒𝑥 − 1, 2𝑥 , 2𝑥 − 1, 10𝑥 , 10𝑥 − 1,

ln(𝑥), log
2
(𝑥), log

10
(𝑥), ln(1 + 𝑥), log

2
(1 + 𝑥), log

10
(1 + 𝑥),√︁

𝑥2 + 𝑦2, 1/
√
𝑥, (1 + 𝑥)𝑛, 𝑥𝑛, 𝑥1/𝑛 (𝑛 is an integer), 𝑥𝑦,

sin(𝜋𝑥), cos(𝜋𝑥), tan(𝜋𝑥), arcsin(𝑥)/𝜋, arccos(𝑥)/𝜋, arctan(𝑥)/𝜋, arctan(𝑦/𝑥)/𝜋,
sin(𝑥), cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥), arctan(𝑦/𝑥),
sinh(𝑥), cosh(𝑥), tanh(𝑥), arcsinh(𝑥), arccosh(𝑥), arctanh(𝑥).

Another possible starting point is the list of mathematical functions (not much different) defined

by the C Standard [9].
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We do not claim that, for these functions, the correctly-rounded implementation should be the
only one available. One can imagine for each of these functions and each supported floating-point

format two routines available to the end-user: a fast routine, and an accurate (correctly-rounded)
routine (although, as we are going to see in Section 5, it is not clear that a well-designed accurate

implementation will be much slower than a fast implementation). The next version of the C

Standard will simplify that possibility, since it will have reserved names, such as cr_sin, for
correctly-rounded mathematical functions [9].

Organization of this article. Wehave contributed or are contributing to the CRLibm1 or CORE-Math2

libraries, which offer fast and correctly-rounded evaluation of some of the functions mentioned

above. Based on our expertise in the field, we wish to convince the reader that correct rounding of a

core-set of functions is useful (or even necessary), that it is feasible, and that these correctly-rounded
functions can be evaluated at a very reasonable (delay and energy) cost. The paper will be organized
around these keywords. After a necessary reminder on the arithmetic framework in the sequel

of this introduction, we address theWhy? question in Section 3, the How? question in Section 4,

and the At what cost? question in Section 5. Note that there are two different issues in each of

these last two sections: how and at what cost do we build function approximations whose evaluation
is provably correctly rounded? and how and at what cost do we evaluate these approximations? In
practice, the final programs for function evaluation are quite simple. However, the preliminary

math and computation required to design them can, in some cases, be rather complex. Finally, we

present in Section 6 libraries that currently offer correctly-rounded evaluations of mathematical

functions for the IEEE 754 binary formats.

We deliberately choose to focus on binary floating-point arithmetic. Decimal arithmetic is an

important issue [16], and much of what is said in this paper can be extended to decimal, and yet

the need for very accurate numerical computing with transcendental functions is probably less

important in decimal applications—mainly financial calculations. Furthermore, the knowledge

and tools required for designing correctly-rounded functions (approximation tools, proof tools,

knowledge of hardest to round cases, etc.) are less advanced in decimal arithmetic.

Since our first works on the correct rounding of functions and the table maker’s dilemma [48],

we have been asked many questions (either during face to face conversations, or anonymously

through reviews) about the interest, feasibility and cost of correct rounding. In each section, we list

the most relevant of these questions and try to give them an answer.

2 A REMINDER ON THE FLOATING-POINT ARITHMETIC FRAMEWORK
We only give the definitions and notation that are relevant for this paper. More information on

floating-point arithmetic can be found in [5, 30, 60, 62].

2.1 Floating-point numbers, basic binary formats
Definition 2.1. A binary, precision-𝑝 floating-point (FP) number is ±∞ or a number of the form

𝑥 = 𝑀 · 2𝑒−𝑝+1, (2.1)

where

• 𝑀 is an integer, |𝑀 | ⩽ 2
𝑝 − 1, called the integral significand of the representation of 𝑥 ;

• 𝑒 is an integer such that 𝑒min ⩽ 𝑒 ⩽ 𝑒max, called the exponent of the representation of 𝑥 .

1
https://github.com/taschini/crlibm

2
https://core-math.gitlabpages.inria.fr/

https://github.com/taschini/crlibm
https://core-math.gitlabpages.inria.fr/
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precision 𝑝 minimal exponent 𝑒𝑚𝑖𝑛 maximal exponent 𝑒𝑚𝑎𝑥
binary32 24 −126 127

binary64 53 −1022 1023

binary128 113 −16382 16383

Table 1. Main parameters of the three basic binary formats (up to 128 bits) specified by IEEE 754 [34].

In order to have a unique representation,
3
we normalize the finite nonzero floating-point numbers

by choosing the representation for which the exponent is minimum. A direct consequence is that

if |𝑥 | ⩾ 2
𝑒min

, then 2
𝑝−1 ⩽ |𝑀 | ⩽ 2

𝑝 − 1. Such a number 𝑥 is said normal. If |𝑥 | < 2
𝑒min

, 𝑥 is said

subnormal. The largest finite floating-point number is Ω = 2
𝑒max+1 − 2

𝑒max−𝑝+1
.

The IEEE 754-2019 Standard for Floating-Point Arithmetic specifies various binary formats. The

three basic binary formats are binary32 (which was called single precision in the 1985 version of

IEEE 754), binary64 (formerly called double precision), and binary128 (frequently called quadruple
precision, it was not specified before the 2008 version of IEEE 754). The parameters of these formats

that matter for this study are presented in Table 1. In the following, we denote F𝑝 the set of all
binary, precision-𝑝 FP numbers (to simplify, 𝑒min and 𝑒max are implicit).

For the sake of completeness, one should also mention the existence of a 16-bit format (binary16

in the IEEE 754 standard). Due to the small number of 16-bit floating-point numbers, exhaustive

solutions are feasible and the problems studied in this paper turn out to be much easier. The same

is actually almost
4
true regarding binary32 arithmetic: the best way to make sure that an arctan

program always returns a correctly-rounded result is to try it with all possible 2
32
input values and

the various rounding functions, which takes at most a few hours on a modern laptop.

Definition 2.2. Assume a binary, precision-𝑝 , floating-point arithmetic. The unit in the last place
of 𝑡 ∈ R is the number

ulp(𝑡) =
{
2
⌊log

2
|𝑡 |⌋−𝑝+1

if |𝑡 | ⩾ 2
𝑒min ,

2
𝑒min−𝑝+1

otherwise.

Roughly speaking, ulp(𝑡) is the distance between two consecutive FP numbers in the neighbor-

hood of 𝑡 . The error of “atomic calculations” (defined in §3) such as the elementary functions is in

general expressed in ulps [29].

2.2 Correct rounding
The result of an arithmetic operation whose input values belong to F𝑝 may not belong to F𝑝 (in
general it does not). Hence that result must be rounded. One of the most useful features brought by

the IEEE 754 Standard is the requirement that the arithmetic operations and the square root should

be correctly rounded: the user chooses a rounding function5, and the four arithmetic operations, the

FMA and the square root must return what would be obtained if their results were first computed

exactly and then rounded to the target format. IEEE 754-2019 defines 5 different rounding functions
6
;

in the sequel, 𝑥 is any real number to be rounded:

• round toward +∞, or upwards: ◦𝑢 (𝑥) is the smallest element of F𝑝 that is greater than or

equal to 𝑥 . If 𝑥 is larger than the largest finite number from F𝑝 , ◦𝑢 (𝑥) = +∞;

3
The IEEE 754 Standard distinguishes two different zeros: +0 and −0. While this is sometimes extremely useful [38] we do

not need to make such a distinction in this paper.

4
“Almost” because of bivariate binary32 functions, for which exhaustive search is not as easy.

5
Called rounding mode or rounding direction attribute in the successive IEEE 754 jargons.

6
More precisely, there is a sixth function: round-to-nearest ties to zero, but it is used only in special, augmented operations.



4 Nicolas Brisebarre, Guillaume Hanrot, Jean-Michel Muller, and Paul Zimmermann

• round toward −∞, or downwards: ◦𝑑 (𝑥) is the largest element of F𝑝 that is less than or

equal to 𝑥 . If 𝑥 is smaller than the smallest finite number from F𝑝 , ◦𝑑 (𝑥) = −∞;

• round toward 0: ◦𝑧 (𝑥) is equal to ◦𝑢 (𝑥) if 𝑥 < 0, and to ◦𝑑 (𝑥) otherwise;
• round to nearest ties to even, denoted ◦𝑛𝑒 (𝑥) and round to nearest ties to away, denoted
◦𝑛𝑎 (𝑥). If 𝑥 is exactly halfway between two consecutive elements of F𝑝 , ◦𝑛𝑒 (𝑥) is the one
for which the normalized integral significand𝑀 is an even number and ◦𝑛𝑎 (𝑥) is the one
for which |𝑀 | is largest. Otherwise, both return the element of F𝑝 that is the closest to 𝑥 .
When the tie-breaking rule is not important

7
, we will write ◦𝑛 (𝑥) for “𝑥 rounded to nearest”.

If applying this rounding rule with an unbounded exponent range would lead to a result of

magnitude larger than Ω, then ∞ (with the appropriate sign) is returned.

The first three rounding functions are called directed rounding functions. The default rounding

function is usually round to nearest ties to even. It is by far the most used in practice. The rounding

functions are piecewise constant functions.

Although it is not a rounding function (it is not a function at all!), we say that 𝑡 is a faithful
rounding of 𝑡 if 𝑡 ∈ {◦𝑑 (𝑡), ◦𝑢 (𝑡)}. It is frequently considered that “correct rounding” (for round to

nearest) is equivalent to “error less than 0.5ulp” or that faithful rounding is equivalent to “error

less than 1ulp”. As explained in [5], this is almost, but not entirely true. More precisely, we have,

Property 2.3. Let 𝑡 ∈ R and 𝑡 ∈ F𝑝 ,
• if |𝑡 − 𝑡 | < 1

2
ulp(𝑡) then 𝑡 = ◦𝑛 (𝑡);

• if 𝑡 = ◦𝑛 (𝑡) then |𝑡 − 𝑡 | ⩽ 1

2
ulp(𝑡);

• if 𝑡 ∈ {◦𝑑 (𝑡), ◦𝑢 (𝑡)} then |𝑡 − 𝑡 | < ulp(𝑡);
• if |𝑡 − 𝑡 | < ulp(𝑡) and |𝑡 | is not a power of 2 times 1 − 2

−𝑝 then 𝑡 ∈ {◦𝑑 (𝑡), ◦𝑢 (𝑡)}.

Definition 2.4. A rounding breakpoint (or simply, a breakpoint) is a point where the rounding

function changes. For round-to-nearest functions, the rounding breakpoints are the exact middles

of consecutive floating-point numbers (referred to as midpoints in the following). For the other

rounding functions, they are the floating-point numbers themselves.

The requirement, since the original 1985 version of IEEE 754, that the four arithmetic operations,

the square root (and some conversions) should be correctly rounded, together with the standardiza-

tion of the handling of exceptions (not discussed in this paper), have had a considerable impact

on numerical software. They put an end to a chaos well described by Kahan [37], and today there

is no serious disagreement that the arithmetic operations must be correctly rounded: this greatly

facilitates the design, portability, and validation of numerical software.

We have no doubt that the same requirement regarding the set of elementary functions we are

considering will also have a quite significant and positive impact on numerical software.

3 WHY?
The need for an unambiguous specification of the most frequent functions. Validating numerical

programs, either by testing their behavior on a well-chosen set of input values or by providing

a proof that they are correct, requires a clear and unambiguous specification of what they are

supposed to compute. Clear specification is also essential for helping the design of portable software.

Mooney [56] writes “A software interface standard will aid in the development of portable software if
it (· · · ) provides a clear, complete and unambiguous specification. . . ” This, in turn, requires a clear

and unambiguous specification of the functions we can view as “atomic” in these programs. This

7
This is a frequent case when the usual math functions are considered: the exponential, logarithm, sine, cosine of a floating-

point number is never exactly halfway between two consecutive FP numbers. This is a consequence of Hermite-Lindemann’s

theorem [74] that states that the exponential of a nonzero algebraic number is transcendental.
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has been done with success, in particular for the arithmetic operations and the square root, by the

IEEE 754 Standard on Floating-Point arithmetic. However, functions that appear in many numerical

programs, such as the trigonometric functions or the various (bases 𝑒 , 2, and 10) exponentials and

logarithms are not fully specified, with the consequence that their quality and behavior may vary

(and does vary [29]) significantly between math libraries and platforms. And yet, most users expect

them to be of the highest quality. Already in 1980, Cody [13] wrote:

Software for the elementary functions normally resides in system libraries accom-
panying compilers for high level languages. Unless there is strong evidence of poor
performance, users tend to regard these programs in the same way they regard the
arithmetic operations in the computer. That is, they view them as friendly ‘black boxes’
that can be trusted to be efficient and accurate. Only careful preparation of software
guarantees that the trust will not be violated.

In a 2010 survey on verification methods [67], Rump wrote:

As another example, I personally believe that today’s standard function libraries produce
floating-point approximations accurate to at least the second-to-last bit. Nevertheless,
they cannot be used ‘as is’ in verification methods because there is no proof of that
property. In contrast, basic floating-point operations +, −, ·, /, √., according to IEEE 754,
are defined precisely, and are accurate to the last bit. Therefore verification methods
willingly use floating-point arithmetic, not least because of its tremendous speed.

Natural questions that arise are which functions should be specified, and what kind of specification
is desirable.

Concerning the choice of the functions that should be specified, the first criterion is the frequency

with which they are called in numerical programs. This may of course vary from one application

to another. The numbers of calls of the various mathematical functions in the simulation of proton

collisions in the CERN CMS detector are given by Piparo and Innocente [64]. Their figures show that

functions such as exp, ln, and cos are very frequently called, and should be considered as “atomic”,

on nearly equal footing with the square root. The second criterion is which functions (called

primary by Cody [12]) are frequently used as basic building blocks for writing software for the other
functions. From that point of view, again, the exponentials, logarithms and trigonometric functions

are frequently used for building the “special” functions [28] and, hence, are good candidates to be

considered as “atomic”. Hence, the list of functions given in the beginning of the introduction and

extracted from [34, Section 9.1] is a good starting point.

Let us now consider the question of the kind of specification that is desirable. Requiring a proven
relative error bound (e.g., 0.501ulp for round to nearest) would already be an improvement with

respect to the current situation, and this was already suggested in 1984 by Black et al. [4], but it

would not much ease the reproducibility of numerical calculations, which is becoming an important

issue [1]. Ahrens et al. [2] define reproducibility as

(· · · ) getting bitwise identical results from multiple runs of the same program, perhaps
with different hardware resources or other changes that should not affect the answer.

As pointed out by Ahrens, Demmel, and Nguyen [2], reproducibility is useful for debugging and

testing software (one must for instance be able to “replay” a situation that led to an error), for

reproducing simulations that produced rare events that need to be studied more carefully, for legal

reasons (when several parties need to agree on the result of a calculation, or when one needs to

justify a decision, after the fact, by the outcome of some simulation), and in the more and more
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frequent case when the same quantity is computed at different places (and the result must be

identical to allow for consistency of taken branches).
8

For these reasons, we strongly believe that just specifying an error bound for the most frequent

mathematical functions does not suffice, and that for each 4-tuple (function, rounding function,

format, input value(s)) a unique result must be specified. The next question is: which unique result?
One could argue that, for instance, the value returned by a predefined algorithm might suffice.

Not so. That would be the end of any incentive to to improve mathematical function algorithms.

Furthermore, would a standard survive for long if users could find libraries of functions here and

there that claimed to be better than the standard?

The only specification that makes sense is correct rounding. For these reasons, the only viable

solution is to require the returned result to be the best possible, i.e., the correct rounding of the

exact mathematical result. In 1976, Paul and Wilson [63] considered the possibility of including the

function library in the hardware, and reached the same conclusion:

The numerical result of each elementary function instruction will be equal to the
nearest machine representable value which best approximates (rounded or truncated as
appropriate) the infinite precision value for that exact finite precision argument for all
possible machine representable input operands in the legal domain of the function.

Now, it is feasible at a very reasonable cost. Correct rounding of the elementary functions was too

strong a requirement at the time of Paul andWilson [63] or Black et al. [4], but we aim at convincing

the reader that now, this is feasible (Section 4) at a reasonable delay/energy cost (Section 5).

3.1 Answers to some usual questions
3.1.1 OK, we need a specification of a kernel of functions, but specifying a relative/ulp error bound
(say 0.501 ulp for rounding to nearest) suffices. That would already be an improvement over the

current situation, assuming the error bound is really proven,
9
not just conjectured from random

experiments. However, this would not guarantee unicity of the returned result (so that reproducibil-

ity of calculations would not be guaranteed). Furthermore, for large precisions, guaranteeing a

tight error bound already requires a rather large effort anyway (formal proof, or a huge amount of

exhaustive testing–years of computation for binary64, out of reach for binary128). Of course for

small precisions one can easily perform an exhaustive test (but for these precisions, for the very

same reason, correct rounding is easily implementable). However, why 0.501 and not 0.500001?

Moreover, a proven error bound means that you have already implemented a “fast step” (see §4).

Why stop there and not implement the “accurate step” as well? It is not more difficult.

3.1.2 You want the computed sine, cosine, exponential. . . of a number to be uniquely defined for
portability/debugging/reproducibility/legal purposes, but why not just specifying it as the result
returned by a given algorithm? This would fix in stone the mathematical function algorithms and

stop all improvement. And do you really want to fix in stone a result that is not the best possible?

3.1.3 We already guarantee correct rounding for the arithmetic functions, the square root, conversions.
We can of course do that for some higher-level functions, but there are hundreds of functions in the
math/physics bestiary: one has to stop at some point. . .which point? There seems to be a reasonable

consensus on which functions should be viewed as “atomic”: the list of functions in the IEEE

8
A surprising case is the online game industry, where one has to ensure that the game landscape is exactly the same for

each player, and this landscape is generated locally on the player’s computer.

9
To the best of our knowledge, this is extremely rare.
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754-2019 Standard for Floating-Point Arithmetic [34, Section 9.1], the list of functions in the C

Standard, and the list of functions in Cody and Waite’s book [11] are not so different.

3.1.4 Consider a sine or cosine function. In general, the input is not “exact”: it comes from an earlier
calculation or a measurement. When that input is large, due to the input error being non negligible
compared to 𝜋 , the output cannot be known accurately: what is the point in pretending returning correct
rounding of that output? As Muller wrote in [58], our feeling is that the designer of a circuit/library

has no right to assume that users are stupid. If someone wants to compute the sine of a very large

number, he or she may have a good reason for doing so, and the software/hardware must provide a

result that is as accurate as possible. Also, even if very large input values are somehow unrealistic,

the robustness of a numerical software may depend on the preservation of symmetries, on the

preservation of properties such as the fact that the computed value of sin
2 𝑥 + cos

2 𝑥 must be as

close to 1 as possible (i.e., even if we no longer perform the good rotation, we still do perform a
rotation), and so on. All these relations are easily preserved if we have correctly rounded functions.

3.1.5 (also listed in the “How” section) Sometimes correct rounding is incompatible with range
constraints: For example in double-extended precision (𝑝 = 64), the correctly-rounded arcsine of 1 is
0x1.921fb54442d1846ap+0, which is larger than 𝜋/2. Should one return a value that violates the
mathematical property |asin𝑥 | ⩽ 𝜋/2?
You have a point. This might be a case when correct rounding is not always the best solution.

For the (very few!) functions and formats for which such events may happen, we might consider

an optional “range takes over correct rounding” behavior.

4 HOW?
Let us now consider the problem of knowing how one can build correctly-rounded function

programs. The aim is to obtain fast and efficient function evaluation programs, even if this is at

the cost of a rather long pre-calculation of the various parameters (e.g., necessary accuracy of

intermediate results, coefficients, special values to be tested, etc.) used by these programs. The

reason is clear: the pre-calculation is done once and for all, whereas the evaluation programs will

be used billions of times. In Sections 4.1, 4.2 and 4.3 we explain the theoretical difficulties and

general strategies behind correct rounding of functions. The methods that can be used for the

pre-calculation are described in Section 4.4. The methods used for function evaluation are described

in Section 4.5.

Let us briefly explain why the correct rounding of the transcendental functions is more com-

plicated than the correct rounding of, say, addition. Suppose we want to evaluate function 𝑓 at

point 𝑥 , where 𝑥 is an FP number. Except in very special, rare cases, such as exp(0) = 1, the

exact value of 𝑓 (𝑥) cannot be computed (and is generally not representable in finite-precision

arithmetic). It can only be approximated. So, the only information we have is that 𝑓 (𝑥) lies in
some interval 𝐼𝑓 (𝑥 ) . This interval may be very narrow if we use high precision to compute the

approximation, but it will still be nonzero in length. If all points of 𝐼𝑓 (𝑥 ) round to the same FP

number, then the correctly-rounded value of 𝑓 (𝑥) is that FP number. However, if 𝐼𝑓 (𝑥 ) contains a
rounding breakpoint, we cannot conclude. These two cases are illustrated by Figure 1, assuming

that the rounding function is to nearest (◦𝑛). When we cannot conclude, a possible solution is to

recalculate successive approximations with increasing precisions (i.e., with intervals of decreasing

length) until we are able to conclude. This is the essence of Ziv’s strategy, presented in Section 4.1.

The questions that naturally arise are:Will this process eventually end? Even if we have a proof that

it does (which is the case for the most common functions), does it terminate quickly? These two
questions form the table maker’s dilemma, discussed in Section 4.3. Before that, in Section 4.2 we

show that frequently, for tiny arguments, correct rounding is easily provided.
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2
𝑘

2
𝑘+1𝑓 (𝑥) is here

◦𝑛 (𝑓 (𝑥))

𝑓 (𝑦) is here

◦𝑛 (𝑓 (𝑦))? ◦𝑛 (𝑓 (𝑦))?

Fig. 1. The real line (between 2
𝑘 and 2

𝑘+1) and the FP numbers (represented by the “ticks”). From the
knowledge that 𝑓 (𝑥) lies in the green interval, we can deduce the value of ◦𝑛 (𝑓 (𝑥)). However, knowing that
𝑓 (𝑦) lies in the red interval does not allow us to know if ◦𝑛 (𝑓 (𝑦)) is the FP number below 𝑓 (𝑦) or the FP
number above it.

4.1 Ziv’s strategy
Ziv’s onion peeling strategy [75] is a method to guarantee correct rounding at very cheap cost

on average. Roughly speaking the idea is to start by approximating the function with an accu-

racy comparable to that of the current good-yet-not-correctly-rounded libraries (to give an idea,

something like 0.501ulp of the target format). Then a very simple test (such as the one analyzed

in [20] for round-to-nerarest) allows one to know if the approximation suffices for returning a

correctly-rounded result. If it does, we are done. If it does not, we start the calculation again with a

better accuracy, and so on until we are able to provide a correctly-rounded result. More formally,

we have a sequence of approximation functions 𝑓𝑘 , 1 ⩽ 𝑘 ⩽ 𝑛, with increasing relative accuracy

𝑝1 < 𝑝2 < ... < 𝑝𝑛 :
|𝑓𝑘 (𝑥) − 𝑓 (𝑥) |

|𝑓 (𝑥) | < 2
−𝑝𝑘 .

If the target precision is 𝑝 , under some distributional assumptions (see Section 4.3.2), it is possible

to deduce a correctly-rounded result from the approximation 𝑓𝑘 (𝑥) with probability 1 − 2
𝑝−𝑝𝑘

. The

key ingredients in Ziv’s strategy are the following:

• to each function 𝑓𝑘 is associated a rounding test [20], which, when it succeeds, must deliver
the correct rounding;

• the sequence 𝑓1, ..., 𝑓𝑛 is finite, and the last approximation 𝑓𝑛 (𝑥) always delivers the correct
rounding (total Ziv’s strategy) or raises an exception or a flag (partial Ziv’s strategy).

The second ingredient is crucial, and is strongly related to the table maker’s dilemma (§4.3) and to the

computation of “worst cases” (§4.4). In theory, the finiteness of the process (i.e., the fact that 𝑓𝑛 (𝑥)
always delivers the correct rounding) requires either the knowledge that there are no nontrivial

exact cases (i.e., FP numbers 𝑥 such that 𝑓 (𝑥) is a breakpoint), which is known to be true for the

exponential, logarithmic and trigonometric functions thanks to Hermite-Lindemann’s theorem, or

the preliminary determination of all the exact cases (that task was for example accomplished for the

binary64 power function by Lauter and Lefèvre [44], and for a function such as log
2
the only exact

cases are the trivial ones, i.e., log
2
(2𝑘 ) = 𝑘 , with 𝑘 ∈ Z). In practice, for more complex functions

(such as gamma
10
), finding a nontrivial exact point would be an extraordinary discovery (and to

be fully rigorous we can decide to raise a flag if 𝑓𝑛 does not suffice to determine ◦(𝑓 (𝑥)). . . while
being almost certain that this will never happen if 𝑝𝑛 is adequately chosen). Note that when the

hardest-to-round cases are known, the last step of Ziv’s strategy may sometimes be implemented

by reading in a table the value of the function for the very few input values that remain possible.

This strategy is used in some libraries.

10
The possible trivial exact cases with the gamma function correspond to inputs that are positive integers, as Γ (𝑛) = (𝑛− 1)!.

For instance Γ (14) = 13! is an exact point in binary32 arithmetic with a directed rounding, and Γ (39) = 38! is a breakpoint

in binary128 arithmetic with round-to-nearest.
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4.2 Special values
For some extremal values, it is not necessary to use Ziv’s strategy or to solve the table maker’s

dilemma (formalized in Section 4.3): returning a correctly-rounded result can be very easy, as we

are going to see in the case of tiny input values (Section 4.2.1) or tiny output values (Section 4.2.2).

4.2.1 The special case of tiny input values. Very often, when dealing with input variables that are

very close to zero, it is not necessary to know the hardest-to-round cases and correct rounding is

very easy. Assume that function 𝑓 has a convergent Taylor expansion near zero:

𝑓 (𝑥) = 𝑎0 + 𝑎1𝑥 + 𝑎2𝑥2 + · · · .

• If 𝑎0 is a nonzero breakpoint (which is not a rare case: consider for instance functions 𝑒𝑥 or

cos(𝑥), with directed rounding functions) then the sign of 𝑓 (𝑥) − 𝑎0 (which is immediately

deduced from the sign of the first nonzero 𝑎𝑖 , 𝑖 ⩾ 1) and a bound on |𝑎1𝑥 + 𝑎2𝑥2 + · · · |
allow one to easily determine a small domain where, possibly depending on the sign of 𝑥 ,

one should just return a constant result. For instance, for the exponential function, if

0 ⩽ 𝑥 ⩽ 2
−𝑝+1 − 2

−2𝑝+1
then ◦𝑑 (𝑒𝑥 ) = 1, and if −2−𝑝 ⩽ 𝑥 < 0 then ◦𝑑 (𝑒𝑥 ) = 1 − 2

−𝑝
.

Similarly, for the cosine function, if |𝑥 | ⩽ ◦𝑑 (2(−𝑝+1)/2) then ◦𝑢 (cos(𝑥)) = 1.

• If 𝑎0 ≠ 0 is not a breakpoint then, depending on the sign of the first nonzero coefficient 𝑎𝑖 ,

𝑖 ⩾ 1, the reciprocal images of one or both of the two breakpoints surrounding 𝑎0 will tell

us in which domain one can safely return ◦(𝑎0), where ◦ is the desired rounding function.

For instance, with 𝑓 (𝑥) = 2
𝑥
, for

log
2

(
1 − 2

−𝑝−1) ⩽ 𝑥 ⩽ log
2

(
1 + 2

−𝑝 ) ,
we have ◦𝑛 (2𝑥 ) = 1 (in binary32 arithmetic, that domain corresponds to −12102203×2−48 ⩽
𝑥 ⩽ 6051101 × 2

−46
).

• If 𝑎0 = 0 and 𝑎1 is a nonzero power of 2, so that the product 𝑎1𝑥 is exact, and assuming

that that product cannot underflow (this is a frequent case with the usual math functions:

consider for example 𝑓 (𝑥) = sin(𝑥), or tan(𝑥), or arctanh𝑥 , etc.), then a reasoning similar

to the one of the case 𝑎0 ≠ 0 allows one to find a domain where ◦(𝑓 (𝑥)) is always equal to
◦(𝑎1𝑥) = 𝑎1𝑥 (or to the preceding/next FP number). Let us give an example with function

𝑓 (𝑥) = arctan(𝑥) = 𝑥 − 𝑥3

3

+ 𝑥
5

5

− 𝑥7

7

+ · · ·

If we exclude the case where 𝑥 is a power of 2 (to be processed separately), we need to know

when

𝜌 (𝑥) =
����𝑥3
3

− 𝑥5

5

+ 𝑥
7

7

− · · ·
����

is less than
1

2
ulp(𝑥) (for round-to-nearest) or less than ulp(𝑥) (for the other rounding

functions). By reasoning on the binade 2
𝑘 < |𝑥 | < 2

𝑘+1
where 𝑥 lies, one finds that

– if 𝑝 is even then 𝜌 (𝑥) < ulp(𝑥) as soon as |𝑥 | ⩽ ◦𝑑
( (

3

2

) 1

3

)
· 2−

𝑝

2
+1
, and 𝜌 (𝑥) < 1

2
ulp(𝑥)

as soon as |𝑥 | ⩽ ◦𝑑
(
3

1

3

)
· 2−

𝑝

2 ;

– if 𝑝 is odd then 𝜌 (𝑥) < ulp(𝑥) as soon as |𝑥 | ⩽ ◦𝑑
(
3

1

3

)
· 2

−𝑝+1
2 and 𝜌 (𝑥) < 1

2
ulp(𝑥) as

soon as |𝑥 | ⩽ ◦𝑑
( (

3

2

) 1

3

)
· 2

−𝑝+1
2 .

For instance, in binary64 arithmetic (𝑝 = 53) and with a round-to-nearest rounding function,

we have ◦𝑛 (arctan(𝑥)) = 𝑥 for |𝑥 | ⩽ ◦𝑑
( (

3

2

) 1

3

)
· 2−26 = 1.1447 · · · · 2−26 and |𝑥 | ≠ 2

−26
, and
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one easily checks that ◦𝑛 (arctan(2−26)) is the FP predecessor of 2
−26

. In practice the domain

where such simplifications can be made is easily found by the means of a binary search.

For some functions, it may also happen that the hardest to round cases become very easy to compute

for tiny values. For instance, for tiny 𝑥 , sinpi(𝑥) = sin(𝜋𝑥) is close to a breakpoint if and only if 𝜋𝑥

is close to a breakpoint (and in such a case, sinpi(𝑥/2), sinpi(𝑥/4), etc. are close to a midpoint too).

4.2.2 The special case of tiny output values. The analysis given in the rest of the paper implicitly

uses the fact that the breakpoints are numbers of the form ±𝐵 · 2𝑘 (for directed rounding functions)

or ±(2𝐵 + 1) · 2𝑘 (for round-to-nearest rounding functions), where 𝐵 ∈ N, 2𝑝−1 ⩽ 𝐵 ⩽ 2
𝑝 − 1. This

is not true in the subnormal domain, so a separate study is required in the areas where the outputs

have absolute value less than 2
𝑒min

. In general, however, this separate study is not too much of a

burden:

• very often, the output is in the subnormal domain when the input too is extremely small,

so that the study is similar to what has been done in Section 4.2.1 (just to give an example,

when 𝑥 is subnormal, ◦𝑛 (sin(𝑥)) = ◦𝑛 (sinh(𝑥)) = ◦𝑛 (tan(𝑥)) = 𝑥 );
• a very simple continued-fraction analysis, introduced by Kahan

11
and described in detail

in [58, p. 208], allows one to find, for a given format, which floating-point number is closest

to a non-zero integer multiple of 𝜋/2. This makes it possible to know what is the smallest

possible absolute value of a trigonometric functionwhen the input is not close to zero. It turns

out that these values are far from the subnormal domain. For example, the binary64 number

greater than 𝜋/4 and closest to an integer multiple of 𝜋/2 is 6381956970095103 · 2797. Its
cosine is about −4.687×10

−19
which is well above the subnormal threshold of 2.225×10

−308
.

4.3 The table maker’s dilemma
The lack of requirement of correct rounding for elementary functions is mainly due to a difficult

problem known as the table maker’s dilemma (TMD), a term coined by Kahan [39]. When evaluating

most elementary functions, one has to compute an approximation to the exact result, using an

intermediate precision somewhat larger than the “target” precision 𝑝 . The TMD is the problem

of determining, given a function 𝑓 , what this intermediate precision should be in order to make

sure that rounding that approximation yields the same result as rounding the exact result. Ideally,

we aim at getting the minimal such precision htr𝑓 (𝑝), that we call hardness to round of 𝑓 (see

Definition 4.3).

4.3.1 Formalization of the problem. Assume we wish to correctly round a real-valued function

𝜑 . Note that if 𝑥 is a “bad case” for 𝜑 (i.e., 𝜑 (𝑥) is difficult to round), then it is also a bad case for

−𝜑 and −𝑥 is a bad case for 𝑡 ↦→ 𝜑 (−𝑡) and 𝑡 ↦→ −𝜑 (−𝑡). Hence we can assume that 𝑥 ⩾ 0 and

𝜑 (𝑥) ⩾ 0.

We consider that all input values are elements of F𝑝 ∩ [2𝑒1 , 2𝑒1+1). The method must be applied

for each possible integer value of 𝑒1.

If the values of 𝜑 (𝑥), for 𝑥 ∈
[
2
𝑒1 , 2𝑒1+1

)
, are not all included in a binade of the form

[
2
𝑒2 , 2𝑒2+1

)
12
,

we split the input interval into subintervals such that for each subinterval, there is an integer 𝑒2
such that the values 𝜑 (𝑥), for 𝑥 in the subinterval, are in [2𝑒2 , 2𝑒2+1). We now restrict to one of

those subintervals 𝐼 included in [2𝑒1 , 2𝑒1+1).
For directed rounding functions, the problem to be solved is the following:

11
See https://people.eecs.berkeley.edu/~wkahan/testpi/

12
A binade is an interval of the form [2𝑘 , 2𝑘+1 ) or (−2𝑘+1, −2𝑘 ] for 𝑘 ∈ Z.

https://people.eecs.berkeley.edu/~wkahan/testpi/
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Problem 4.1 (TMD, directed rounding functions). What is the minimum 𝜇 (𝑝) ∈ Z such
that, for 2𝑝−1 ⩽ 𝑋 ⩽ 2

𝑝 − 1 (and, possibly, the restrictions implied by 𝑋/2−𝑒1+𝑝−1 ∈ 𝐼 ) such that
𝜑

(
𝑋2𝑒1−𝑝+1

)
∉ F𝑝 and for 2𝑝−1 ⩽ 𝑌 ⩽ 2

𝑝 , we have����2𝑝−1−𝑒2𝜑 (
𝑋

2
−𝑒1+𝑝−1

)
− 𝑌

���� ⩾ 1

2
𝜇 (𝑝 ) .

For rounding to nearest functions, the problem to be solved is the following:

Problem 4.2 (TMD, rounding to nearest functions). What is the minimum 𝜇 (𝑝) ∈ Z such
that, for 2𝑝−1 ⩽ 𝑋 ⩽ 2

𝑝 − 1 (and, possibly, the restrictions implied by 𝑋/2−𝑒1+𝑝−1 ∈ 𝐼 ) such that
𝜑

(
𝑋2𝑒1−𝑝+1

)
is not the middle of two consecutive elements of F𝑝 and for 2𝑝−1 ⩽ 𝑌 ⩽ 2

𝑝 − 1, we have����2𝑝−1−𝑒2𝜑 (
𝑋

2
−𝑒1+𝑝−1

)
− 𝑌 − 1

2

���� ⩾ 1

2
𝜇 (𝑝 ) .

These statements lead to the following definition.

Definition 4.3 (hardness to round). Let a precision 𝑝 be given, ◦ be a rounding function and 𝜑 be

a real valued function. Let 𝑥 be a FP number in precision 𝑝 and 𝑒2 ∈ Z be the unique integer such

that 𝜑 (𝑥) ∈ [2𝑒2 , 2𝑒2+1) (here again, we assume 𝑥 and 𝜑 (𝑥) ⩾ 0, since the extension to the other

cases is straightforward).

The hardness to round 𝜑 (𝑥), denoted htr𝜑,{𝑥 },◦ (𝑝) is equal13 to:
• +∞ if 𝜑 (𝑥) is a breakpoint;
• the minimum 𝜇 (𝑝) ∈ Z such that the distance of 𝜑 (𝑥) to the nearest breakpoint is larger

than or equal to 2
−𝜇 (𝑝 )−𝑝+1+𝑒2

.

The hardness to round𝜑 over an interval 𝐼 , denoted htr𝜑,𝐼,◦ (𝑝), is then the maximum of the hardness

to round 𝜑 (𝑥) for all FP 𝑥 ∈ F𝑝 ∩ 𝐼 , while the hardness to round 𝜑 is the hardness to round 𝜑 over

R, simply denoted htr𝜑,◦ (𝑝). When there is no ambiguity over the rounding function, we get rid of

the symbol ◦.

Remark 4.4. Note that both Problem 4.1 and Problem 4.2 for precision 𝑝 are subproblems of

Problem 4.1 for precision 𝑝 + 1.

Remark 4.5. If we assume that 𝜑 admits an inverse 𝜑−1
and is differentiable over 𝐼 and that we

have a precise control over the image of 𝜑 ′
over 𝐼 , it follows from the mean value theorem that

addressing Problems 4.1 and 4.2 for 𝜑 over 𝐼 is analogous to addressing Problems 4.1 and 4.2 for

𝜑−1
over 𝜑 (𝐼 ). For instance, one can think of exp and ln or 𝑥 ↦→ 3

√
𝑥 and 𝑥 ↦→ 𝑥3. See Lemma 4.8

for an explicit statement.

4.3.2 A heuristic probabilistic approach and some partial results. If we have 𝑁 FP numbers in

the domain being considered, it is expected that htr𝑓 (𝑝) is of the order of log2 (𝑁 ) (hence 𝑝 for

most usual functions and binades). This is supported by a probabilistic heuristic approach that is

presented in detail in [58, 59] and that we know briefly recall.

Let 𝜑 be a real-valued function, assume that after the 𝑝 th bit, the bits of the significands of the

values 𝜑 (𝑥), where 𝑥 is a floating-point number, are sequences of independent random 0 or 1 with

equal probability 1/2. The probability that after bit 𝑝 , we have

• for directed rounding functions, the bit sequence

00 · · · 0︸  ︷︷  ︸
𝑘 bits

or 11 · · · 1︸  ︷︷  ︸
𝑘 bits

13
One may find in other texts the same value shifted by 𝑝 − 1.
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• or, for rounding to nearest functions, the bit sequence

100 · · · 0︸   ︷︷   ︸
𝑘 bits

or 011 · · · 1︸   ︷︷   ︸
𝑘 bits

is 2
−𝑘+1

. One can find such an estimate used in [23] and a probabilistic study has been done in [27].

Hence, if we have 𝑁 floating-point numbers in the domain being considered, the number of values

𝑥 for which we will have a bit sequence of the form indicated above is, under the probabilistic

model stated above, around 𝑁 2
−𝑘+1

.

In [7], Brisebarre, Hanrot and Robert give, under a mild hypothesis on 𝑓 ′′, solid theoretical

foundations to some instances of this probabilistic heuristic, targeting in particular the cases that

the CRLibm or CORE-Math libraries use in practice.

4.3.3 Diophantine approximation results. We now recall several theoretical results that can prove

useful, yet insufficient, for algebraic
14
functions like 1/√·, 3

√·, . . . and the exponential function, the

latter being pivotal for elementary functions.

Algebraic functions. When 𝑥 ∈ F𝑝 and 𝑓 is an algebraic function, the value 𝑓 (𝑥) is an algebraic

number. When 𝛼 is an algebraic number, the minimal polynomial of 𝛼 over Z is the polynomial

𝑃𝛼 ∈ Z[𝑋 ] \ {0}, with relatively prime coefficients and positive leading coefficient, of least degree

such that 𝑃𝛼 (𝛼) = 0. Let 𝑑 denote the degree of 𝑃𝛼 ; we then say that 𝛼 is an algebraic number of

degree 𝑑 . As of today, the only uniform theoretical statement that we can take advantage of is an

old result due to Liouville [50–52].

Theorem 4.6 (Liouville). Let 𝛼 be an algebraic number of degree 𝑑 ⩾ 2. There exists an effective
constant 𝐶𝛼 such that, for all 𝑝, 𝑞 ∈ Z, 𝑞 ⩾ 1,����𝛼 − 𝑝

𝑞

���� ⩾ 𝐶𝛼

𝑞𝑑
.

We can take, for instance, 𝐶𝛼 = 1

max|𝑡−𝛼 |⩽1/2 |𝑃 ′
𝛼 (𝑡 ) | . Better lower bounds of the form 𝜉𝛼/𝑞𝛾 can

be obtained. The value of the exponent 𝛾 has been regularly improved to culminate in Roth’s

Theorem [66], that gives an exponent 2 + 𝜀 for any 𝜀 > 0 instead of
15𝑑 . Actually, when tackling the

TMD, the integer𝑞 is a power of 2 andwe can therefore take advantage of Ridout’s improvement [65]

over Roth’s theorem: a valid exponent is now 1 + 𝜀 for any 𝜀 > 0. Unfortunately, none of these

results come together with an effective constant 𝜉𝛼 , which makes them useful only in an asymptotic

setting – and useless, except as qualitative information, in ours.

Remark 4.7. Liouville’s theorem was improved in an effective way by Fel’dman [25]. Unfortunately,

for the parameter sizes of interest to us, it does not yield an information more accurate than the

one provided by Theorem 4.6.

In [8], Brisebarre and Muller followed Liouville’s approach to obtain simple effective upper

bounds on the hardness to round htr𝑓 (𝑝) for algebraic 𝑓 . See also [35, 42] for similar results. For

instance, let 𝑎 ∈ N \ {0}, and consider 𝑓𝑎 : 𝑡 ↦→ 𝑡1/𝑎 and the round-to-nearest function. First we

notice that, for 𝑥 ∈ F𝑝 ∩ [1, 2𝑎), since for all 𝑘 ∈ Z, we have 𝑓𝑎 (𝑥2𝑘𝑎) = 2
𝑘 𝑓𝑎 (𝑥), it therefore suffices

to work on F𝑝 ∩ [1, 2𝑎) instead of the whole F𝑝 . Then, we have htr𝑓𝑎 (𝑝) ⩽ (𝑎−1)𝑝 +𝑎 + log
2
(𝑎) −2.

We remind the reader that we rather expect htr𝑓𝑎 (𝑝) to be of the order of 𝑝 .

14
A function 𝜑 is algebraic if there exists 𝑃 ∈ Z[𝑥, 𝑦 ] \ {0} such that for all 𝑥 such that 𝜑 (𝑥 ) is defined, 𝑃 (𝑥,𝜑 (𝑥 ) ) = 0.

15
Note that in the quadratic, that is to say 𝑑 = 2, case, Liouville’s result remains better.
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The exponential function and its siblings. Addressing the question of worst cases (§4.4) from a

theoretical point of view requires:

(1) the determination of all FP numbers 𝛼 in precision 𝑝 such that 𝑓 (𝛼) is a breakpoint ;
(2) for the remaining FP numbers 𝛼 in precision 𝑝 , proving a lower bound on the quantity

|𝑓 (𝛼) − 𝛽 | when 𝛽 is any breakpoint.

Regarding the exponential function, we know from Hermite-Lindemann’s theorem [74] that the

only exact case is 𝑒0 = 1. As for the second condition, it turns out that proving such bounds in the

somewhat more general case where 𝛼 , 𝛽 are algebraic numbers
16
has been a major line of research

in transcendence theory since the second half of the XIX-th century.

In view of this, we now give a table (Table 2) showing how bad cases for trigonometric and

hyperbolic functions are related to (algebraic) bad cases for the exponential function; this relation

can be used, in relation with results on the exponential function coming from transcendental

number theory, to give bounds on bad cases. We discuss this issue in depth in Appendix A.

Table 2 is to be read in the following way: the row related to a function 𝑓 gives 𝛼 ′, 𝛽 ′, 𝜀′ as
functions of 𝛼 , 𝛽 , 𝜀 such that |𝑓 (𝛼) − 𝛽 | ⩽ 𝜀 ⇒ | exp(𝛼 ′) − 𝛽 ′ | ⩽ 𝜀′. In the cases where further

assumptions on 𝛼 , 𝛽 are used to improve the bound, those are given in the last column.

Table 2. Relating trigonometric & hyperbolic functions to exp

Function 𝛼 ′ 𝛽 ′ 𝜀′ if...

cos 𝑖𝛼 𝛽 ± 𝑖
√︁
1 − 𝛽2

√
2𝜀

cos 𝑖𝛼 𝛽 ± 𝑖
√︁
1 − 𝛽2 2𝜀/

√
𝛿 1 − |𝛽 | ⩾ 𝛿

sin 𝑖𝛼 𝑖𝛽 ±
√︁
1 − 𝛽2

√
2𝜀

sin 𝑖𝛼 𝑖𝛽 ±
√︁
1 − 𝛽2 2𝜀/

√
𝛿 1 − |𝛽 | ⩾ 𝛿

cosh ±𝛼 𝛽 ±
√︁
𝛽2 − 1

√
2𝜀

cosh ±𝛼 𝛽 ±
√︁
𝛽2 − 1 2𝜀/

√
𝛿 𝛽 ⩾ 1 + 𝛿

sinh ±𝛼 𝛽 ±
√︁
𝛽2 + 1 4𝜀

tan, cot 2𝑖𝛼 (1 ± 𝑖𝛽)/(1 ∓ 𝑖𝛽) 2𝜀 𝛼 ≠ 0 (cot)

tanh, coth −2𝛼 (1 ∓ 𝛽)/(1 ± 𝛽) 2𝜀 𝛼 ≠ 0 (coth)

Finally, the following Lemma, which is a direct consequence of the mean value Theorem, gives a

relation between bad cases for a function and bad cases for its reciprocal.

Lemma 4.8. Let 𝑓 : 𝐼 ⊂ R → R be a continuously differentiable function. Assume that for all
𝛼 ∈ [𝑎, 𝑏] ⊂ 𝐼 , 𝛽 ∈ R, |𝑓 (𝛼) − 𝛽 | ⩾ 𝜀. Then, for all 𝛼 ∈ [𝑎, 𝑏], 𝛽 ∈ 𝑓 (𝐼 ), we have

|𝑓 −1 (𝛽) − 𝛼 | ⩾ 𝜀

sup[𝛼,𝑓 −1 (𝛽 ) ] |𝑓 ′ |
.

Applying the theoretical results presented in Appendix A and Lemma 4.8, we obtain upper

bounds
17
for the hardness to round of exp, trigonometric and hyperbolic functions over the first

few binades surrounding 1; the reader will find those bounds gathered in Table 3.

Regarding reciprocal functions, Lemma 4.8 says that a bound for the hardness to round of some

function 𝑓 on some interval [𝑎, 𝑏] can be deduced from that of 𝑓 −1 over 𝑓 −1 ( [𝑎, 𝑏]). For example,

from the bounds for exp and tan in Table 3, it is easy to deduce bounds for ln and atan.

16
that is to say roots of polynomials with rational coefficients.

17
The SageMath code computing these bounds is available at https://members.loria.fr/PZimmermann/papers/#crsurvey.

https://members.loria.fr/PZimmermann/papers/#crsurvey
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Table 3. Estimates of current theoretical upper bounds obtained from Appendix A and Lemma 4.8 for the
hardness to round for exp, trigonometric and hyperbolic functions in the binary128 format. For each function
𝑓 , we report the values 𝜃 𝑓 such that, over a given binade, the hardness to round 𝑓 is less than 𝜃 𝑓 · 113.

𝐵𝑖𝑛𝑎𝑑𝑒 exp sin cos sinh cosh tan cot tanh coth

[1/8, 1/4) 226 1371 1359 688 682 303 302 303 298

[1/4, 1/2) 297 2070 2058 1062 1057 410 410 409 405

[1/2, 1) 403 3288 3281 1698 1695 604 604 600 598

[1, 2) 593 5678 6481 2889 2889 1194 1196 931 929

[2, 4) 920 11408 10266 5285 5285 1854 1855 1507 1504

[4, 8) 1485 20395 20395 10155 10155 3361 3360 2634 2631

As the figures in these tables are rather large, we need to investigate algorithmic solutions to

find better bounds on the hardness to round.

4.4 Search for bad or worst cases - bounding the hardness to round from above
Let ◦ be a rounding function, we denote B◦ the set of all breakpoints with respect to ◦. Let 𝑦 ∈ R,

we define dist(𝑦,B◦) = min{|𝑦 − 𝑧 |, 𝑧 ∈ B◦}.
A worst case for a function 𝑓 in a given format and rounding function ◦ is a FP number 𝑥 in this

format such that 2
𝑝−1−𝑒𝑓 (𝑥 )

dist(𝑓 (𝑥),B◦) is minimal among all possible FP values of 𝑥 such that

𝑓 (𝑥) is not a breakpoint. Section 4.3.2 suggests that we should expect that apart from degenerate

cases (for instance, cos(𝑥) for 𝑥 close to 0) this quantity is of the order of 2
−(𝑝+log

2
(𝑒max−𝑒min+1) )

.

Knowing the worst cases is of major importance in the context of correct rounding as this gives a

bound on the final precision 𝑝𝑛 such that Ziv’s strategy succeeds.

More generally,𝑚-bad cases are floating-points numbers 𝑥 such that 2
𝑝−1−𝑒𝑓 (𝑥 )

dist(𝑓 (𝑥),B◦) <
2
−𝑚

, i.e.,

• [directed rounding functions]

2
𝑝−1−𝑒𝑓 (𝑥 ) 𝑓 (𝑥) = ± 1 · · · · · ·︸  ︷︷  ︸

𝑝 bits

. 00 · · · 0︸  ︷︷  ︸
𝑚 bits

· · · or ± 1 · · · · · ·︸  ︷︷  ︸
𝑝 bits

. 11 · · · 1︸  ︷︷  ︸
𝑚 bits

· · · ;

• [rounding to nearest functions]

2
𝑝−1−𝑒𝑓 (𝑥 ) 𝑓 (𝑥) = ± 1 · · · · · ·︸  ︷︷  ︸

𝑝 bits

. 10 · · · 0︸  ︷︷  ︸
𝑚 bits

· · · or ± 1 · · · · · ·︸  ︷︷  ︸
𝑝 bits

. 01 · · · 1︸  ︷︷  ︸
𝑚 bits

· · · .

Note that a worst case is a FP number for which the length of the run of consecutive 0’s or 1’s

after the rounding bit is longest. The above discussion suggests that 𝑝 + log
2
(𝑒max − 𝑒min + 1) is a

relevant estimate of this maximal length. Hence knowing𝑚-bad cases for𝑚 slightly smaller than

𝑝 + log
2
(𝑒max − 𝑒min + 1) is useful as a “stress test” for function implementation, whereas having

the proof of the non-existence of𝑚-bad cases for𝑚 somewhat larger than 𝑝 + log
2
(𝑒max − 𝑒min + 1)

is useful again as a bound on a final precision 𝑝𝑛 such that Ziv’s strategy succeeds.

We now present the existing algorithmic approaches for computing bad cases or establishing

the value of the hardness-to-round (or an upper bound on that value). Some timings are provided

in Section 5.1.

4.4.1 Binary32 format. Apart for bivariate functions (see sections 4.4.4 and 5.1.1 below) the table

maker’s dilemma in binary32 is easily solved for a given function by an exhaustive computation [68]

in a few hours on a modern laptop. For each value of 𝑥 one computes a sufficiently accurate interval
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approximation to 𝑓 (𝑥) and determines the hardness to round 𝑓 (𝑥). The same can of course be

done with even smaller formats such as binary16 or BFloat16: the cost of the exhaustive approach

is obviously proportional to the number of different FP numbers of the format under study i.e.,

(𝑒max − 𝑒min + 2) · 2𝑝 − 1.

4.4.2 Binary64 format. For univariate functions, the first idea that comes to mind is to do, as for

binary32, exhaustive computations. While this seems difficult in software, it might be feasible in

hardware as suggested in [21]. More subtle ideas proceed by splitting the domain into subintervals

and replacing the function (assumed to be sufficiently smooth) by a polynomial, often a Taylor

approximation, over the interval under study; one is then reduced to study the problem in the

polynomial case.

Lefèvre, together with Muller [45–47], studied the degree 1 case; in this case, the remaining

Diophantine problem is to find two integers 𝑥,𝑦, |𝑥 | ⩽ 𝑋, |𝑦 | ⩽ 𝑌 such that |𝛼𝑥 + 𝛽 −𝑦 | is minimal,

which is solved by elementary Diophantine arguments, either the three distance theorem, or

continued fractions (see e.g., [3]). These ideas lead to an algorithm of complexity 𝑂̃ (22𝑝/3) for
floating-point numbers of precision 𝑝 , as 𝑝 → ∞, which computes all worst cases for rounding

in the domains under consideration. The worst cases published in [47] were obtained using that

algorithm.

Higher degree approximations give rise to more complicated Diophantine problems. Stehlé,

Lefèvre and Zimmermann [71], further refined by Stehlé [70], make use of a technique due to

Coppersmith [14, 15] and based on lattice basis reduction to solve it
18
. We recall Corollaries 4 & 5

of [70], adapted to our context.

Theorem 4.9 (Stehlé [70]). For all 𝜀 > 0, there exists a heuristic algorithm of complexity 2
𝑝 (1+𝜀 )/2

which, given a function 𝑓 , returns all FP numbers 𝑥 ∈ [1/2, 1) of precision 𝑝 such that the hardness to
round 𝑓 (𝑥) is ⩾ 𝑝 .
There exists a polynomial-time heuristic algorithm which returns all FP numbers 𝑥 ∈ [1/2, 1) of

precision 𝑝 such that the hardness to round 𝑓 (𝑥) is ⩾ 4𝑝2; the latter works by reducing a lattice of
dimension 𝑂 (𝑝2) ofR𝑚 for some𝑚 = 𝑂 (𝑝4).

This theorem can be extended to any fixed binade, but in practice it works well only for binades

that are not too large (in absolute value); this is generally true for all the known methods that rely

on a local polynomial approximation of the function under study.

However, for most functions, these methods are sufficient to cover the appropriate range, because

outside of that range, either the function or its reciprocal overflows. The main exception to this

rule is the case of periodic functions. The previous algorithms have been extended to the case of

periodic functions in [31]. The first part of Theorem 4.9 still holds, except that the constant (1+𝜀)/2
in the exponent of the complexity must be replaced by (7 − 2

√
10) (1 + 𝜀) ≈ 0.68.

The heuristic character of the algorithm is rather mild (i.e., the algorithm works in practice as

expected on almost all inputs).

Recently, Brisebarre and Hanrot [6] presented an improvement over the SLZ algorithm. Their

method (which we will call BH) is still based on lattice basis reduction, but instead of reducing the

problem for 𝑓 to the same problem for an approximation (Taylor) polynomial for 𝑓 as it is done

in [70, 71], they work on the function 𝑓 itself as long as possible. This is made possible thanks to

rigorous uniform approximation techniques based on Chebyshev interpolation.

For general functions, their approach allows one to recover the results of Theorem 4.9. However,

first, they significantly improve on several algorithmic aspects, resulting in major improvements in

the polynomial part of the asymptotic complexity (lattice basis reduction). Second, their approach

18
We will call Stehlé’s variant SLZ algorithm in the sequel.
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permits an improvement on the second part of Theorem 4.9 for regular functions with moderate

growth at ∞ (exp, sin, cos). They prove the following theorem:

Theorem 4.10 (Brisebarre, Hanrot [6]). Let 𝑓 ∈ {exp, sin, cos, sinh, cosh}. There exists a poly-
nomial-time heuristic algorithm which returns all FP numbers 𝑥 ∈ [1/2, 1) of precision 𝑝 such that
the hardness to round 𝑓 (𝑥) is ⩾ (1 + 𝜀)𝑝2/ln𝑝 ; the latter works by reducing a lattice of dimension
𝑂 ((𝑝/ln𝑝)2) ofR𝑚 for some𝑚 = 𝑂 ((𝑝/ln𝑝)2).

Actually, the theorem can be stated for more functions, precisely entire functions of finite order
(this includes, for instance, the erf function). Note also that by combining this result with Lemma 4.8,

we can extend the theorem to the reciprocal functions.

4.4.3 Binary128 format. As of today, finding the worst cases in binary128 seems by far out of reach.

However, a somewhat easier task however is to show that, for the usual functions that we target,

there are no nontrivial 𝜃 · 𝑝-bad cases, for a reasonable constant 𝜃 (𝜃 = 5, 6, 7, say). The SLZ and

BH algorithms can perform this task (see [72] for the SLZ algorithm), see Figure 3.

4.4.4 Bivariate functions. The landscape is much more unclear regarding bivariate functions –

except for the hypot function for which general results concerning algebraic functions apply.

It is highly likely that all the previous algorithms (Lefèvre, SLZ, BH) can be adapted to this

setting, see for example [73].

4.4.5 Formal verification. All these large computations using rather complicated pieces of software

may raise concerns, particularly in the binary128 case since the output of the quest of 5𝑝 or

7𝑝-bad cases is typically “No”, namely that such bad cases do not exist. The need for formal

proof certification of those results seems obvious; preliminary work has been performed in this

direction [55] in the case of the SLZ algorithm. Most of the computation time of this algorithm is

spent finding auxiliary polynomials. Once computed, they can be stored as part of certificates, which
allows for a verification that can be much faster than the actual computation. This verification can

be performed using a proof assistant such as Coq, or, for a faster but weaker verification, simply by

another tool written independently from the first one. The BH algorithm is based on similar ideas,

and extending this work to the BH algorithm seems feasible; a large part of the Coq formalization

can actually be re-used.

4.5 Implementation of correctly-rounded evaluation routines
To implement efficiently correctly-rounded evaluation routines, one first has to use efficient algo-

rithms. These algorithms are specific to each function, and are well known in the literature. These

algorithms are usually the same as those used in current mathematical libraries, which do not

provide correct rounding. A very good reference is the book by Peter Markstein [54]. A crucial

difference, however, is that each implementation must provide a rigorous error bound to be used in

the corresponding rounding test (§4.1). This error bound can be computed by hand, or by using

software tools such as Gappa [18]. One can construct a formal proof of the error bounds with tools

that are reasonably easy to use [22].

These algorithms consist in:

(1) argument reduction (if available for the function to be implemented),

(2) evaluation of a precomputed minimax polynomial, and

(3) argument reconstruction (if argument reduction was performed).

Tools such as Sollya [10] provide good minimax polynomials of a given degree for a given function

over a given interval, with optimal or near-optimal absolute or relative error, and possibly under
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additional constraints (such as the requirement that all coefficients must be representable in

binary64).

To evaluate a given minimax polynomial, or for the argument reduction or reconstruction,

one should try to use only floating-point additions/subtractions and multiplications (possibly

fused-multiply adds which are now very common in hardware).

Usually, if the target format is binary64, the first phase of Ziv’s strategy (§4.1) will use double-

double arithmetic with a target accuracy of about 70 bits for the binary64 format. Efficient double-

double algorithms are known with tight and rigorous error bounds [36], and have even been

formally proven [57].

For the second and further phases (if any), still for the binary64 format, the implementor has

the choice between double-double arithmetic (with a target accuracy of at most 106 bits), and

integer-based arithmetic [53].

4.6 Answers to some usual questions
4.6.1 You will not be able to obtain hardest to round cases for all functions in their whole domain.
For these functions, when you cannot obtain a reasonable bound on the hardness to round, you will
have to use Ziv’s initial approach, i.e., you will just stop the calculation at some point, without any
proof that this suffices.

We already have hardest-to-round cases in binary64 arithmetic for most usual functions, so

that very efficient correctly-rounded calculation of univariate functions in binary64 is at hand.

Section 4.3 shows that even when the worst cases are out of reach one can anyway bound the

hardness-to-round (the bounds are, admittedly, rather large but calculations with that precision is

feasible).

4.6.2 Correct rounding also comes with the cost of more complex algorithms. I am not sure whether
this is beneficial for the design of formal proofs.
Formal proof requires a complete specification of what is computed, and correct rounding is the

simplest, neatest possible specification. Furthermore, the algorithms are not that complex, and a

significant part of the effort of building formal proof for correctly rounded functions has already

been accomplished [18, 55].

4.6.3 Question 3.1.5 also falls into the “How” category.

5 AT WHAT COST?
It is important to make a clear distinction between the cost of designing the correctly-rounded

function evaluation algorithms (which is essentially the cost of solving the table maker’s dilemma for

the function under consideration) and the cost of running the algorithm once it has been designed.

The former is large, as one might expect after reading Sections 4.3 and 4.4, but the corresponding

work is done once and for all. On contrary the function evaluation programs (especially for very

frequent functions such as exp or cos) will be run billions of times, and they are simple and fast.

5.1 Search for bad or worst cases - bounding the hardness to round from above
5.1.1 Binary32 format. The table maker’s dilemma in binary32 is easily solved for a given uni-

variate function by an exhaustive computation in a few hours on a modern laptop. As for the

bivariate functions, solutions have been proposed in [69] for the most useful of them, namely power,

hypotenuse and arctan2 (with a possible adaptation to atan2pi). Work still needs to be done on

more general bivariate functions in binary32, but they do not seem out of reach (the difficulty of

handling them should be similar to the difficulty of handling univariate functions in binary64).
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5.1.2 Binary64 format. The SLZ algorithm is implemented in the BaCSeL software tool [32], which

is multi-threaded and can therefore run efficiently on a multi-core processor. In Figure 2, we see

algorithm exp cbrt

SLZ 2.2 hours (20.3) 2.0 hours (20.6)

Fig. 2. Time to search worst cases (with at least 43 identical bits after the round bit) in binary64 for 𝑒𝑥 and 𝑥1/3

using BaCSeL on a 64-core AMD EPYC 7282, for 1/2 ⩽ 𝑥 < 1. BaCSeL was compiled with the AUTOMATIC
flag. Values in parentheses indicate the average log-2 size of sub-intervals, for example 20.3 corresponds to
sub-intervals of 1, 300, 000 elements.

that for the binary64 format, a full binade can be checked in a few hours on a 64-core processor.

Given the fact that for some functions like 𝑒𝑥 and 𝑥1/3, only a few binades need to be checked (for

𝑒𝑥 , one gets underflow or overflow for |𝑥 | > 745, and for 𝑥1/3, worst cases in [2𝑒+3𝑘−1, 2𝑒+3𝑘 ) are
those in [2𝑒−1, 2𝑒 ) multiplied by 2

𝑘
, thus only three binades need to be checked), the total time to

check a binary64 function usually takes from a few hours for 𝑥1/3 to a few days. As an example,

Table 4, extracted from [58] gives the hardest-to-round points for functions ln(𝑥) and ln(1 + 𝑥) in
binary64 arithmetic.

Function Domain Argument Truncated result Trailing bits

ln(𝑥)

[
2
−1074, 2−1

) 1.EA71D85CEE020P-509 -1.60296A66B42FFP8 1 1
60
0000 · · ·

1.9476E304CD7C7P-384 -1.09B60CAF47B35P8 1 0
60
1010 · · ·

1.26E9C4D327960P-232 -1.4156584BCD084P7 0 0
60
1001 · · ·

1.613955DC802F8P-35 -1.7F02F9BAF6035P4 0 1
60
0011 · · ·[

2
−1, 21

)
1.BADED30CBF1C4P-1 -1.290EA09E36478P-3 1 1

54
0110 · · ·[

2
1, 21024

) 1.C90810D354618P245 1.54CD1FEA76639P7 1 1
63
0101 · · ·

1.62A88613629B6P678 1.D6479EBA7C971P8 0 0
64
1110 · · ·

ln(1 + 𝑥)
(
2
−51, 21024

)
1.8000000000003P-50 1.7FFFFFFFFFFFEP-50 1 0

99
1000 · · ·(

−1,−2−51
]

-1.7FFFFFFFFFFFDP-50 -1.8000000000001P-50 0 1
99
0110 · · ·

Table 4. Non trivial hardest-to-round points for functions ln(𝑥) and ln(1 + 𝑥) [58]. The values given here suffice
to round functions ln(𝑥) and ln(1 + 𝑥) correctly in the full binary64 range (when |𝑥 | ⩽ 2

−51, the correct rounding
of ln(1 + 𝑥) can be obtained using the technique presented in Section 4.2.1).

In light of this data, the table maker’s dilemma can be considered as solved for the binary64

format for univariate functions (bivariate functions appear, in the current state of knowledge,

to be out of reach); known worst cases for the binary64 format are available on Lefèvre’s page

https://www.vinc17.net/research/testlibm/ and in the CORE-MATH source code (for example https:

//gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/exp/exp.wc for the exp function).

The latter also provides𝑚-bad cases with𝑚 = 44 for several functions (with a restricted range for

some trigonometric functions: as we are writing these lines, worst cases for cos(𝑥) and sin(𝑥) are
known only for |𝑥 | ⩽ 2

11
, and worst cases for tan(𝑥) are known only for |𝑥 | ⩽ 10.5𝜋 ).

5.1.3 Binary128 format. In Figure 3, we compare the performance of implementations of SLZ and

BH algorithms, namely BaCSeL
19
and LACoR

20
, when tackling the determination of 5𝑝-bad cases

over a binade. We can see a reasonable computation time, which opens the way to a guaranteed

19
https://gitlab.inria.fr/zimmerma/bacsel

20
https://perso.ens-lyon.fr/nicolas.brisebarre/lacor.tgz

https://www.vinc17.net/research/testlibm/
https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/exp/exp.wc
https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/exp/exp.wc
https://gitlab.inria.fr/zimmerma/bacsel
https://perso.ens-lyon.fr/nicolas.brisebarre/lacor.tgz
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implementation of Ziv’s strategy for univariate functions over a restricted domain containing the

most commonly used binades (bivariate functions seem to be out of reach at the current state of

knowledge).

SLZ BH

305 years 445 days

Fig. 3. Time to search 5𝑝 worst cases of 𝑒𝑥 for 𝑥 ∈ [1/4, 1/2] for quadruple precision on a Core i7-8700 at
3.20GHz. The SLZ time is obtained with BaCSeL parameters 𝑑 = 16, 𝛼 = 5, 𝑡 = 76; the BH time is obtained
with 𝑑 = 12, 𝜌1 = 536870912, 𝑡 = 88.5, 𝑛1 = 58, 𝑛2 = 3.

Even though these computation times may seem important, it should be noted that all the

underlying algorithms are embarrassingly parallel, and the corresponding computations can be

distributed over a large number of cores / processors / machines in order to reduce the real

computation time.

5.1.4 Formal verification. The cost of the certificate-based approach has been evaluated in [55].

The actual running time in Coq depends strongly on the underlying arithmetic chosen, but also on

the parameter choices. For binary64, verifying SLZ-based certificates that prove that the hardness

to round for exp is ⩽ 247 bits took less than one day on an 8-core Xeon X5550 running at 2.67GHz,

and each certificate took 6 times longer to generate than to verify. It should be noted, however,

that in these experiments, the parameter choices were biased towards harder generation / easier

verification.

5.2 Cost of the function evaluation algorithms
The function evaluation algorithms used in libraries such as CRLibm or CORE-MATH (see Section 6)

are based on Ziv’s strategy, presented in Section 4.1, with the first polynomial approximations

tailored so that the probability of not obtaining a correctly-rounded result from these first approxi-

mations is small (e.g., of the order of 10
−2
). The number of coefficients of these first approximations

is comparable to those used in the good current libraries. The direct consequence of this is that

the cost of the CORE-MATH library in terms of latency is on average very similar to the cost of

the good (but not correctly-rounded) current math libraries (a few figures are given in Table 5. For

more, see https://core-math.gitlabpages.inria.fr). The energy cost will essentially be the cost of the

range reduction and the first polynomial evaluation, so it will also be more or less the same as the

other libraries.

There is still a small theoretical overhead between a correctly-rounded function and a function

that returns a result within around 1 ulp:

• a correctly-rounded function needs a fast path with about 𝑝 + 10 correct bits, where 𝑝 is

the target precision, so that the accurate path is called with small probability (say 10
−2
). In

contrast, a function aiming at 1 ulp accuracy can deliver only about 𝑝 correct bits;

• the rounding test costs a few cycles. For a correctly-rounded function, this test is required

to decide whether the accurate path is needed.

With clever algorithms and coding, this theoretical overhead can be made quite small. However,

starting from a correctly-rounded function, if one disables the rounding test and returns the value

of the fast path, one will always get a faster routine. By the way, if one wishes to implement

two versions for each function, a correctly-rounded one and a “fast” one – for instance for high-

throughput vector calculations, this disabling might well be the right solution.

https://core-math.gitlabpages.inria.fr
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5.3 Answers to some usual questions
5.3.1 The cost (delay, memory) of correct rounding is too high.
With a good choice of the accuracy of the first, “fast” step of Ziv’s strategy, the average cost of

correct rounding is only slightly more than the cost of that fast step (i.e., essentially the same as

the cost of the other math libraries).

5.3.2 OK, I understand that on average the cost of correct rounding can be made reasonable, but the
worst case cost is too large (and for real-time applications, one has to consider worst case delays).
Examples with the CORE-MATH library [69] show that the worst case delays can be made reason-

able. We do not require that correctly-rounded functions should be the only available functions: if

really the additional delay is not acceptable, a possible solution is to “unplug” the rounding test at

the end of the first step of Ziv’s strategy (i.e., to perform the first step only).

5.3.3 You will not be able to do correct rounding in a reasonable delay for vector applications.
Same answer as for the previous question.

5.3.4 You have invested a lot of expertise and time in designing correctly-rounded routines, if you
had invested the same amount in non correctly-rounded routines, what would be the speedup?
As said above, the delay is on average slightly more than the delay of the first step. And because

of this, it is that step that receives much optimization effort. An optimized not-correctly-rounded

routine would essentially be that first step. So in a way we do have invested the same amount of

expertise and time in designing non correctly-rounded routines.

5.3.5 Correctly-rounded routines are more complex to maintain. How will you be able to maintain
them?
Precisely for the reason given in the answer to the previous question, the largest effort is on the

first step. Hence, correctly-rounded routines are not much more complex to maintain. And having

a clear specification (not a fuzzy one of the kind “the returned value is not too far from the exact

result”) helps detecting and correcting bugs (either in the code or in the error analysis).

5.3.6 Correct rounding comes with the cost of having to compute with a larger intermediate precision
than necessary. Even when this cost is only about 10%, this still leads to a huge waste of energy
whenever correct rounding is not needed.
Concerning energy consumption, what matters is the average consumption of a function call. So it is

roughly the same as for the other (non correctly-rounded) libraries. And in some (admittedly difficult

to quantify) cases of iterative calculations, a more accurate result may imply faster convergence.

6 EXISTING CORRECTLY-ROUNDED IMPLEMENTATIONS
We list here implementations yielding correct rounding of mathematical functions for the IEEE 754

binary formats. For each implementation we mention whether it is still maintained or not, which

IEEE formats and rounding functions it supports, which functions it provides (as of January 2024),

and whether the algorithms are documented. Unless stated otherwise, when the algorithms are

documented, correct rounding is obtained with Ziv’s onion peeling strategy [19].

MathLib. Also called LibUltim, it is a library developed by IBM around 1990 [75]. It provides

the following binary64 functions: acos, asin, atan, atan2, exp, exp2, log, log2, cos, sin, tan, cot, and

pow. It only supports rounding to nearest-even. Some high-level algorithms are described in [75].

MathLib is no longer maintained, but it was integrated into GNU libc version 2.27 (2018), except

for acos, exp2, log2 and cot. After GNU libc 2.27, the “accurate path” was removed by the GNU libc

developers because it was too slow for some corner-case inputs (for example up to 440,000 cycles

for the binary64 power function, using 768-bit arithmetic). No known bug exists. An unofficial

copy is available at https://github.com/dreal-deps/mathlib.

https://github.com/dreal-deps/mathlib
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LIBMCR. It was developed by Sun Microsystems until 2004. It also targets binary64 only and

rounding to nearest-even. It provides the following functions: exp, log, pow, atan, sin, cos, and tan.

Algorithms are not detailed. Some tests with the power function reveal several issues [33]. First,

for some inputs it does not terminate. Secondly, for some inputs, it gives a result which is far from

the correct one. A non-official copy is available from https://github.com/simonbyrne/libmcr.

CRLibm. It was developed by the Arénaire team in the LIP Laboratory (Lyon, France) until 2006

[17]. It provides the following binary64 functions: exp, expm1, log, log1p, log2, log10, sin, cos,

tan, asin, acos, atan, sinh, cosh, sinpi, cospi, tanpi, atanpi, and (with restrictions) pow. For each

function, there are four entry points corresponding to the four IEEE 754 rounding functions (at that

time rounding to nearest ties-to-away was not yet standardized). For example for the exponential

function: exp_rn, exp_rz, exp_ru, exp_rd for rounding to nearest ties-to-even, towards zero,

towards +∞ and towards −∞ respectively. CRLibm assumes the rounding precision is set to

binary64, and the processor rounding function is set to nearest ties-to-even. CRLibm makes use

of modern instructions such as the fused-multiply add (FMA), it benefits from the knowledge of

hardest-to-round cases, and thus has a better tuning of the accurate path, which uses triple-double

arithmetic [24, 43]. For example, for the binary64 exp function, [17] reports a maximum/average

time ratio of 6500 for MathLib, compared to only 6.6 for CRLibm. Although CRLibm is no longer

maintained, an unofficial copy is available from https://github.com/taschini/crlibm.

RLIBM. It is developed by the group of Santosh Nagarakatte (Rutgers University). It provides

binary32 functions only: acos, asin, atan, cos, cosh, cospi, exp, exp10, exp2, log, log10, log2, sin,

sinh, sinpi, and tan. It supports all IEEE rounding functions. Aditionally, it also provides routines

for posits. The originality of RLIBM is that it uses a new approach based on linear programming,

to find polynomials that yield correct rounding [49]. However, it is not clear whether that new

approach scales for larger precisions. The code and an extensive bibliography are available from

https://people.cs.rutgers.edu/~sn349/rlibm/.

LLVM libc. It is the C library that comes with the LLVM compiler, supported by Google. It

contains a mathematical library, whose aim is to provide only correctly-rounded functions, for all

IEEE rounding functions. It provides all binary32 functions from the C99 standard (except atan2,

cbrt, erfc), and a few binary64 functions (exp, exp2, exp10, expm1, hypot, log, log10, log1p, and

log2). For some binary32 functions, LLVM uses polynomials generated by the RLIBM developers.

A few performance comparisons with other libraries are presented in Table 5 (more figures can

be found at https://core-math.gitlabpages.inria.fr). Except for the binary64 hypot function, its

efficiency is within a factor of two of the GNU libc and/or the Intel library. The code is available

from https://libc.llvm.org/.

CORE-MATH. It is not a real mathematical library, but rather a collection of standalone correctly-

rounded routines that can be integrated into mathematical libraries, or used directly in specific

applications. It provides all binary32 and binary64 functions from the C99 standard, as well as new

functions from the C23 standard. CORE-MATH supports all four IEEE rounding functions available

in the C language. Algorithms are detailed either as comments in the source code, or as scientific

publications [33]. Most routines use a “fast path” that delivers about 𝑝 + 13 extra bits for a target

precision of 𝑝 bits, with a rigorous error bound. Then a “rounding test” yields the correct rounding

for 99% of the inputs. In case the rounding test fails, an “accurate path” delivers an approximation

with about 2𝑝 correct bits. The hardest-to-round cases for which the accurate path would deliver a

wrong result are treated separately; there are very few such “exceptional cases”. The code and an

extensive bibliography are available from https://core-math.gitlabpages.inria.fr/, where one can

also find a comparison of the efficiency with respect to other libraries. A few figures extracted

https://github.com/simonbyrne/libmcr
https://github.com/taschini/crlibm
https://people.cs.rutgers.edu/~sn349/rlibm/
https://core-math.gitlabpages.inria.fr
https://libc.llvm.org/
https://core-math.gitlabpages.inria.fr/
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Table 5. This table, extracted from https://core-math.gitlabpages.inria.fr, compares the reciprocal throughput
(average value) of some binary64 functions of CORE-MATH (revision 55c872b) with the GNU Libc (version
3.37), Intel Math (from icx 2023.2.0), and LLVM (revision d099dbb) libraries, on an Intel Xeon Silver 4214.
CORE-MATH and LLVM offer correctly-rounded functions.

Function CORE-MATH GNU libc Intel Math Library LLVM

cos 59.9 42.5 16.8 85.5

exp 16.3 12.7 9.8 23.7

erf 36.9 50.4 59.9

log1p 21.9 23.6 18.6 26.0

pow 52.7 42.0 34.2

hypot 21.8 36.4 23.1 213.8

from that website are presented in Table 5. The CORE-MATH code also contains large tables of

hardest-to-round inputs, generated using the BaCSeL software tool [32]. These tables are used to

check the correctness of the CORE-MATH routines, but can also be used to check the correctness

of other libraries. Like LLVM libc, the efficiency of CORE-MATH is within a factor of two of the

GNU libc and/or the Intel library, and for some functions it is even faster.

GNU MPFR. Though it is not focused on IEEE formats, we also mention the MPFR library [26]

because it has helped popularize correct-rounding evaluation and it is also a useful verification

tool for the libraries mentioned above. GNU MPFR is an arbitrary precision library with correct

rounding. To emulate some IEEE 754 format, one has to use the corresponding precision, and so

set the corresponding exponent range. MPFR does not have subnormal numbers, but they can be

emulated with the mpfr_subnormalize function.

CONCLUSION AND RECOMMENDATION
Knowledge of the worst cases for the common unary functions in binary64 arithmetic, as well as

the existence of efficient correctly-rounded implementations for these functions, leads us to believe

that there are no longer reasons not to require correct rounding of these functions in the binary16,

binary32, and binary64 formats. We understand that high-throughput vector computations may be

penalized by the tests required when running correctly-rounded function programs. Therefore,

we suggest that, along with the correctly-rounded version, a faster version of the functions may

be available. Some vendors might be reluctant to accept a (very small, as we have seen) loss in

performance and ease of implementation for a benefit that may not seem clear at first glance.

Similar objections were raised early in the discussions leading up to IEEE 754-1985, and no one

now seriously doubts the obvious interest in having well-specified additions and multiplications.

The use of formal methods to validate critical software is growing rapidly, and this justifies by

itself the need for fully specified functions. With a little pedagogy and explanatory skill, providing

“ultimate” functions at a reasonable cost could be a very good selling point.

Our suggestion is therefore:

https://core-math.gitlabpages.inria.fr
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In the binary16 and binary32 formats, correctly-rounded implementations of the
functions

𝑒𝑥 , 𝑒𝑥 − 1, 2𝑥 , 2𝑥 − 1, 10𝑥 , 10𝑥 − 1,

ln(𝑥), log
2
(𝑥), log

10
(𝑥), ln(1 + 𝑥), log

2
(1 + 𝑥), log

10
(1 + 𝑥),

1/
√
𝑥, sin(𝜋𝑥), cos(𝜋𝑥), tan(𝜋𝑥), arcsin(𝑥)/𝜋, arccos(𝑥)/𝜋, arctan(𝑥)/𝜋,

sin(𝑥), cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥),
sinh(𝑥), cosh(𝑥), tanh(𝑥), arcsinh(𝑥), arccosh(𝑥), arctanh(𝑥)√︁

𝑥2 + 𝑦2, 𝑥𝑦, arctan(𝑦/𝑥)/𝜋, arctan(𝑦/𝑥)
shall be provided. Along with these correctly-rounded implementations, other
implementations may be provided.
In the binary64 format, correctly-rounded implementations of the 1-variable func-
tions

𝑒𝑥 , 𝑒𝑥 − 1, 2𝑥 , 2𝑥 − 1, 10𝑥 , 10𝑥 − 1,

ln(𝑥), log
2
(𝑥), log

10
(𝑥), ln(1 + 𝑥), log

2
(1 + 𝑥), log

10
(1 + 𝑥),

1/
√
𝑥, sin(𝜋𝑥), cos(𝜋𝑥), tan(𝜋𝑥), arcsin(𝑥)/𝜋, arccos(𝑥)/𝜋, arctan(𝑥)/𝜋,

sin(𝑥), cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥),
sinh(𝑥), cosh(𝑥), tanh(𝑥), arcsinh(𝑥), arccosh(𝑥), arctanh(𝑥)

shall be provided (at least, for the sine and cosine functions, for |𝑥 | ⩽ 2
11, and for the

tan function, for 𝑥 ⩽ 10.5𝜋 ). Along with these correctly-rounded implementations,
other implementations may be provided.

In all other cases (decimal formats, binary128, 2-variable functions in binary64), correct rounding

is still desirable, but since the worst cases are not known, we can only use bounds on the hardness-

to-round, obtained using the techniques presented in this paper. This may lead to implementations

that are slower in (hopefully extremely rare!) bad cases. We therefore suggest that for these formats

and functions, correct rounding should be recommended, but not required. This gives:

In all other cases, correct rounding of the functions

𝑒𝑥 , 𝑒𝑥 − 1, 2𝑥 , 2𝑥 − 1, 10𝑥 , 10𝑥 − 1,

ln(𝑥), log
2
(𝑥), log

10
(𝑥), ln(1 + 𝑥), log

2
(1 + 𝑥), log

10
(1 + 𝑥),

1/
√
𝑥, sin(𝜋𝑥), cos(𝜋𝑥), tan(𝜋𝑥), arcsin(𝑥)/𝜋, arccos(𝑥)/𝜋, arctan(𝑥)/𝜋,

sin(𝑥), cos(𝑥), tan(𝑥), arcsin(𝑥), arccos(𝑥), arctan(𝑥),
sinh(𝑥), cosh(𝑥), tanh(𝑥), arcsinh(𝑥), arccosh(𝑥), arctanh(𝑥)√︁

𝑥2 + 𝑦2, 𝑥𝑦, arctan(𝑦/𝑥)/𝜋, arctan(𝑦/𝑥)
should be provided. Along with these correctly-rounded implementations, other
implementations may be provided.
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A TRANSCENDENCE RESULTS
Khémira-Voutier’s theorem for exp
The exponential function is central to the study of the correctly-rounded evaluation of the el-

ementary functions by libms: relevant information about its hardness to round yields relevant

information as well about the trigonometric and hyperbolic functions and their respective re-

ciprocals (see [59, §12.4.4], Remark 4.5), the logarithm function and the inverse trigonometric

functions.

Following the works [61] and [41], Khémira and Voutier proved in [40] a lower bound (called

transcendence measure) for the expression |𝑒𝛼 − 𝛽 |, where 𝛼 and 𝛽 are algebraic numbers, 𝛼 ≠ 0.

When specialized in FP numbers, their result provides interesting upper bounds for htrexp (𝑝).
Furthermore, the strong relationship between exp and many functions such as ln, the trigono-

metric, hyperbolic, inverse trigonometric and inverse hyperbolic functions allows one to deduce

from their Theorem statements that apply to all of these functions.

Let𝑚 and 𝑛 ∈ N, we introduce the quantities

𝑑𝑛 = l.c.m.(1, . . . , 𝑛) and D𝑚,𝑛 =
𝑚!∏

𝑞⩽𝑛,
𝑞 prime

𝑞𝑣𝑞 (𝑚!) ,

where 𝑣𝑞 (𝑚!) is the the largest integer 𝑘 such that 𝑞𝑘 divides𝑚!.

Let 𝛼 be an algebraic number of degree 𝑑 over Q, so that the minimal polynomial over Z is

written 𝑎
∏𝑑
𝑖=1 (𝑋 − 𝛼 (𝑖 ) ), the roots 𝛼 (𝑖 )

being complex numbers. We denote by

ℎ(𝛼) = 1

𝑑

(
ln |𝑎 | +

𝑑∑︁
𝑖=1

lnmax

(
1,

���𝛼 (𝑖 )
���)) (A.1)

the absolute logarithmic Weil height of the algebraic number 𝛼 .

We now state Khémira and Voutier’s Theorem in its full generality.

Theorem A.1 (Theorem 1.1 from [40]). Let 𝛼 and 𝛽 ∈ C be two algebraic numbers, 𝛼 ≠ 0. Define
𝐷𝛼,𝛽 = [Q(𝛼, 𝛽) : Q]/[R(𝛼, 𝛽) : R], A𝛼,𝛽 ⩾ 1,B𝛼,𝛽 ⩾ 1 be such that

𝐷𝛼,𝛽ℎ(𝛼) − ln(max(1, |𝛼 |)) ⩽ lnA𝛼,𝛽 ,

𝐷𝛼,𝛽ℎ(𝛽) − ln(max(1, |𝛽 |)) ⩽ lnB𝛼,𝛽 .
For all integers 𝐾 ⩾ 1, 𝐿 ⩾ 2 and real number 𝐸 > 1 such that

𝐾𝐿 ln𝐸 ⩾𝐷𝛼,𝛽𝐾𝐿 ln 2 + 𝐷𝛼,𝛽 (𝐾 − 1) ln
(
𝑒
√
3𝐿𝑑𝐿−1

)
+ 𝐷𝛼,𝛽 ln(D𝐾−1,𝐿−1)

+ 𝐷𝛼,𝛽 (1 + 2 ln 2) (𝐿 − 1) + 𝐷𝛼,𝛽 ln
(
min

(
𝑑𝐾−1
𝐿−2 , (𝐿 − 2)!

))
+ ln((𝐾 − 1)!) (A.2)

+ (𝐾 − 1) ln(A𝛼,𝛽/2) + 𝐿𝐸 |𝛼 | + 𝐿 ln𝐸 + (𝐿 − 1) ln(B𝛼,𝛽/2),

we have | exp(𝛼) − 𝛽 | ⩾ 𝐸−𝐾𝐿 .

This result is readily specialized to the case where 𝛼 and 𝛽 are both precision 𝑝 floating-point

number by noting that in that case 𝐷𝛼,𝛽 = 1, lnA𝛼,𝛽 = max(0, 𝑝 − 1− 𝑒𝛼 ) ln 2, lnB𝛼,𝛽 = max(0, 𝑝 −
1 − 𝑒𝛽 ) ln 2, where 𝑒𝛼 and 𝑒𝛽 are the respective exponents of 𝛼 and 𝛽 ; this gives an estimate for the

hardness to round for directed rounding functions.

Remark A.2. In this section, we only address the directed rounding function case. For the round-to-

nearest rounding function, we have to assume that 𝛽 is the middle of two consecutive FP numbers
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and that the numbers 𝛽 and 𝑒𝛼 are in the same binade. The theorem should then be used with 𝑒𝛽
replaced by 𝑒𝛽 − 1, which in practice has very little impact.

We now turn to show how this result applies to other functions.

Consequences for hyperbolic and trigonometric functions
Lemma A.3. Let 𝛼 , 𝛽 with 𝛼 ≠ 0, |𝛽 | < 1 be two floating-point numbers in precision 𝑝 . Assume that

| cos(𝛼) − 𝛽 | ⩽ 𝜀.
Then there exist two algebraic numbers 𝛼 ′, 𝛽 ′ with𝐷𝛼 ′,𝛽 ′ ⩽ 2, lnA𝛼 ′,𝛽 ′ = 2max(0, 𝑝−1−𝑒𝛼 ) ln(2)+

ln(max(1, |𝛼 |)) and lnB𝛼 ′,𝛽 ′ = max(0, 𝑝 − 2 − 𝑒𝛽 ) ln(2), |𝛼 ′ | = |𝛼 | such that | exp(𝛼 ′) − 𝛽 ′ | ⩽
√
2𝜀.

If, further, 1 − |𝛽 | ⩾ 𝛿 , we then have | exp(𝛼 ′) − 𝛽 ′ | ⩽ 2𝜀/
√
𝛿.

These statements also hold for the sine function.

Proof. We write

| cos𝛼−𝛽 | = 1

2

|exp(2𝑖𝛼) − 2𝛽 exp(𝑖𝛼) + 1| = 1

2

���exp(𝑖𝛼) − 𝛽 + 𝑖√︁1 − 𝛽2
���·���exp(𝑖𝛼) − 𝛽 − 𝑖√︁1 − 𝛽2

��� .
As the product of the last two terms is at most 2𝜀, one of the two must be at most

√
2𝜀.

Put 𝛼 ′ = 𝑖𝛼 , 𝛽 ′ = 𝛽 + 𝑠𝑖
√︁
1 − 𝛽2, for 𝑠 ∈ {−1, 1} such that | exp(𝛼 ′) − 𝛽 ′ | is minimal. Then, unless

1 − 𝛽2 is a perfect square (which is equivalent to 𝛽 = 0, as 2
2𝑝

is not a sum of two squares of

integers), [Q(𝛼 ′, 𝛽 ′) : Q] = 4 whereas [R(𝛼 ′, 𝛽 ′) : R] = 2, so 𝐷𝛼 ′,𝛽 ′ = 2. If 1 − 𝛽2 is a perfect
square, we have 𝐷𝛼 ′,𝛽 ′ = 1.

Further, the minimal polynomial of 𝛼 ′ over Z is 2
2max(0,𝑝−1−𝑒𝛼 ) (𝑋 2 + 𝛼2), from which we de-

duce easily that ℎ(𝛼 ′) = ℎ(𝛼); thus in all cases 𝐷𝛼 ′,𝛽 ′ℎ(𝛼 ′) − ln(max(1, |𝛼 ′ |)) = 𝐷𝛼 ′,𝛽 ′ℎ(𝛼) −
ln(max(1, |𝛼 |)) ⩽ 2max(0, 𝑝 − 1 − 𝑒𝛼 ) ln(2) + ln(max(1, |𝛼 |)).
Finally, the minimal polynomial of 𝛽 ′ over Z is 2

max(0,𝑝−2−𝑒𝛽 ) (𝑋 2 − 2𝛽𝑋 + 1), and as the two

roots of this polynomial have modulus 1, ℎ(𝛽 ′) = max(0, 𝑝 − 2 − 𝑒𝛽 ) ln(2)/2; hence, 𝐷𝛼 ′,𝛽 ′ℎ(𝛽 ′) −
ln(max(1, |𝛽 ′ |)) ⩽ max(0, 𝑝 − 2 − 𝑒𝛽 ) ln(2) in all cases.

Assume now that 1 − |𝛽 | ⩾ 𝛿 ; then, | (𝛽 + 𝑖
√︁
1 − 𝛽2 |) − (𝛽 − 𝑖

√︁
1 − 𝛽2 |) | = 2

√︁
1 − 𝛽2 ⩾ 2

√
𝛿 . Thus,

from the triangle inequality, at least one of | exp(𝑖𝛼) − 𝛽 + 𝑖
√︁
1 − 𝛽2 |, | exp(𝑖𝛼) − 𝛽 − 𝑖

√︁
1 − 𝛽2 | must

be ⩾
√
𝛿 , and the other one is ⩽ 2𝜀/

√
𝛿 . We conclude as in the first case.

The proof follows the same lines for the sine function, with 𝛽 ′ = 𝑠
√︁
1 − 𝛽2 + 𝑖𝛽 , for 𝑠 ∈ {−1, 1}. If

1− |𝛽 | ⩾ 𝛿 , | (
√︁
1 − 𝛽2 + 𝑖𝛽) − (−

√︁
1 − 𝛽2 + 𝑖𝛽) | ⩾ 2

√
𝛿 , so that for at least one 𝛽 ′ ∈ {±

√︁
1 − 𝛽2 + 𝑖𝛽},

we have | exp(𝑖𝛼) − 𝛽 ′ | ⩽ 2𝜀/
√
𝛿 . □

The simplest way to use the previous Lemma is via the first inequality, which directly reduces

the problem of finding a lower bound for | cos𝛼 − 𝛽 | to finding a lower bound for | exp(𝛼 ′) − 𝛽 ′ |.
Without loss of generality for our problem, we can restrict to the case where 𝛽 is a floating-point

closest to cos(𝛼).
The second inequality is much more efficient in practice: over a given binade [2𝑘 , 2𝑘+1), it is

quite easy to find the precision-𝑝 floating-point number closest to a multiple of 𝜋 (resp. to an

odd multiple of 𝜋/2 for the sine function, resp. to 0 for cosh), which gives a bound for 𝛿 over this

interval.

If this value of 𝛿 is less than 2
−𝑝

we can improve this bound by noting that 𝛽 precision-𝑝 floating

point number and |𝛽 | < 1 implies 1 − |𝛽 | ⩾ 2
−𝑝
.

For instance, over [4, 8], the precision-113 floating-point number closest to 2𝜋 (which is the only

multiple of 𝜋 in the interval under consideration) is

2
2 · 8156040833015188200833743081374136

2
112

,
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the cosine of which is ⩽ 1 − 1.5 · 10−68. We then use the better bound 𝛿 = 2
−113 .

Lemma A.4. Let 𝛼 , 𝛽 with 𝛼 ≠ 0, 𝛽 ⩾ 1 be floating-point numbers in precision 𝑝 . Assume that
| cosh(𝛼) − 𝛽 | ⩽ 𝜀.
Then there exist two algebraic numbers 𝛼 ′, 𝛽 ′ with 𝐷𝛼 ′,𝛽 ′ ⩽ 2, lnA𝛼 ′,𝛽 ′ = max(0, 𝑝 −1−𝑒𝛼 ) ln(2) +

ln(max(1, |𝛼 |)), |𝛼 ′ | = |𝛼 |, lnB𝛼 ′,𝛽 ′ = max(0, 𝑝 − 2−𝑒𝛽 ) ln(2) + | ln(2𝛽) |, such that | exp(𝛼 ′) − 𝛽 ′ | ⩽√
2𝜀.
If, further, 𝛽 ⩾ 1 + 𝛿 , then we have | exp(𝛼 ′) − 𝛽 ′ | ⩽ 2𝜀/

√
𝛿.

Proof. We have

| cosh(𝛼) − 𝛽 | = exp(−𝛼)
2

·
���exp(𝛼) − 𝛽 + √︁

𝛽2 − 1

��� · ���exp(𝛼) − 𝛽 − √︁
𝛽2 − 1

��� .
Up to changing 𝛼 to −𝛼 , we can assume without loss of generality that 𝛼 < 0, in which case the

product of the last two terms is again upper bounded by 2𝜀.

We thus take 𝛼 ′ = ±𝛼 and choose 𝛽 ′ ∈ {𝛽 ±
√︁
𝛽2 − 1} such that | exp(𝛼 ′) − 𝛽 ′ | is minimal; in this

case, 𝐷𝛼 ′,𝛽 ′ ⩽ 2 and

𝐷𝛼 ′,𝛽 ′ℎ(𝛼 ′) − ln(max(1, |𝛼 ′ |)) ⩽ 2ℎ(𝛼) − ln(max(1, |𝛼 |))
= max(0, 𝑝 − 1 − 𝑒𝛼 ) ln 2 + ln(max(1, |𝛼 |)) .

Further, 𝛽 ′ is a root of the polynomial with integer coefficients 2
max(0,𝑝−2−𝑒𝛽 ) (𝑋 2 − 2𝛽𝑋 +

1). As the other root is 1/𝛽 ′, the sum in the definition of ℎ(𝛽 ′) (see A.1) is at most equal to

max(ln |𝛽 ′−1 |, ln |𝛽 ′ |) = | ln |𝛽 ′ | |. This shows that ℎ(𝛽 ′) ⩽ 1

2

(
max(0, 𝑝 − 2 − 𝑒𝛽 ) ln 2 + | ln |𝛽 ′ | |

)
, so

that

𝐷𝛼 ′,𝛽 ′ℎ(𝛽 ′) − ln(max(1, |𝛽 ′ |)) ⩽ max(0, 𝑝 − 2 − 𝑒𝛽 ) ln 2 + | ln |𝛽 ′ | | − ln(max(1, |𝛽 ′ |))
⩽ max(0, 𝑝 − 2 − 𝑒𝛽 ) ln 2 + | ln(2𝛽) |.

If now 𝛽 − 1 ⩾ 𝛿 , as | (𝛽 +
√︁
𝛽2 − 1) − (𝛽 −

√︁
𝛽2 − 1) | = 2

√︁
𝛽2 − 1 ⩾ 2

√
𝛿 , so that either exp(𝛼) −

(𝛽 −
√︁
𝛽2 − 1) or exp(𝛼) − (𝛽 +

√︁
𝛽2 − 1) is ⩾

√
𝛿 , so that the other one is ⩽ 2𝜀/

√
𝛿 . □

Lemma A.5. Let 𝛼 , 𝛽 be two floating-point numbers in precision 𝑝 . Assume that | sinh(𝛼) − 𝛽 | ⩽ 𝜀.
Then there exist two algebraic numbers 𝛼 ′, 𝛽 ′ with 𝐷𝛼 ′,𝛽 ′ ⩽ 2, lnA𝛼 ′,𝛽 ′ = max(0, 𝑝 −1−𝑒𝛼 ) ln(2) +

ln(max(1, |𝛼 |)) and |𝛼 ′ | = |𝛼 |, lnB𝛼 ′,𝛽 ′ = max(0, 𝑝 − 2 − 𝑒𝛽 ) ln(2) + | ln( |𝛽 | +
√︁
1 + 𝛽2) |, such that

| exp(𝛼 ′) − 𝛽 ′ | ⩽ 4𝜀.

Proof. We have 𝜀 ⩾ | sinh(𝛼) − 𝛽 | = exp(−𝛼 )
2

| exp(𝛼) − 𝛽 +
√︁
𝛽2 + 1| | exp(𝛼) − 𝛽 −

√︁
𝛽2 + 1|.

By a similar argument as before, we can restrict to 𝛼 ⩽ 0. As the difference of the last two terms

is 2

√︁
𝛽2 + 1 ⩾ 1, one of these terms is ⩾ 1/2, from which we get the result. □

We now turn our attention to the tangent and cotangent functions.

Lemma A.6. Let 𝛼 ≠ 0, 𝛽 ≠ 0 be two floating-point numbers in precision 𝑝 .
Assume that | tan(𝛼) − 𝛽 | ⩽ 𝜀. Then there exist two algebraic numbers 𝛼 ′, 𝛽 ′ with 𝐷𝛼 ′,𝛽 ′ = 1,

lnA𝛼 ′,𝛽 ′ = max(1, 𝑝 − 1− 𝑒𝛼 ) ln 2, |𝛼 ′ | = 2|𝛼 |, lnB𝛼 ′,𝛽 ′ = max(𝑝 − 1− 𝑒𝛽 , 0) ln 2 + 1

2
ln(1 + 𝛽2), such

that | exp(𝛼 ′) − 𝛽 ′ | ⩽ 2𝜀. The same results holds for the cotangent function.
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Proof. We write

|tan(𝛼) − 𝛽 | =
���� exp(2𝑖𝛼) − 1

𝑖 (1 + exp(2𝑖𝛼)) − 𝛽
����

= |1 + exp(2𝑖𝛼) |−1 · |exp(2𝑖𝛼) − 1 − 𝑖𝛽 (1 + exp(2𝑖𝛼)) |

⩾
1

2

|exp(2𝑖𝛼) (1 − 𝑖𝛽) − (1 + 𝑖𝛽) |

=
|1 − 𝑖𝛽 |

2

����exp(2𝑖𝛼) − 1 + 𝑖𝛽
1 − 𝑖𝛽

����
⩾

1

2

����exp(2𝑖𝛼) − 1 + 𝑖𝛽
1 − 𝑖𝛽

���� .
We put 𝛼 ′ = 2𝑖𝛼 and 𝛽 ′ = (1 + 𝑖𝛽)/(1 − 𝑖𝛽). Obviously, we have 𝐷𝛼 ′,𝛽 ′ = 1.

The minimal polynomial of 𝛼 ′ over Z is 2
2max(0,𝑝−2−𝑒𝛼 ) (𝑋 2 + 4𝛼2), from which we deduce that

ℎ(𝛼 ′) = max(𝑝 − 2 − 𝑒𝛼 , 0) ln(2) + lnmax(2|𝛼 |, 1) ⩽ max(𝑝 − 1 − 𝑒𝛼 , 1) ln 2 + ln(max( |𝛼 |, 1)).
The claim on lnA𝛼 ′,𝛽 ′ follows.

The minimal polynomial of 𝛽 ′ over Z[𝑋 ] is 2max(2𝑝−2−2𝑒𝛽 ,0) ((𝛽2 + 1)𝑋 2 + (2𝛽2 − 2)𝑋 + (𝛽2 + 1));
as |𝛽 ′ | = 1 = |𝛽 ′ |, the logarithmic height of 𝛽 ′ is equal to max(𝑝 − 1 − 𝑒𝛽 , 0) ln 2 + 1

2
ln(1 + 𝛽2),

which concludes the proof for the tangent function.

The proof for the cotangent function is the same with 𝛽 ′ = (1 − 𝑖𝛽)/(1 + 𝑖𝛽). □

We now turn our attention to the hyperbolic tangent and cotangent functions.

Lemma A.7. Let 𝛼 > 0, 𝛽 > 0 be two floating-point numbers in precision 𝑝 . Assume that | tanh(𝛼) −
𝛽 | ⩽ 𝜀. Then there exist two algebraic numbers 𝛼 ′, 𝛽 ′ with𝐷𝛼 ′,𝛽 ′ = 1, lnA𝛼 ′,𝛽 ′ = max(0, 𝑝−2−𝑒𝛼 ) ln 2,
|𝛼 ′ | = 2𝛼 , lnB𝛼 ′,𝛽 ′ = max(0, 𝑝 − 1 − 𝑒𝛽 ) ln(2) + ln(1 + 𝛽) such that

| exp(𝛼 ′) − 𝛽 ′ | ⩽ 2𝜀.

The same result holds for the hyperbolic cotangent function, assuming 𝛽 > 1.

Proof. We have

|tanh(𝛼) − 𝛽 | =
����1 − exp(−2𝛼)
1 + exp(−2𝛼) − 𝛽

����
= |1 + exp(−2𝛼) |−1 · |− exp(−2𝛼) + 1 − 𝛽 (1 + exp(−2𝛼)) |

⩾
1

2

|exp(−2𝛼) (1 + 𝛽) − (1 − 𝛽) |

=
|1 + 𝛽 |

2

·
����exp(−2𝛼) − 1 − 𝛽

1 + 𝛽

����
⩾

1

2

����exp(−2𝛼) − 1 − 𝛽
1 + 𝛽

���� .
We take 𝛼 ′ = −2𝛼 and 𝛽 ′ = (1−𝛽)/(1+𝛽). Obviously𝐷𝛼 ′,𝛽 ′ = 1, lnA𝛼 ′,𝛽 ′ = max(0, 𝑝−2−𝑒𝛼 ) ln 2,

|𝛽 ′ | = |1− 𝛽 |/|1+ 𝛽 |. The minimal polynomial of 𝛽 ′ over Z[𝑋 ] is 2max(0,𝑝−1−𝑒𝛽 ) ((1+ 𝛽)𝑋 − (1− 𝛽)),
so that ℎ(𝛽 ′) = max(0, 𝑝 − 1 − 𝑒𝛽 ) ln(2) + ln |1 + 𝛽 | = lnB𝛼 ′,𝛽 ′ .

For the hyperbolic cotangent, assuming 𝛼 > 0, 𝛽 > 1, we write

|cotanh(𝛼) − 𝛽 | = | cotanh(𝛼)𝛽 | | tanh(𝛼) − 1/𝛽 | ⩾ | tanh(𝛼) − 1/𝛽 | ⩾ 1

2

����exp(−2𝛼) − 𝛽 − 1

𝛽 + 1

���� ,
which eventually gives the same estimate. □
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