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The goal of this paper is to convince the reader that a future standard for floating-point arithmetic should

require the availability of a correctly-rounded version of a well-chosen core set of elementary functions. We

discuss the interest and feasibility of this requirement. We also give answers to common objections we have

received over the last 10 years.
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1 MOTIVATION AND GENERAL ORGANIZATION OF THE ARTICLE
Motivation. The aim of this paper is to support the idea that future standards for floating-point

arithmetic should require the availability of a correctly-rounded version of a well-chosen core set

of elementary functions. The exact contour of that set is still to be discussed, but it should contain

the most frequently called functions (such as exp, sin, log), from which the other ones can be built.

A possible good starting point is the set of the functions given in Table 9.1, Additional mathematical
operations, of the IEEE 754-2019 Standard for Floating-Point Arithmetic [30, pp 58–59]:

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
log(x), log

2
(x), log

10
(x), log(1 + x), log

2
(1 + x), log

10
(1 + x),√

x2 + y2, 1/
√
x, (1 + x)n, xn, x1/n(n is an integer), xy ,

sin(πx), cos(πx), tan(πx), arcsin(x)/π , arccos(x)/π , arctan(x)/π , arctan(y/x)/π ,
sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x), arctan(y/x),
sinh(x), cosh(x), tanh(x), arcsinh(x), arccosh(x), arctanh(x).

Another possible starting point is the list of mathematical functions (not much different) defined

by the C Standard [9].

We do not claim that, for these functions, the correctly-rounded implementation should be the
only one available. One can imagine for each of these functions and each supported floating-point

format two routines available to the end-user: a fast routine, and an accurate (correctly-rounded)
routine (although, as we are going to see in Section 5, it is not clear that a well-designed accurate

implementation will be much slower than a fast implementation). The next version of the C

Standard will simplify that possibility, since it will have reserved names, such as cr_sin, for
correctly-rounded mathematical functions [9].
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Organization of this article. Wehave contributed or are contributing to the CRLibm1 or CORE-Math2

libraries, which offer fast and correctly-rounded evaluation of some of the functions mentioned

above. Based on our expertise in the field, we wish to convince the reader that correct rounding of a

core-set of functions is useful (or even necessary), that it is feasible, and that these correctly-rounded
routines can be evaluated at a reasonable (delay and energy) cost. The paper will be organized around
these keywords. After a necessary reminder on the arithmetic framework in the sequel of this

introduction, we address the Why? question in Section 3, the How? question in Section 4, and the

At what cost? question in Section 5. Note that there are two different issues in each of these last

two sections: how and at what cost do we build function approximations whose evaluation is provably
correctly-rounded? and how and at what cost do we evaluate these approximations? In practice,

the final programs for function evaluation are quite simple. However, the math and computation

required to design them can, in some cases, be rather complex. Eventually, we present in Section 6

libraries that currently offer correctly-rounded evaluations of mathematical functions for the IEEE

754 binary formats.

We deliberately choose to focus on binary floating-point arithmetic. Decimal arithmetic is an

important issue [16], and much of what is said in this paper can be extended to decimal, and yet

the need for very accurate numerical computing with transcendental functions is probably less

important in decimal applications—mainly financial calculations, and the knowledge and tools

required for designing correctly-rounded functions (approximation tools, proof tools, knowledge

of hardest to round cases, etc.) are less advanced in decimal arithmetic.

Since our first works on the correct rounding of functions and the table maker’s dilemma [43],

we have been asked many questions (either during face to face conversations, or anonymously

through reviews) about the interest, feasibility and cost of correct rounding. In each section, we list

the most relevant of these questions and try to give them an answer.

2 A REMINDER ON THE FLOATING-POINT ARITHMETIC FRAMEWORK
We only give the definitions and notation that are relevant for this paper. More information on

floating-point arithmetic can be found in [5, 26, 55, 57].

2.1 Floating-point numbers, basic binary formats
Definition 2.1. A binary, precision-p floating-point (FP) number is ±∞ or a number of the form

x = M · 2e−p+1, (2.1)

where

• M is an integer, |M | ⩽ 2
p − 1, called the integral significand of the representation of x ;

• e is an integer such that emin ⩽ e ⩽ emax, called the exponent of the representation of x .

In order to have a unique representation, we normalize the finite nonzero floating-point numbers

by choosing the representation for which the exponent is minimum. A direct consequence is that

if |x | ⩾ 2
emin

, then 2
p−1 ⩽ |M | ⩽ 2

p − 1. Such a number x is said normal. If |x | < 2
emin

, x is said

subnormal. The largest finite floating-point number is Ω = 2
emax+1 − 2

emax−p+1
.

The IEEE 754-2019 Standard for Floating-Point Arithmetic specifies various binary formats. The

three basic binary formats are binary32 (which was called single precision in the 1985 version of

IEEE 754), binary64 (formerly called double precision), and binary128 (frequently called quadruple
precision, it was not specified before the 2008 version of IEEE 754). The parameters of these formats

1
https://github.com/taschini/crlibm

2
https://core-math.gitlabpages.inria.fr/

https://github.com/taschini/crlibm
https://core-math.gitlabpages.inria.fr/
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precision p minimal exponent emin maximal exponent emax
binary32 24 −126 127

binary64 53 −1022 1023

binary128 113 −16382 16383

Table 1. Main parameters of the three basic binary formats (up to 128 bits) specified by IEEE 754 [30].

that matter for this study are presented in Table 1. In the following, we denote Fp the set of all

binary, precision-p FP numbers.

For the sake of completeness, one should also mention the existence of a 16-bit format (binary16

in the IEEE 754 standard). Due to the small number of 16-bit floating-point numbers, exhaustive

solutions are feasible and the problems studied in this paper turn out to be much easier. The same

is actually almost
3
true regarding binary32 arithmetic: the best way to make sure that an arctan

program always returns a correctly-rounded result is to try it with all possible 2
32
input values,

which takes at most a few hours on a modern laptop.

Definition 2.2. Assume a binary, precision-p, floating-point arithmetic. The unit in the last place
of t ∈ R is the number

ulp(t) =

{
2
max(emin,⌊log2 |t |⌋)−p+1 if t , 0,

2
emin−p+1

otherwise.

Roughly speaking, ulp(t) is the distance between two consecutive FP numbers in the neighbor-

hood of t . The error of “atomic calculations” (defined in §3) such as the elementary functions is in

general expressed in ulps [31].

2.2 Correct rounding
The result of an arithmetic operation whose input values belong to Fp may not belong to Fp (in

general it does not). Hence that result must be rounded. One of the most useful features brought by

the IEEE 754 Standard is the requirement that the arithmetic operations and the square root should

be correctly rounded: the user chooses a rounding function4 (called the active rounding function),
and the four arithmetic operations and the square root must return what would be obtained if their

results were first computed exactly and then rounded to the target format. IEEE 754-2019 defines 5

different rounding functions
5
; in the sequel, x is any real number to be rounded:

• round toward +∞, or upwards: ◦u (x) is the smallest element of Fp that is greater than or

equal to x . If x is larger than the largest finite number from Fp , ◦u (x) = +∞;

• round toward −∞, or downwards: ◦d (x) is the largest element of Fp that is less than or equal

to x . If x is smaller than the smallest finite number from Fp , ◦d (x) = −∞;

• round toward 0: ◦z (x) is equal to ◦u (x) if x < 0, and to ◦d (x) otherwise;
• round to nearest ties to even, denoted ◦ne (x) and round to nearest ties to away, denoted ◦na(x).
If x is exactly halfway between two consecutive elements of Fp , ◦ne (x) is the one for which
the normalized integral significand M is an even number and ◦na(x) is the one for which
|M | is largest. Otherwise, both return the element of Fp that is the closest to x . When the

3
Almost because of bivariate binary32 functions, for which exhaustive search is not as easy.

4
Called rounding mode or rounding direction attribute in the successive IEEE 754 jargons.

5
More precisely, there is a sixth function: round-to-nearest ties to zero, but it is used only in special, augmented operations.
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tie-breaking rule is not important
6
, we will write ◦n(x) for “x rounded to nearest”. If applying

this rounding rule with an unbounded exponent range would lead to a result of magnitude

larger than Ω, then∞ (with the appropriate sign) is returned.

The first three rounding functions are called directed rounding functions. The default rounding

function is usually round to nearest ties to even. It is by far the most used in practice.

Although it is not a rounding function (it is not a function at all!), we say that t̂ is a faithful
rounding of t if t̂ ∈ {◦d (t), ◦u (t)}. It is frequently considered that “correct rounding” (for round to

nearest) is equivalent to “error less than 0.5ulp” or that faithful rounding is equivalent to “error

less than 1ulp”. As explained in [5], this is almost, but not entirely true. More precisely, we have,

Property 2.3. Let t ∈ R and t̂ ∈ Fp ,
• if |t − t̂ | < 1

2
ulp(t) then t̂ = ◦n(t);

• if t̂ = ◦n(t) then |t − t̂ | ⩽ 1

2
ulp(t);

• if t̂ ∈ {◦d (t), ◦u (t)} then |t − t̂ | < ulp(t);
• if |t − t̂ | < ulp(t) and t̂ is not a power of 2 times 1 − 2

−p then t̂ ∈ {◦d (t), ◦u (t)}.

Definition 2.4. A rounding breakpoint (or simply, a breakpoint) is a point where the rounding

function changes. For round-to-nearest functions, the rounding breakpoints are the exact middles

of consecutive floating-point numbers. For the other rounding functions, they are the floating-point

numbers themselves.

The requirement, since the initial 1985 version of IEEE 754, that the four arithmetic operations,

the square root (and some conversions) should be correctly rounded, along with the standardization

of the processing of the exceptions (not discussed in this paper) has had a considerable impact on

numerical software. They put an end to a chaos well described in [34], and nowadays there is no

serious disagreement on the fact that the arithmetic operations must be correctly rounded: this

greatly facilitates the design, portability and validation of numerical software.

We have no doubt that the same requirement about the set of elementary functions that we

consider will also have a quite significant and positive impact on numerical software.

3 WHY?
The need for an unambiguous specification of the most frequent functions. Validating numerical

programs, either by testing their behavior on a well-chosen set of input values or by providing

a proof that they are correct, requires a clear and unambiguous specification of what they are

supposed to compute. Clear specification is also essential for helping the design of portable software.

Mooney [51] writes “A software interface standard will aid in the development of portable software if
it (· · · ) provides a clear, complete and unambiguous specification. . . ” This, in turn, requires a clear

and unambiguous specification of the functions we can view as “atomic” in these programs. This

has been done with success, in particular for the arithmetic operations and the square root, by the

IEEE 754 Standard on Floating-Point arithmetic. However, functions that appear in many numerical

programs, such as the trigonometric functions or the various (bases e , 2, and 10) exponentials and

logarithms are not fully specified, with the consequence that their quality and behavior may vary

(and does vary [31]) significantly between math libraries and platforms. And yet, most users expect

them to be of the highest quality. Already in 1980, Cody [13] wrote:

Software for the elementary functions normally resides in system libraries accompanying
compilers for high level languages. Unless there is strong evidence of poor performance,

6
This is a frequent case when the usual math functions are considered: the exponential, logarithm, sine, cosine of a floating-

point number is never exactly halfway between two consecutive FP numbers. This is a consequence of Hermite-Lindemann’s

theorem [69] that states that the exponential of a nonzero algebraic number is transcendental.
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users tend to regard these programs in the same way they regard the arithmetic operations
in the computer. That is, they view them as friendly ‘black boxes’ that can be trusted to be
efficient and accurate. Only careful preparation of software guarantees that the trust will
not be violated.

In a 2010 survey on verification methods [62], Rump wrote:

As another example, I personally believe that today’s standard function libraries produce
floating-point approximations accurate to at least the second-to-last bit. Nevertheless, they
cannot be used ‘as is’ in verification methods because there is no proof of that property. In
contrast, basic floating-point operations +, −, ·, /, √., according to IEEE 754, are defined
precisely, and are accurate to the last bit. Therefore verification methods willingly use
floating-point arithmetic, not least because of its tremendous speed.

Natural questions that arise are which functions should be specified, and what kind of specification
is desirable.

Concerning the choice of the functions that should be specified, the first criterion is the frequency

with which they are called in numerical programs. This may of course vary from one application

to another. The numbers of calls of the various mathematical functions in the simulation of proton

collisions in the CERN CMS detector are given by Piparo and Innocente [59]. Their figures show

that functions such as exp, log, and cos are very frequently called, and should be considered as

“atomic”, on nearly equal footingwith the square root. The second criterion is which functions (called

primary by Cody [12]) are frequently used as basic building blocks for writing software for the other

functions. From that point of view, again, the exponentials, logarithms and trigonometric functions

are frequently used for building the “special” functions [25] and, hence, are good candidates to be

considered as “atomic”. Hence, the list of functions given in the beginning of this introduction and

extracted from [30, Section 9.1] is a good starting point.

Let us now consider the question of the kind of specification that is desirable. Requiring a proven

relative error bound (e.g., 0.501ulp for round to nearest) would already be an improvement with

respect to the current situation, and this was already suggested in 1984 by Black et al. [4], but it

would not much ease the reproducibility of numerical calculations, which is becoming an important

issue [1]. Ahrens et al. [2] define it as

(· · · ) getting bitwise identical results from multiple runs of the same program, perhaps
with different hardware resources or other changes that should not affect the answer.

As pointed out by Ahrens, Demmel, and Nguyen [2], reproducibility is useful for debugging and

testing software (one must for instance be able to “replay” a situation that led to an error), for

reproducing simulations that produced rare events that need to be studied more carefully, for legal

reasons (when several parties need to agree on the result of a calculation, or when one needs to

justify a decision, after the fact, by the outcome of some simulation), and in the more and more

frequent case when the same quantity is computed at different places (and the result must be

identical to allow for consistency of taken branches).
7

For these reasons, we strongly believe that just specifying an error bound for the most frequent

mathematical functions does not suffice, and that for each 4-tuple (function, rounding function,

format, input value(s)) a unique result must be specified. The next question is: what unique result?

One could argue that, for instance, the value returned by a predefined algorithm could do. Not so.

This would be the end of any incentive for improvement in the mathematical function algorithms.

7
A surprising case is the online game industry, where one has to ensure that the game landscape is exactly the same for

each player, where this landscape is generated locally on the player’s computer.
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Furthermore, would a standard hold for long if here and there users can find libraries of functions

claimed to be better than the standard?

The only specification that makes sense is correct rounding. For these reasons, the only viable

solution is to require the returned result to be the best possible, i.e., the correct rounding of the

exact mathematical result. In 1976, Paul and Wilson [58] considered the possibility of including the

function library in the hardware, and reached the same conclusion:

The numerical result of each elementary function instruction will be equal to the nearest
machine representable value which best approximates (rounded or truncated as appropri-
ate) the infinite precision value for that exact finite precision argument for all possible
machine representable input operands in the legal domain of the function.

Now, it is feasible at very reasonable cost. Correct rounding of the elementary functions was too

strong a requirement at the time of Paul andWilson [58] or Black et al. [4], but we aim at convincing

the reader that now, this is feasible (Section 4) at a reasonable delay/energy cost (Section 5).

3.1 Answers to some usual questions
3.1.1 OK, we need a specification of a kernel of functions, but specifying a relative/ulp error bound
(say 0.501 ulp for rounding to nearest) suffices. That would already be an improvement over the

current situation, assuming the error bound is really proven, not just conjectured from random

experiments. However, this would not guarantee unicity of the returned result (so that reproducibil-

ity of calculations would not be guaranteed). Furthermore, for large precisions, guaranteeing a

tight error bound already requires a rather large effort anyway (formal proof, or a huge amount of

exhaustive testing–years of computation for binary64, out of reach for binary128). Of course for

small precisions one can easily perform an exhaustive test (but for these precisions, for the very

same reason, correct rounding is easily implementable). However, why 0.501 and not 0.500001?

Moreover, a proven error bound means that you have already implemented a fast step (see §4).

Why stop there and not implement the accurate step too?

3.1.2 You want the computed sine, cosine, exponential. . . of a number to be uniquely defined for
portability/debugging/reproducibility/legal purposes, but why not just specifying it as the result
returned by a given algorithm? This would fix in stone the mathematical function algorithms and

stop all improvement. And do you really want to fix in stone a result that is not the best possible?

3.1.3 We already guarantee correct rounding for the arithmetic functions, the square root, conversions.
We can of course do that for some higher-level functions, but there are hundreds of functions in the
math/physics bestiary: one has to stop at some point. . .which point? There seems to be a reasonable

consensus on which functions should be viewed as “atomic”: the list of functions in the IEEE

754-2019 Standard for Floating-Point Arithmetic [30, Section 9.1], the list of functions in the C

Standard and the list of functions in Cody and Waite’s book [11] are not so different.

3.1.4 Consider a sine or cosine function. In general, the input is not “exact”: it comes from an earlier
calculation or a measurement. When that input is large, due to the input error being non negligible
compared to π , the output cannot be known accurately: what is the point in pretending returning
correct rounding of that output? As one of us wrote in [53], our feeling is that the designer of a

circuit/library has no right to assume that users are stupid. If someone wants to compute the sine

of a very large number, he or she may have a good reason for doing this and the software/hardware

must provide a result as accurate as possible. Also, even if input values become somehow unrealistic,

numerical software robustness may depend on the preservation of symmetries, on the preservation

of properties such as the fact that the computed value of sin
2 x + cos2 x must be as close as possible
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to 1 (i.e., even if we no longer perform the good rotation, we anyway do perform a rotation), etc. All
these relations are easily preserved if we have correctly-rounded functions.

3.1.5 (also listed in the “How” section) Sometimes correct rounding is incompatible with range
constraints: For example in extended double precision (64 bits), the correctly-rounded arcsine of 1 is
0x1.921fb54442d1846ap+0, which is larger than π/2. Should one return a value that violates the
mathematical property |asinx | ⩽ π/2?
You have a point. This might be a case when correct rounding is not always the best solution.

For the (very few!) functions and formats for which such events may happen, we might consider

an optional “range takes over correct rounding” behavior.

4 HOW?
Let us now consider the problem of knowing how one can build correctly-rounded function

programs. The aim is to obtain fast and efficient function evaluation programs, even if this is at the

cost of a rather long pre-calculation of the various parameters (e.g., coefficients, special values to

be tested, etc.) used by these programs. The reason is clear: the pre-calculation is done once and for

all, whereas the evaluation programs will be used billions of times. In Sections 4.1, 4.2 and 4.3 we

explain the theoretical difficulties and general strategies behind correct rounding of functions. The

methods that can be used for the pre-calculation are described in Section 4.4. The methods used for

function evaluation are described in Section 4.5.

Let us briefly explain why the correct rounding of the transcendental functions is more com-

plicated than the correct rounding of, say, addition. Suppose we want to evaluate function f at

point x , where x is an FP number. Except in very special, rare cases, such as exp(0) = 1, the exact

value of f (x) cannot be computed (and is generally not representable in finite-precision arithmetic).

It can only be approximated. So, the only information we have is that f (x) lies in some interval

If (x ). This interval may be very narrow if we use high precision to compute the approximation,

but it will still be nonzero in length. If all points of If (x ) round to the same FP number, then the

correctly-rounded value of f (x) is that FP number. However, if If (x ) contains a rounding breakpoint,
we cannot conclude. These two cases are illustrated by Figure 1, assuming that the rounding

function is to nearest (◦n ). If we cannot conclude, one possible solution is to recalculate successive

approximations with increasing precisions (i.e., with intervals of decreasing length) until we are

able to conclude. This is the essence of Ziv’s strategy, presented in Section 4.1. The questions that

naturally arise are: Will this process eventually end? Even if we have a proof that it does (which is

the case for the most common functions), does it terminate quickly? These two questions form the

table maker’s dilemma, discussed in Section 4.3. Before that, in Section 4.2 we show that frequently,

for tiny arguments, correct rounding is easily provided.

2
k

2
k+1

f (x) is here

◦n(f (x))

f (y) is here

◦n(f (y))? ◦n(f (y))?

Fig. 1. From the knowledge that f (x) lies in the green interval, we can deduce the value of ◦n (f (x)). However,
knowing that f (y) lies in the red interval does not allow us to know if ◦n (f (y)) is the FP number below f (y)
or the FP number above it.
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4.1 Ziv’s strategy
Ziv’s onion peeling strategy [70] is a method to guarantee correct rounding at very cheap cost

on average. Roughly speaking the idea is to start by approximating the function with an accu-

racy comparable to that of the current good-yet-not-correctly-rounded libraries (to give an idea,

something like 0.501ulp of the target format). Then a very simple test (such as the one analyzed

in [20] for round-to-nerarest) allows one to know if the approximation suffices for returning a

correctly-rounded result. If it does, we are done. If it does not, we start the calculation again with a

better accuracy, and so on until we are able to provide a correctly-rounded result. More formally,

we have a sequence of approximation functions fk , 1 ⩽ k ⩽ n, with increasing relative accuracy

p1 < p2 < ... < pn :

| fk (x) − f (x)|

| f (x)|
< 2

−pk .

If the target precision is p, under some distributional assumptions (see Section 4.3.2), it is possible

to deduce a correctly-rounded result from the approximation fk (x) with probability 1 − 2
p−pk

. The

key ingredients in Ziv’s strategy are the following:

• to each function fk is associated a rounding test [20], which, when it succeeds, must deliver
the correct rounding;

• the sequence f1, ..., fn is finite, and the last approximation fn(x) always delivers the correct
rounding (total Ziv’s strategy) or raises an exception or a flag (partial Ziv’s strategy).

The second ingredient is crucial, and is strongly related to the table maker’s dilemma (§4.3) and to

the computation of worst cases (§4.4). In theory, the finiteness of the process (i.e., the fact that fn(x)
always delivers the correct rounding) requires either the knowledge that there are no nontrivial

exact cases (i.e., FP numbers x such that f (x) is a breakpoint), which is known to be true for the

exponential, logarithmic and trigonometric functions thanks to Hermite-Lindemann’s theorem, or

the preliminary determination of all the exact cases (that task was for example accomplished for the

binary64 power function by Lauter and Lefèvre [39], and for a function such as log
2
the only exact

cases are the trivial ones, i.e., log
2
(2k ) = k , with k ∈ Z). In practice, for more complex functions

(such as gamma
8
), finding a nontrivial exact point would be an extraordinary discovery (and to

be fully rigorous we can decide to raise a flag if fn does not suffice to determine ◦(f (x)). . . while
being almost certain that this will never happen if pn is adequately chosen). Note that when the

hardest-to-round cases are known, the last step of Ziv’s strategy may sometimes be implemented

by reading in a table the value of the function for the very few input values that remain possible.

This strategy is used in some libraries).

4.2 Special values
For some extremal values, it is not necessary to use Ziv’s strategy or to solve the table maker’s

dilemma: returning a correctly-rounded result is very easy, as we are going to see in the case of

tiny input values (Section 4.2.1) or tiny output values (Section 4.2.2).

4.2.1 The special case of tiny input values. Very often, when dealing with input variables that are

very close to zero, it is not necessary to know the hardest-to-round cases and correct rounding is

very easy. Assume that function f has a convergent Taylor expansion near zero:

f (x) = a0 + a1x + a2x
2 + · · · .

8
The possible trivial exact cases with the gamma function correspond to inputs that are positive integers, as Γ(n) = (n − 1)!.

For instance Γ(14) = 13! is an exact point in binary32 arithmetic with a directed rounding.
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• If a0 is a nonzero breakpoint (which is not a rare case: consider for instance functions ex or

cos(x), with directed rounding functions) then the sign of f (x) − a0 (which is immediately

deduced from the sign of the first nonzero ai , i ⩾ 1) and a bound on |a1x+a2x
2+· · · | allow one

to easily determine a small domain where, possibly depending on the sign of x , one should just
return a constant result. For instance, for the exponential function, if 0 ⩽ x ⩽ 2

−p+1 − 2
−2p+1

then ◦d (e
x ) = 1, and if −2−p ⩽ x < 0 then ◦d (e

x ) = 1− 2
−p
. Similarly, for the cosine function,

if |x | ⩽ ◦d (2
(−p+1)/2) then ◦u (cos(x)) = 1.

• If a0 , 0 is not a breakpoint then, depending on the sign of the first nonzero coefficient ai ,
i ⩾ 1, the reciprocal images of one or both of the two breakpoints surrounding a0 will tell us
in which domain one can safely return ◦(a0), where ◦ is the desired rounding function. For

instance, with f (x) = 2
x
, for

log
2

(
1 − 2

−p−1) ⩽ x ⩽ log
2

(
1 + 2−p

)
,

we have ◦n (2
x ) = 1 (in binary32 arithmetic, that domain corresponds to −12102203 × 2

−48 ⩽
x ⩽ 6051101 × 2

−46
).

• If a0 = 0 and a1 is a nonzero power of 2, so that the product a1x is exact, and assuming that

that product cannot underflow (this is a frequent case with the usual math functions: consider

for example f (x) = sin(x), or tan(x), or arctanhx , etc.), then a reasoning similar to the one

of the case a0 , 0 allows one to find a domain where ◦(f (x)) is always equal to ◦(a1x) = a1x
(or to the preceding/next FP number). Let us give an example with function

f (x) = arctan(x) = x −
x3

3

+
x5

5

−
x7

7

+ · · ·

We need to know when

ρ(x) =

����x3
3

−
x5

5

+
x7

7

− · · ·

����
is less than

1

2
ulp(x) (for round-to-nearest) or less than ulp(x) (for the other rounding func-

tions). By reasoning on the binade 2
k ⩽ |x | ⩽ 2

k+1
where x lies, one finds that

– if p is even then ρ(x) < ulp(x) as soon as |x | ⩽ ◦d

( (
3

2

) 1

3

)
· 2−

p
2
+1
, and ρ(x) < 1

2
ulp(x) as

soon as |x | ⩽ ◦d

(
3

1

3

)
· 2−

p
2 ;

– if p is odd then ρ(x) < ulp(x) as soon as |x | ⩽ ◦d

(
3

1

3

)
· 2

−p+1
2 and ρ(x) < 1

2
ulp(x) as soon

as |x | ⩽ ◦d

( (
3

2

) 1

3

)
· 2

−p+1
2 .

For instance, in binary64 arithmetic (p = 53) and with a round-to-nearest rounding function,

we have ◦n(arctan(x)) = x for |x | ⩽ ◦d

( (
3

2

) 1

3

)
·2−26 = 1.1447 · · · ·2−26. In practice the domain

where such simplifications can be made is easily found by the means of a binary search.

For some functions, it may also happen that the hardest to round cases become very easy to compute

for tiny values. For instance, for tiny x , sinpi(x) = sin(πx) is close to a breakpoint if and only if πx
is close to a breakpoint (and in such a case, sinpi(x/2), sinpi(x/4), etc. are close to a midpoint too).

4.2.2 The special case of tiny output values. The analysis given in the rest of the paper implicitly

uses the fact that the breakpoints are numbers of the form ±B · 2k (for directed rounding functions)

or ±(2B + 1) · 2k (for round-to-nearest rounding functions), where B ∈ N, 2p−1 ⩽ B ⩽ 2
p − 1. This

is not true in the subnormal domain, so a separate study is required in the areas where the outputs

have absolute value less than 2
emin

. In general, however, this separate study is not too much of a

burden:
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• very often, the output is in the subnormal domain when the input too is extremely small,

so that the study is similar to what has been done in Section 4.2.1 (just to give an example,

when x is subnormal, ◦n(sin(x)) = ◦n(sinh(x)) = ◦n(tan(x)) = x );
• a very simple continued-fraction analysis, introduced by Kahan

9
and described in detail

in [p. 208][53], allows one to find, for a given format, which floating-point number is closest

to a non-zero integer multiple of π/2. This makes it possible to know what is the smallest

possible absolute value of a trigonometric function when the input is not close to zero. It turns

out that these values are far from the subnormal domain. For example, the binary64 number

greater than π/4 and closest to an integer multiple of π/2 is 6381956970095103 · 2797. Its

cosine is about −4.687 × 10
−19

which is well above the subnormal threshold of 2.225 × 10
−308

.

4.3 The table maker’s dilemma
The lack of requirement of correct rounding for elementary functions is mainly due to a difficult

problem known as the table maker’s dilemma (TMD), a term coined by Kahan [35]. When evaluating

most elementary functions, one has to compute an approximation to the exact result, using an

intermediate precision somewhat larger than the “target” precision p. The TMD is the problem

of determining, given a function f , what this intermediate precision should be in order to make

sure that rounding that approximation yields the same result as rounding the exact result. Ideally,

we aim at getting the minimal such precision htrf (p), that we call hardness to round of f (see

Definition 4.3).

4.3.1 Formalization of the problem. Assume we wish to correctly round a real-valued function φ.
Note that if x is a bad case for φ (i.e., φ(x) is difficult to round), then it is also a bad case for −φ and

−x is a bad case for t 7→ φ(−t) and t 7→ −φ(−t). Hence we can assume that x ⩾ 0 and φ(x) ⩾ 0.

We consider that all input values are elements of Fp ∩ [2e1, 2e1+1). The method must be applied

for each possible integer value of e1.
If the values of φ(x), for x ∈

[
2
e1, 2e1+1

)
, are not all included in the binade

[
2
e2, 2e2+1

)
10
, we

split the input interval into subintervals such that for each subinterval, there is an integer e2 such
that the values φ(x), for x in the subinterval, are in [2e2, 2e2+1). We now restrict to one of those

subintervals I included in [2e1, 2e1+1).
For directed rounding functions, the problem to be solved is the following:

Problem 4.1 (TMD, directed rounding functions). What is the minimum µ(p) ∈ Z such
that, for 2p−1 ⩽ X ⩽ 2

p − 1 (and, possibly, the restrictions implied by X/2−e1+p−1 ∈ I ) such that
φ

(
X2

e1−p+1
)
< Fp and for 2p−1 ⩽ Y ⩽ 2

p − 1, we have����2p−1−e2φ (
X

2
−e1+p−1

)
− Y

���� ⩾ 1

2
µ(p)
.

For rounding to nearest functions, the problem to be solved is the following:

Problem 4.2 (TMD, rounding to nearest functions). What is the minimum µ(p) ∈ Z such
that, for 2p−1 ⩽ X ⩽ 2

p − 1 (and, possibly, the restrictions implied by X/2−e1+p−1 ∈ I ) such that
φ

(
X2

e1−p+1
)
is not the middle of two consecutive elements of Fp and for 2p−1 ⩽ Y ⩽ 2

p − 1, we have����2p−1−e2φ (
X

2
−e1+p−1

)
− Y −

1

2

���� ⩾ 1

2
µ(p)
.

These statements lead to the following definition.

9
See https://people.eecs.berkeley.edu/~wkahan/testpi/

10
A binade is an interval of the form [2k , 2k+1) or (−2k+1, −2k ] for k ∈ Z.

https://people.eecs.berkeley.edu/~wkahan/testpi/
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Definition 4.3 (hardness to round). Let a precision p be given, ◦ be a rounding function and φ be

a real valued function. Let x be a FP number in precision p and e2 ∈ Z be the unique integer such

that φ(x) ∈ [2e2, 2e2+1) (here again, we assume x and φ(x) ⩾ 0, since the extension to the other

cases is straightforward).

The hardness to round φ(x), denoted htrφ , {x },◦(p) is equal
11
to:

• +∞ if φ(x) is a breakpoint;
• the smallest integerm such that the distance of φ(x) to the nearest breakpoint is larger than

or equal to 2
−m−p+1+e2

.

The hardness to roundφ over an interval I , denoted htrφ ,I ,◦(p), is then the maximum of the hardness

to round φ(x) for all FP x ∈ Fp ∩ I , while the hardness to round φ is the hardness to round φ over

R, simply denoted htrφ ,◦(p). When there is no ambiguity over the rounding function, we get rid of

the symbol ◦.

Remark 4.4. Note that both Problem 4.1 and Problem 4.2 for precision p are subproblems of

Problem 4.1 for precision p + 1.

Remark 4.5. If we assume that φ admits an inverse φ−1
and is differentiable over I and that we

have a precise control over the image of φ ′
over I , it follows from the mean value theorem that

addressing Problems 4.1 and 4.2 for φ over I is analogous to addressing Problems 4.1 and 4.2 for

φ−1
over φ(I ). For instance, one can think of exp and log or x 7→ 3

√
x and x 7→ x3. See Lemma 4.8

for an explicit statement.

4.3.2 A heuristic probabilistic approach and some partial results. If we have N FP numbers in the

domain being considered, it is expected that htrf (p) is of the order of p + log
2
(N ) (hence 2p for

most usual functions and binades). This is supported by a probabilistic heuristic approach that is

presented in detail in [53, 54] and that we know briefly recall.

Let φ be a real-valued function, assume that after the pth bit, the bits of the significands of the
values φ(x), where x is a floating-point number, are sequences of independent random 0 or 1 with

equal probability 1/2. The probability that after bit p, we have

• for rounding to nearest functions, the bit sequence

100 · · · 0︸   ︷︷   ︸
k bits

or 011 · · · 1︸   ︷︷   ︸
k bits

• or, for directed rounding functions, the bit sequence

00 · · · 0︸  ︷︷  ︸
k bits

or 11 · · · 1︸  ︷︷  ︸
k bits

is 2
−k+1

. One can find such an estimate used in [22] and a probabilistic study has been done in [24].

Hence, if we have N floating-point numbers in the domain being considered, the number of values

x for which we will have a bit sequence of the form indicated above is, under the probabilistic

model stated above, around N 2
−k+1

.

It has been studied in [7] where Brisebarre, Hanrot and Robert gave, under a mild hypothesis

on f ′′, solid theoretical foundations to some instances of this probabilistic heuristic, targeting in

particular the cases that the CRLibm or CORE-Math libraries use in practice.

11
One can find in other texts the same value shifted by p − 1.
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4.3.3 Diophantine approximation results. We now recall several theoretical results that can prove

useful, yet insufficient, for algebraic
12
functions like 1/

√
·, 3

√
·, . . . and the exponential function, the

latter being pivotal for elementary functions.

Algebraic functions. When x ∈ Fp and f is an algebraic function, the value f (x) is an algebraic

number. When α is an algebraic number, the minimal polynomial of α over Z is the polynomial

Pα ∈ Z[X ] \ {0}, with relatively prime coefficients and positive leading coefficient, of least degree

such that Pα (α) = 0. Let d denote the degree of Pα ; we then say that α is an algebraic number of

degree d . As of today, the only uniform theoretical statement that we can take advantage of is an

old result due to Liouville [45–47].

Theorem 4.6 (Liouville). Let α be an algebraic number of degree d ⩾ 2. There exists an effective
constant Cα such that, for all p, q ∈ Z, q ⩾ 1,����α −

p

q

���� ⩾ Cα

qd
.

We can take, for instance, Cα =
1

max|t−α |⩽1/2 |P ′
α (t ) |

. The value of the exponent has been regularly

improved to culminate in Roth’s Theorem [61], that gives an exponent 2 + ε for any ε > 0 instead

of
13d . Actually, when tackling the TMD, the integer q is a power of 2 and we can therefore take

advantage of Ridout’s improvement [60] over Roth’s theorem: a valid exponent is now 1 + ε for
any ε > 0. Unfortunately, none of these results come together with an effective constant Cα , which

makes them useful only in an asymptotic setting – and useless, except as qualitative information,

in ours.

Remark 4.7. Liouville’s theorem was improved in an effective way by Fel’dman [23]. Unfortunately,

for the parameter sizes of interest to us, it does not yield an information more accurate than the

one provided by Theorem 4.6.

In [8], Brisebarre and Muller followed Liouville’s approach in order to obtain straightforward

effective upper bounds for the hardness to round htrf (p) for algebraic f . See also [32, 38] for similar

results. For instance, let a ∈ N \ {0}, if we consider fa : t 7→ t1/a and round-to-nearest function.

First we notice that, for x ∈ Fp ∩[1, 2a), since for all k ∈ Z, we have fa(x2
ka) = 2

k fa(x), it therefore
suffices to work on Fp∩[1, 2

a) instead of the whole Fp . Then, we have htrfa (p) ⩽ a(p+1)+log
2
(a)−2.

We remind our reader that we rather expect htrfa (p) to be of the order of 2p. Notice that when a,b,
and β are fixed, the quantity htrf above grows essentially like p · max{a,b} when the precision p
increases. Except for a very few values of a and b, this is much larger than what one can expect

from the heuristic described in Section 4.3.2.

The exponential function and its siblings. Tackling the question of worst cases from a theoretical

point of view requires:

(1) the determination of all FP-numbers α in precision p such that f (α) is a breakpoint ;
(2) for the remaining FP-numbers α in precisionp, proving lower bound on the quantity | f (α)−β |

when β is any FP-number in precision p (directed rounding functions) or any middle of two

consecutive FP-number in precision p (rounding to nearest).

Regarding the exponential function, we know from Hermite-Lindemann’s theorem [69] that the

only exact case is e0 = 1. As for the second condition, it turns out that proving such bounds in the

12
We say that a function φ is algebraic if there exists P ∈ Z[x , y] \ {0} such that for all x such that φ(x ) is defined,

P (x , φ(x )) = 0.

13
Note that in the quadratic – d = 2 – case, Liouville’s result remains better.



Correctly-rounded evaluation of a function: why, how, and at what cost? 13

somewhat more general case where α , β are algebraic numbers
14
has been a major line of research

in transcendence theory since the second half of the XIX-th century.

In view of this, we now give a table showing how bad cases for trigonometric and hyperbolic

functions are related to (algebraic) bad cases for the exponential function; this relation can be used,

in relation with results on the exponential function coming from transcendental number theory, to

give bounds on bad cases. We discuss this issue in depth in Appendix A.

The following table is to be read in the following way: the row related to a function f gives α ′
,

β ′
, ε ′ as functions of α , β , ε such that | f (α) − β | ⩽ ε ⇒ | exp(α ′) − β ′ | ⩽ ε ′. In the cases where

further assumptions on α , β can be used to improve the bound, those are given in the last column.

Table 2. Relating trigonometric & hyperbolic functions to exp

Function α ′ β ′ ε ′ if...

cos iα β ± i
√
1 − β2

√
2ε

cos iα β ± i
√
1 − β2 2ε/

√
δ 1 − |β | ⩾ δ

sin iα iβ ±
√
1 − β2

√
2ε

sin iα iβ ±
√
1 − β2 2ε/δ |β | ⩾ δ

cosh ±α β ±
√
β2 − 1

√
2ε

cosh ±α β ±
√
β2 − 1 2ε/δ 1 − |β | ⩾ δ

sinh ±α β ±
√
β2 + 1 4ε

tan, cot 2iα (1 ± iβ)/(1 ∓ iβ) 2ε α , 0 (cot)

tanh, coth −2α (1 ∓ β)/(1 ± β) 2ε α , 0 (coth)

Finally, the following Lemma, a direct consequence of the mean value Theorem, gives a relation

between bad cases for a function and bad cases for its reciprocal.

Lemma 4.8. Let f : I ⊂ R → R be a continuously differentiable function. Assume that for all
α ∈ [a,b] ⊂ I , β ∈ R, | f (α) − β | ⩾ ε . Then, for all α ∈ [a,b], β ∈ f (I ), we have

| f −1(β) − α | ⩾
ε

sup[α ,f −1(β )] | f
′ |
.

Applying those results, we obtain upper bounds for the hardness to round of exp, trigonometric

and hyperbolic functions over the first few binades surrounding 1; the reader will find those bounds

gathered in Table 3.

Regarding reciprocal functions, we limit ourselves to the logarithm and arctangent functions,

cf. Table 4.

4.4 Search for bad or worst cases - bounding the hardness to round from above
A worst case for a function f in a given format and rounding mode ◦ is a floating-point number x
in this format such that 2

p−1−ef (x ) | f (x) − ◦(f (x))| is minimal among all possible values of x such

that f (x) , ◦(f (x)). Section 4.3.2 suggests that we should expect that apart from degenerate cases

(for instance, cos(x) for x close to 0) this quantity is of the order of 2
−(p+log

2
(emax−emin+1))

. Knowing

the worst cases is of major importance in the context of correct rounding as it gives a bound on the

final precision pn such that Ziv’s strategy succeeds.

14
that is to say roots of polynomials with rational coefficients.
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Table 3. Upper bounds for hardness to round for exp, trigonometric and hyperbolic functions in the binary128
format. For each function f , we report the values θf such that, over a given binade, the hardness to round f
is less than θf · 113.

Binade exp sin cos sinh cosh tan cot tanh coth

[1/8, 1/4) 226 1421 1407 723 722 298 294 299 315

[1/4, 1/2) 297 2125 2113 1130 1131 405 404 406 416

[1/2, 1) 403 3394 3388 1768 1774 597 598 598 606

[1, 2) 593 5898 6716 3035 3057 1183 928 927 939

[2, 4) 920 11711 10557 5603 5647 1506 1836 1502 1514

[4, 8) 1485 21043 21043 10884 10976 2993 2990 4103 4172

Table 4. Upper bounds for hardness to round for log and atan in the binary128 format. For each function f ,
we report the values θf such that, over a given binade, the hardness to round f is less than θf · 113.

Binade log atan

[1/8, 1/4) 595 296

[1/4, 1/2) 404 391

[1/2, 1) 297 516

[1, 2) 338 628

[2, 4) 476 706

[4, 8) 600 742

More generally,m-bad cases are floating-points numbers such that 2
p−1−ef (x ) | f (x) − ◦(f (x))| <

2
−m

. Knowingm-bad cases form slightly smaller than p + log
2
(emax − emin + 1) is useful as a “stress

test” for function implementation, whereas having the proof of the non-existence ofm-bad cases

form somewhat larger than p + log
2
(emax − emin + 1) is useful again as a bound on a final precision

pn such that Ziv’s strategy succeeds.

We now present the existing algorithmic approaches for computing bad cases or establishing

hardness-to-round values. Some timings are provided in Section 5.1.

4.4.1 Binary32 format. Apart for bivariate functions (see below at 4.4.4) the table maker’s dilemma

in binary32 is easily solved for a given function by an exhaustive computation [63] in a few hours on

a modern laptop. For each value of x one computes a sufficiently accurate interval approximation to

f (x) and determines the hardness to round f (x). The cost of the approach is obviously proportional

to the number of different FP numbers of the format under study i.e., 2
p+log(emax−emin+1)

.

4.4.2 Binary64 format. In [21], the exhaustive evaluations are performed on an FPGA using a

tabulated difference approach, which makes it possible to address the binary64 case.

More subtle ideas proceed by splitting the domain into subintervals and replacing the function

(assumed to be sufficiently smooth) by a polynomial, often a Taylor approximation, over the interval

under study; one is then reduced to study the problem in the polynomial case.

Lefèvre, together with Muller [40–42], studied the degree 1 case; in this case, the remaining

Diophantine problem is to find two integers x,y, |x | ⩽ X , |y | ⩽ Y such that |αx + β −y | is minimal,

which is solved by elementary Diophantine arguments, either the three distance theorem, or

continued fractions (see e.g., [3]). These ideas lead to an algorithm of complexity Õ(22p/3) for
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floating-point numbers of precision p, as p → ∞, which computes all worst cases for rounding

in the domains under consideration. The worst cases published in [42] were obtained using that

algorithm.

Higher degree approximations give rise to more complicated Diophantine problems. Stehlé,

Lefèvre and Zimmermann [66], further refined by Stehlé [65], make use of a technique due to

Coppersmith [14, 15] and based on lattice basis reduction to solve it
15
. We recall Corollaries 4 & 5

of [65], adapted to our context.

Theorem 4.9 (Stehlé [65]). For all ε > 0, there exists a heuristic algorithm of complexity 2
p(1+ε )/2

which, given a function f , returns all FP numbers x ∈ [1/2, 1) of precision p such that the hardness to
round f (x) is ⩾ p.
There exists a polynomial-time heuristic algorithm which returns all FP numbers x ∈ [1/2, 1) of

precision p such that the hardness to round f (x) is ⩾ 4p2; the latter works by reducing a lattice of
dimension O(p2) ofRm for somem = O(p4).

This Theorem can be extended to any fixed binade, but in practice works well only for binades

not too large (in absolute value); this is overall true for all the known methods which rely on local

polynomial approximation of the function under study.

However, for most functions, these methods are sufficient to cover the suitable range, because

outside that range either the function or its reciprocal overflows. The main exception to this rule is

the case of periodic functions. The previous algorithms have been extended to the case of periodic

function in [27]. The first part of the previous theorem still holds, except that the constant (1+ ε)/2

in the exponent of the complexity must be replaced by (7 − 2

√
10)(1 + ε) ≈ 0.68.

The heuristic character of the algorithm is rather mild (i.e., the algorithm works in practice as

expected on almost all inputs).

More recently, Brisebarre and Hanrot [6] presented an improvement over the SLZ algorithm.

Their method (that we shall denote BH in the sequel) remains based on lattice basis reduction,

but rather than reducing the problem for f to the same problem for an approximation (Taylor)

polynomial for f as it is done in [65, 66], they work with the function f itself as long as possible.

This is made possible thanks to rigorous uniform approximation techniques based on Chebyshev

interpolation.

For general functions, their approach allows one to recover the results of Theorem 4.9. However,

firstly, they improve significantly on several algorithmic aspects, resulting in major improvements

on the polynomial part of the asymptotic complexity (lattice basis reduction). Secondly, their

approach permits an improvement on the second part of Theorem 4.9 for regular functions with

moderate growth at ∞ (exp, sin, cos). They prove the following theorem:

Theorem 4.10 (Brisebarre, Hanrot [6]). Let f ∈ {exp, sin, cos, sinh, cosh}. There exists a poly-
nomial-time heuristic algorithm which returns all FP numbers x ∈ [1/2, 1) of precision p such that
the hardness to round f (x) is ⩾ (1 + ε)p2/logp; the latter works by reducing a lattice of dimension
O((p/logp)2) ofRm for somem = O((p/logp)2).

Actually, the theorem can be stated for more functions, precisely entire functions of finite order

(this includes, for instance, the erf function). Note also that by combining this result with Lemma 4.8,

we can extend the theorem to the reciprocal functions.

4.4.3 Binary128 format. As of today, finding the worst cases in binary128 seems by far out of

reach. A somewhat easier task however is to look for α · p-bad cases, for a reasonable constant

15
We will call Stehlé’s variant SLZ algorithm in the sequel.
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α (α = 5, 6, 7, say). The SLZ and BH algorithms can perform it (see [67] for the SLZ algorithm),

see Table 3.

4.4.4 Bivariate functions. The landscape is much more obscure regarding bivariate functions –

except the hypot function for which general results concerning algebraic functions apply.

It is highly likely that all the previous algorithms (Lefèvre, SLZ, BH) can be adapted to this

setting, see for example [68].

4.4.5 Formal verification. All these large computations using rather complicated pieces of software

may raise concerns, in particular in the binary128 case since the output of the quest of 5p or

7p-bad cases is typically “No”, namely that such bad cases do not exist. The need for formal

proof certification of those results seems obvious; preliminary work has been performed in this

direction [50] in the case of the SLZ algorithm. Most of the computation time of this algorithm is

spent finding auxiliary polynomials. Once computed, they can be stored as part of certificates, which
allows for a verification which can be much faster than the actual computation. This verification

can be performed using a proof assistant as Coq, or, for a faster but weaker verification, simply by

an alternate tool written independently from the first one. The BH algorithm rests on similar ideas,

and extending this work to the BH algorithm seems feasible; a large part of the Coq formalization

can actually be re-used.

4.5 Implementation of correctly-rounded evaluation routines
To implement efficiently correctly-rounded evaluation routines, one first has to use efficient algo-

rithms. These algorithms are specific to each function, and are well known in the literature. A very

good reference is the book of Peter Markstein [49].

These algorithms are usually the same as those used in current mathematical libraries, which do

not deliver correct rounding. One crucial difference however is that each implementation must

provide a rigorous error bound to be used in the corresponding rounding test (§4.1). This error

bound can be computed by hand, or using software tools like Gappa [18].

These algorithms consist in argument reduction (if available for the function to be implemented),

in minimax polynomial evaluation, and in argument reconstruction. Tools like Sollya [10] provide

good minimax polynomials of a given degree for a given function over a given interval, with optimal

absolute or relative error, and possibly some additional constraints (for example all coefficients

must be representable in binary64).

To evaluate a given minimax polynomial, or for the argument reduction or reconstruction, one

should try to use only additions/subtractions and multiplications (possibly fused-multiply adds

which are now very common in hardware).

Usually the first phase of Ziv’s strategy (§4.1) will use double-double arithmetic with a target

accuracy of about 70 bits for the binary64 format. Efficient double-double algorithms are known

with tight and rigorous error bounds [33], and have even been formally proven [52].

For the second and further phases (if any), the implementor has the choice between double-double

arithmetic (with a target accuracy of at most 106 bits), and integer-based arithmetic [48].

4.6 Answers to some usual questions
4.6.1 You will not be able to obtain hardest to round cases for all functions in their whole domain.
For these functions, when you cannot obtain a reasonable bound on the hardness to round, you will
have to use Ziv’s initial approach, i.e., you will just stop the calculation at some point, without any
proof that this suffices.
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We already have hardest-to-round cases in binary64 arithmetic for most usual functions, so

that very efficient correctly-rounded calculation of univariate functions in binary64 is at hand.

Section 4.3 shows that even when the worst cases are out of reach one can anyway bound the

hardness-to-round (the bounds are, admittedly, rather large but calculations with that precision is

feasible).

4.6.2 Correct rounding also comes with the cost of more complex algorithms. I am not sure whether
this is beneficial for the design of formal proofs.

Formal proof loves uniqueness of results !

4.6.3 Question 3.1.5 also falls into the “How” category.

5 AT WHAT COST?
It is important to make a clear distinction between the cost of designing the correctly-rounded

function evaluation algorithms (which is essentially the cost of solving the table maker’s dilemma for

the function under consideration) and the cost of running the algorithm once it has been designed.

The former is large, as one might expect after reading Sections 4.3 and 4.4, but the corresponding

work is done once and for all. On contrary the function evaluation programs (especially for very

frequent functions such as exp or cos) will be run billions of times, and they are simple and fast.

5.1 Search for bad or worst cases - bounding the hardness to round from above
5.1.1 Binary32 format. The table maker’s dilemma in binary32 is easily solved for a given univariate

function by an exhaustive computation in a few hours on a modern laptop.

5.1.2 Binary64 format. The SLZ algorithm is implemented in the BaCSeL software tool [28], which

is multi-threaded and can thus be run efficiently on a processor with several cores. In Figure 2, we

algorithm exp cbrt

SLZ 2.2 hours (20.3) 2.0 hours (20.6)

Fig. 2. Time to searchm = 44 worst cases in binary64 for ex and x1/3 using BaCSeL on a 64-core AMD EPYC
7282, for 1/2 ⩽ x < 1. BaCSeL was compiled with the AUTOMATIC flag. Values in parentheses indicate the
average log-2 size of sub-intervals, for example 20.3 corresponds to sub-intervals of 1, 300, 000.

see that for the binary64 format, a full binade can be checked in a few hours on a 64-core processor.

Given the fact that for some functions like ex and x1/3, only a few binades need to be checked (for

ex , one gets underflow or overflow for |x | > 745, and for x1/3, worst cases in [2e+3k−1, 2e+3k ) are
those in [2e−1, 2e ) multiplied by 2

k
, thus only three binades need to be checked), the total time to

check a binary64 function goes usually from a few hours for x1/3 to a few days. As an example,

Table 5, extracted from [53] gives the hardest-to-round points for functions ln(x) and ln(1 + x) in
binary64 arithmetic.

In view of this data, the table maker’s dilemma can be considered as solved for the binary64

format for univariate functions; known worst cases for the binary64 format are available on

Lefèvre’s page https://www.vinc17.net/research/testlibm/ and in the CORE-MATH source code

(for example https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/exp/exp.wc

for the exp function). The latter also providesm-bad cases withm = 44 for several functions (with

a restricted range for some trigonometric functions: as we are writing these lines, worst cases

for cos(x) and sin(x) are known only for |x | ⩽ 2
11
, and worst cases for tan(x) are known only for

|x | ⩽ 10.5π ).

https://www.vinc17.net/research/testlibm/
https://gitlab.inria.fr/core-math/core-math/-/blob/master/src/binary64/exp/exp.wc
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Function Domain Argument Truncated result Trailing bits

ln

[
2
−1074, 2−1

) 1.EA71D85CEE020P-509 -1.60296A66B42FFP8 1 1
60
0000 · · ·

1.9476E304CD7C7P-384 -1.09B60CAF47B35P8 1 0
60
1010 · · ·

1.26E9C4D327960P-232 -1.4156584BCD084P7 0 0
60
1001 · · ·

1.613955DC802F8P-35 -1.7F02F9BAF6035P4 0 1
60
0011 · · ·[

2
−1, 21

)
1.BADED30CBF1C4P-1 -1.290EA09E36478P-3 1 1

54
0110 · · ·[

2
1, 21024

) 1.C90810D354618P245 1.54CD1FEA76639P7 1 1
63
0101 · · ·

1.62A88613629B6P678 1.D6479EBA7C971P8 0 0
64
1110 · · ·

ln(1 + x)

(
2
−51, 21024

)
1.8000000000003P-50 1.7FFFFFFFFFFFEP-50 1 0

99
1000 · · ·(

−1,−2−51
]

-1.7FFFFFFFFFFFDP-50 -1.8000000000001P-50 0 1
99
0110 · · ·

Table 5. Non trivial hardest-to-round points for functions ln(x) and ln(1 + x) [53]. The values given here suffice
to round functions ln(x) and ln(1 + x) correctly in the full binary64/double-precision range (when |x | ⩽ 2

−51, the
correct rounding of ln(1 + x) can be obtained using the technique presented in Section 4.2.1).

5.1.3 Binary128 format. In Figure 3, we compare the performances of the SLZ and BH algorithms

when tackling the determination of 5p-bad cases over a binade. One can notice a reasonable

computation time, opening the way to guaranteed implementation of Ziv’s strategy for univariate

functions over a restricted range, containing the most commonly used binades.

SLZ BH

305 years 445 days

Fig. 3. Time to search 5p worst cases of ex for x ∈ [1/4, 1/2] for quadruple precision on a Core i7-8700 at
3.20GHz. The SLZ time is obtained with BaCSeL parameters d = 16, α = 5, t = 76; the BH time is obtained
with ρ = 536870912, t = 88.5, n1 = 58, n2 = 3.

Even though these computation times may seem important, it should be noted that all the

underlying algorithms are embarrassingly parallel, and the corresponding computations can be

distributed over a large number of cores / processors / machines in order to reduce the real

computation time.

5.1.4 Formal verification. The cost of the certificate-based approach has been evaluated in [50].

The actual running time in Coq highly depends on the underlying arithmetic chosen, but also

on the parameter choices. For binary64, checking SLZ-based certificates proving that hardness

to round for exp is ⩽ 247 bits took less than one day on an 8-core Xeon X5550 at 2.67GHz, and

that each certificate takes 6 more times to generate than to check. It should however be noted

that in those experiments, parameter choices have been biased towards harder generation / easier

verification.

5.2 Cost of the function evaluation algorithms
The function evaluation algorithms used in libraries such as CRLibm or CORE-MATH (see Sec-

tion 6) are based on Ziv’s strategy, presented in Section 4.1, with the first polynomial approxi-

mations tailored so that the probability of not returning a correctly-rounded result from these

first approximations is small (say, of the order of 10
−2
). The number of coefficients of these first

approximations is comparable to those used in the good current libraries. The direct consequence

of this is that the cost of the CORE-MATH library in terms of latency is on average very similar

to the cost of the good (but not correctly-rounded) current math libraries (figures are given at
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https://core-math.gitlabpages.inria.fr). The energy cost will essentially be the cost of the range

reduction and the first polynomial evaluation, so it will also be more or less the same as the other

libraries.

There is still a small theoretical overhead between a correctly-rounded function and a function

that returns a result within 1 ulp:

• a correctly-rounded function needs a fast path with about p + 10 correct bits, where p is

the target precision, so that the accurate path is called with small probability (say 0.1%). In

contrast, a function aiming at 1 ulp accuracy can deliver only about p correct bits;

• the rounding test costs a few cycles. For a correctly-rounded function, this test is required to

decide whether the accurate path is needed.

With clever algorithms and coding, this theoretical overhead can be made quite small. But, starting

from a correctly-rounded function, if one disables the rounding test and returns the value of the

fast path, one will always get a faster routine. Incidentally, if one wishes to implement for each

function two versions, a correctly-rounded one and a “fast” one – for instance for high-throughput

vector calculations, this disabling might well be the right solution.

5.3 Answers to some usual questions
5.3.1 The cost (delay, memory) of correct rounding is too high.
With a good choice of the accuracy of the first, “fast” step of Ziv’s strategy, the average cost of

correct rounding is only slightly more than the cost of that fast step (i.e., essentially the same as

the cost of the other math libraries).

5.3.2 OK, I understand that on average the cost of correct rounding can be made reasonable, but the
worst case cost is too large (and for real-time applications, one has to consider worst case delays).
Examples with the CORE-MATH library [64] show that the worst case delays can be made reason-

able. We do not require that correctly-rounded functions should be the only available functions: if

really the additional delay is not acceptable, a possible solution is to “unplug” the rounding test at

the end of the first step of Ziv’s strategy (i.e., to perform the first step only).

5.3.3 You will not be able to do correct rounding in a reasonable delay for vector applications.
Same answer as for the previous question.

5.3.4 You have invested a lot of expertise and time in designing correctly-rounded routines, if you
had invested the same amount in non correctly-rounded routines, what would be the speedup?
As said above, the delay is on average slightly more than the delay of the first step. And because

of this, it is that step that receives much optimization effort. An optimized not-correctly-rounded

routine would essentially be that first step. So in a way we do have invested the same amount of

expertise and time in designing non correctly-rounded routines.

5.3.5 Correctly-rounded routines are more complex to maintain. How will you be able to maintain
them?
Precisely for the reason given in the answer to the previous question, the largest effort is on the

first step. Hence, correctly-rounded routines are not much more complex to maintain.

5.3.6 Correct rounding comes with the cost of having to compute with a larger intermediate precision
than necessary. Even when this cost is only about 10%, this still leads to a huge waste of energy
whenever correct rounding is not needed.
Concerning energy consumption, what matters is the average consumption of a function call. So it

is roughly the same as for the other (non correctly-rounded) libraries.

https://core-math.gitlabpages.inria.fr
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6 EXISTING CORRECTLY-ROUNDED IMPLEMENTATIONS
We list here implementations yielding correct-rounding of mathematical functions for the IEEE 754

binary formats. For each implementation we mention whether it is still maintained or not, which

IEEE formats and rounding modes it supports, which functions it provides (as of January 2024),

and whether the algorithms are documented. Unless stated otherwise, when the algorithms are

documented, correct rounding is obtained with Ziv’s onion peeling strategy [19].

MathLib. MathLib (also called LibUltim) is a library developed by IBM around 1990 [70]. It

provides the following IEEE double precision (binary64) functions: acos, asin, atan, atan2, exp,

exp2, log, log2, cos, sin, tan, cot, pow. It only supports rounding to nearest-even. Some high-level

algorithms are described in [70]. MathLib is no longer maintained, but it was integrated in GNU

libc version 2.27 (2018), except acos, exp2, log2 and cot. After GNU libc 2.27, the “accurate path”

was removed by the GNU libc developers because it was too slow for some corner-case inputs (for

example up to 440,000 cycles for the binary64 power function, using 768-bit arithmetic). No bug is

known. A non-official copy is available from https://github.com/dreal-deps/mathlib.

LIBMCR. LIBMCR was developed by Sun Microsystems until 2004. It also targets only double

precision (binary64) and rounding to nearest-even. It provides the following functions: exp, log,

pow, atan, sin, cos, tan. Algorithms are not detailed. Some tests with the power function reveal

several issues [29]. First, for some inputs it does not terminate. Secondly, for some inputs, it gives a

result which is far from the correct one. A non-official copy is available from https://github.com/

simonbyrne/libmcr.

CRLibm. CRLibm was developed by the Arenaire team in the LIP Laboratory (Lyon, France) until

2006 [17]. It provides the following binary64 functions: exp, expm1, log, log1p, log2, log10, sin, cos,

tan, asin, acos, atan, sinh, cosh, sinpi, cospi, tanpi, atanpi, and pow. For each function, there are four

entry points corresponding to the four IEEE rounding modes (at that time rounding to nearest-away

was not yet standardized). For example for the exponential function: exp_rn, exp_rz, exp_ru,
exp_rd for rounding to nearest-even, towards zero, towards +∞ and towards −∞ respectively.

CRLibm assumes the rounding precision is set to double, and the processor rounding mode is set

to nearest-even. CRLibm makes use of modern instructions like the fused-multiply add (FMA), it

benefits from the knowledge of hardest-to-round cases, thus has a better tuning of the accurate

path, which uses triple-double arithmetic. For example, for the double-precision exp function, [17]

reports a maximal/average time ratio of 6500 for MathLib, against only 6.6 for CRLibm. CRLibm is

no more maintained, but a non-official copy is available from https://github.com/taschini/crlibm.

RLIBM. RLIBM is developed by the group of Santosh Nagarakatte (Rutgers University). It provides

only single-precision (binary32) functions: acos, asin, atan, cos, cosh, cospi, exp, exp10, exp2, log,

log10, log2, sin, sinh, sinpi, tan. It supports all IEEE rounding modes. In addition to IEEE formats, it

also provides routines for posits. The originality of RLIBM is that it uses a new approach based on

linear programming, to find polynomials that yield correct rounding [44]. However, it is not clear

whether that new approach scales for larger precisions. The code and an extensive bibliography is

available from https://people.cs.rutgers.edu/~sn349/rlibm/.

LLVM libc. LLVM libc is the C library that comes with the LLVM compiler, supported by Google.

It contains a mathematical library, whose aim is to provide only correctly-rounded functions, for

all IEEE rounding modes. It provides all single-precision functions from the C99 standard (except

atan2, cbrt, erfc), and a few double-precision functions (exp, exp2, exp10, expm1, hypot, log, log10,

log1p, log2). For some single precision functions, LLVM uses polynomials generated by the RLIBM

https://github.com/dreal-deps/mathlib
https://github.com/simonbyrne/libmcr
https://github.com/simonbyrne/libmcr
https://github.com/taschini/crlibm
https://people.cs.rutgers.edu/~sn349/rlibm/
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developers. Except for the binary64 hypot function, its efficiency is within a factor of two of the

GNU libc and/or the Intel library. The code is available from https://libc.llvm.org/.

CORE-MATH. CORE-MATH is not a real mathematical library, but more a set of stand-alone

correctly-rounded routines that can be integrated into mathematical libraries, or directly used in

specific applications. It provides all binary32 and binary64 functions from the C99 standard, and

also the new functions from the C23 standard. CORE-MATH supports all four IEEE rounding modes

available in the C language. Algorithms are detailed either as comments in the source code, or as

scientific publications [29]. Most routines use a “fast path” that delivers about p + 13 extra bits for
a target precision of p bits, with a rigorous error bound, then a “rounding test” yields the correct

rounding for 99% of the inputs, and in case the rounding test fails, an “accurate path” delivers an

approximation with about 2p correct bits. The hardest-to-round cases for which the accurate path

would deliver a wrong result are treated separately; there are very few such “exceptional cases”. The

code and an extensive bibliography is available from https://core-math.gitlabpages.inria.fr/, where

one can also find a comparison of the efficiency with respect to other libraries. The CORE-MATH

code also contains large tables of hardest-to-round inputs, generated with the BaCSeL software

tool [28]. These tables are used to check the correctness of the CORE-MATH routines, but can also

be used to check the correctness of other libraries. Like LLVM libc, the efficiency of CORE-MATH

is within a factor of two of the GNU libc and/or the Intel library, and for some functions it is even

faster.

GNU MPFR. Though it is not focused on IEEE formats, we also mention the MPFR library since

it helped popularizing correct-rounding evaluation and it is also a useful verification tool for the

libraries mentioned above. GNU MPFR is an arbitrary precision library with correct rounding.

To emulate some IEEE 754 format, one has to use the corresponding precision, and so set the

corresponding exponent range. MPFR does not have subnormal numbers, but they can be emulated

with the mpfr_subnormalize function.

CONCLUSION AND RECOMMENDATION
Knowledge of the hardest to round cases for the common unary functions in binary64 arithmetic,

as well as the existence of efficient correctly-rounded implementations for these functions, leads

us to believe that there are no longer reasons not to require correct rounding of these functions

in the binary16, binary32, and binary64 formats. We understand that high throughput vector

computations may be penalized by the tests required when running correctly-rounded function

programs: therefore we suggest that, along with the correctly-rounded version, a faster version of

the functions may be available. Our suggestion is therefore:

In the binary16 and binary32 formats, correctly-rounded implementations of the
functions

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
log(x), log

2
(x), log

10
(x), log(1 + x), log

2
(1 + x), log

10
(1 + x),

1/
√
x, sin(πx), cos(πx), tan(πx), arcsin(x)/π , arccos(x)/π , arctan(x)/π ,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x),
sinh(x), cosh(x), tanh(x), arcsinh(x), arccosh(x), arctanh(x)√

x2 + y2, xy , arctan(y/x)/π , arctan(y/x)

shall be provided. Along with these correctly-rounded implementations, other, possibly
faster, implementations may be provided.

https://libc.llvm.org/
https://core-math.gitlabpages.inria.fr/
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In the binary64 format, correctly-rounded implementations of the 1-variable functions

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
log(x), log

2
(x), log

10
(x), log(1 + x), log

2
(1 + x), log

10
(1 + x),

1/
√
x, sin(πx), cos(πx), tan(πx), arcsin(x)/π , arccos(x)/π , arctan(x)/π ,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x),
sinh(x), cosh(x), tanh(x), arcsinh(x), arccosh(x), arctanh(x)

shall be provided (at least, for the sine and cosine functions, for |x | ⩽ 2
11, and for the

tan function, for x ⩽ 10.5π ). Along with these correctly-rounded implementations,
other, possibly faster, implementations may be provided.

In all other cases (decimal formats, binary128, 2-variable functions in binary64), correct rounding

is still desirable, but since the worst cases are not known, we can only use bounds on the hardness-

to-round, obtained using the techniques presented in this paper. This may lead to implementations

that are slower in (extremely rare!) bad cases. We therefore suggest that for these formats and

functions, correct rounding should be recommended, but not required. This gives,

In all other cases, correct rounding of the functions

ex , ex − 1, 2x , 2x − 1, 10x , 10x − 1,
log(x), log

2
(x), log

10
(x), log(1 + x), log

2
(1 + x), log

10
(1 + x),

1/
√
x, sin(πx), cos(πx), tan(πx), arcsin(x)/π , arccos(x)/π , arctan(x)/π ,

sin(x), cos(x), tan(x), arcsin(x), arccos(x), arctan(x),
sinh(x), cosh(x), tanh(x), arcsinh(x), arccosh(x), arctanh(x)√

x2 + y2, xy , arctan(y/x)/π , arctan(y/x)

should be provided. Along with these correctly-rounded implementations, other, possi-
bly faster, implementations may be provided.

ACKNOWLEDGMENTS
Many colleagues and students contributed over the years to these questions, by working on the

theory of the table maker’s dilemma, writing software for solving the TMD or writing function

programs, running tests, writing formal proofs, or giving advice. We are especially grateful to

Sylvie Boldo, Sylvain Chevillard, Catherine Daramy, David Defour, Florent de Dinechin, Pierre

Fortin, Mourad Gouicem, Stef Graillat, Tom Hubrecht, Claude-Pierre Jeannerod, Mioara Joldes,

Christoph Lauter, Vincent Lefèvre, Erik Martin-Dorel, Micaela Mayero, Guillaume Melquiond,

Laurence Rideau, Mike Schulte, Alexei Sibidanov, Damien Stehlé, Earl Swartzlander, Laurent Théry,

Arnaud Tisserand and Serge Torres.

REFERENCES
[1] Dong H. Ahn, Allison H. Baker, Michael Bentley, Ian Briggs, Ganesh Gopalakrishnan, Dorit M. Hammerling, Ignacio

Laguna, Gregory L. Lee, Daniel J. Milroy, and Mariana Vertenstein. 2021. Keeping Science on Keel When Software

Moves. Commun. ACM 64, 2 (2021), 66–74. https://doi.org/10.1145/3382037

[2] Peter Ahrens, James Demmel, and Hong Diep Nguyen. 2020. Algorithms for Efficient Reproducible Floating Point

Summation. ACM Trans. Math. Software 46, 3, Article 22 (2020), 49 pages. https://doi.org/10.1145/3389360

[3] Valérie Berthé and Laurent Imbert. 2009. Diophantine Approximation, Ostrowski Numeration and the Double-Base

Number System. Discrete Math. Theor. Comput. Sci. 11, 1 (2009), 153–172. http://dmtcs.episciences.org/450

[4] C. M. Black, R. P. Burton, and T. H. Miller. 1984. The Need for an Industry Standard of Accuracy for Elementary-Function

Programs. ACM Trans. Math. Software 10, 4 (Dec. 1984), 361–366.
[5] Sylvie Boldo, Claude-Pierre Jeannerod, Guillaume Melquiond, and Jean-Michel Muller. 2023. Floating-Point Arithmetic.

Acta Numer. 32 (2023), 203–290. https://doi.org/10.1017/S0962492922000101

[6] Nicolas Brisebarre and Guillaume Hanrot. 2023. Integer points close to a transcendental curve and correctly-rounded

evaluation of a function. (2023). https://hal.science/hal-03240179 working paper or preprint.

https://doi.org/10.1145/3382037
https://doi.org/10.1145/3389360
http://dmtcs.episciences.org/450
https://doi.org/10.1017/S0962492922000101
https://hal.science/hal-03240179


Correctly-rounded evaluation of a function: why, how, and at what cost? 23

[7] Nicolas Brisebarre, Guillaume Hanrot, and Olivier Robert. 2017. Exponential Sums and Correctly-Rounded Functions.

IEEE Trans. Comput. 66, 12 (2017), 2044–2057. https://doi.org/10.1109/TC.2017.2690850

[8] Nicolas Brisebarre and Jean-Michel Muller. 2007. Correct rounding of algebraic functions. Theor. Inform. Appl. 41, 1
(2007), 71–83. https://doi.org/10.1051/ita:2007002

[9] C Working Group. 2023. Programming Languages – C, Working draft. Available at https://www.open-std.org/jtc1/sc22/

wg14/www/docs/n3096.pdf.

[10] Sylvain Chevillard, Mioara Joldeş, and Christoph Lauter. 2010. Sollya: An environment for the development of

numerical codes. In International Congress on Mathematical Software. Springer, 28–31.
[11] W. Cody and W. Waite. 1980. Software Manual for the Elementary Functions. Prentice-Hall, Englewood Cliffs, NJ.

[12] W. J. Cody. 1971. Software for the Elementary Functions. In Mathematical Software, John R. Rice (Ed.). Academic Press,

171–186.

[13] William J. Cody. 1980. Implementation and Testing of Function Software. In Problems andMethodologies in Mathematical
Software Production, International Seminar. Springer-Verlag, Berlin, Heidelberg, 24–47.

[14] Don Coppersmith. 1997. Small Solutions to Polynomial Equations, and Low Exponent RSA Vulnerabilities. J. Cryptology
10, 4 (1997), 233–260. https://doi.org/10.1007/s001459900030

[15] Don Coppersmith. 2001. Finding Small Solutions to Small Degree Polynomials. In Proceedings of Cryptography and
Lattices (CaLC) (Lecture Notes in Computer Science), J. H. Silverman (Ed.), Vol. 2146. Springer-Verlag, Berlin, 20–31.

[16] M. F. Cowlishaw. 2003. Decimal Floating-Point: algorism for Computers. In Proceedings of the 16th IEEE Symposium on
Computer Arithmetic (ARITH-16), Bajard and Schulte (Eds.). IEEE Computer Society Press, Los Alamitos, CA, 104–111.

[17] C. Daramy-Loirat, D. Defour, F. de Dinechin, M. Gallet, N. Gast, C. Q. Lauter, and J.-M. Muller. 2006. CR-LIBM, A
library of correctly-rounded elementary functions in double-precision. Technical Report. LIP Laboratory, Arenaire team,

Available at https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.18beta1.pdf.

[18] Florent de Dinechin, Christoph Lauter, and Guillaume Melquiond. 2011. Certifying the Floating-point Implementation

of an Elementary Function Using Gappa. Transactions on Computers 60, 2 (2011), 242–253. https://doi.org/10.1109/TC.

2010.128

[19] Florent de Dinechin, Christoph Lauter, and Jean-Michel Muller. 2007. Fast and correctly rounded logarithms in

double-precision. Theor. Inform. Appl. 41, 1 (2007), 85–102. https://doi.org/10.1051/ita:2007003

[20] Florent de Dinechin, Christoph Lauter, Jean-Michel Muller, and Serge Torres. 2013. On Ziv’s Rounding Test. ACM
Trans. Math. Software 39, 4, Article 25 (July 2013), 19 pages. https://doi.org/10.1145/2491491.2491495

[21] Florent De Dinechin, Jean-Michel Muller, Bogdan Pasca, and Alexandru Plesco. 2011. An FPGA architecture for solving

the Table Maker’s Dilemma. In Application-Specific Systems, Architectures and Processors (ASAP), 2011 IEEE International
Conference on. IEEE Computer Society, Santa Monica, United States, 187–194. https://doi.org/10.1109/ASAP.2011.

6043267

[22] C. B. Dunham. 1990. Feasibility of “Perfect” Function Evaluation. SIGNUM Newsletter 25, 4 (Oct. 1990), 25–26.
[23] N. I. Fel’dman. 1971. An effective power sharpening of a theorem of Liouville. Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971),

973–990.

[24] S. Gal and B. Bachelis. 1991. An Accurate Elementary Mathematical Library for the IEEE Floating Point Standard.

ACM Trans. Math. Software 17, 1 (March 1991), 26–45.

[25] Amparo Gil, Javier Segura, and Nico M. Temme. 2011. Basic Methods for Computing Special Functions. In Recent
Advances in Computational and Applied Mathematics, Theodore E. Simos (Ed.). Springer Netherlands, Dordrecht,

67–121.

[26] D. Goldberg. 1991. What Every Ccomputer Scientist Should Know About Floating-Point Arithmetic. http://docs.oracle.

com/cd/E19957-01/806-3568/ncg_goldberg.html. Comput. Surveys 23 (March 1991), 5–48.

[27] Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. 2007. Worst Cases of a Periodic Function

for Large Arguments. In 18th IEEE Symposium on Computer Arithmetic (ARITH-18 2007), 25-27 June 2007, Montpellier,
France. IEEE Computer Society, 133–140. https://doi.org/10.1109/ARITH.2007.37

[28] Guillaume Hanrot, Vincent Lefèvre, Damien Stehlé, and Paul Zimmermann. 2020. BaCSeL. https://gitlab.inria.fr/

zimmerma/bacsel. Version 4.0.

[29] Tom Hubrecht, Claude-Pierre Jeannerod, and Paul Zimmermann. 2023. Towards a correctly-rounded and fast power

function in binary64 arithmetic. In 2023 IEEE 30th Symposium on Computer Arithmetic (ARITH 2023), Vol. 2023 IEEE 30th

Symposium on Computer Arithmetic (ARITH). Portland, Oregon (USA), United States. https://inria.hal.science/hal-

04326201

[30] IEEE. 2019. IEEE Standard for Floating-Point Arithmetic (IEEE Std 754-2019). 1–84 pages. https://doi.org/10.1109/

IEEESTD.2019.8766229 Available at https://ieeexplore.ieee.org/servlet/opac?punumber=8766227.

[31] Vincenzo Innocente and Paul Zimmermann. 2023. Accuracy of Mathematical Functions in Single, Double, Extended

Double and Quadruple Precision. (2023). https://hal.inria.fr/hal-03141101 working paper or preprint, available at

https://hal.inria.fr/hal-03141101.

https://doi.org/10.1109/TC.2017.2690850
https://doi.org/10.1051/ita:2007002
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3096.pdf
https://www.open-std.org/jtc1/sc22/wg14/www/docs/n3096.pdf
https://doi.org/10.1007/s001459900030
https://lipforge.ens-lyon.fr/frs/download.php/99/crlibm-0.18beta1.pdf
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1109/TC.2010.128
https://doi.org/10.1051/ita:2007003
http://doi.acm.org/10.1145/2491491.2491495
https://doi.org/10.1145/2491491.2491495
https://doi.org/10.1109/ASAP.2011.6043267
https://doi.org/10.1109/ASAP.2011.6043267
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
http://docs.oracle.com/cd/E19957-01/806-3568/ncg_goldberg.html
https://doi.org/10.1109/ARITH.2007.37
https://gitlab.inria.fr/zimmerma/bacsel
https://gitlab.inria.fr/zimmerma/bacsel
https://inria.hal.science/hal-04326201
https://inria.hal.science/hal-04326201
https://doi.org/10.1109/IEEESTD.2019.8766229
https://doi.org/10.1109/IEEESTD.2019.8766229
https://ieeexplore.ieee.org/servlet/opac?punumber=8766227
https://hal.inria.fr/hal-03141101
https://hal.inria.fr/hal-03141101


24 Nicolas Brisebarre, Guillaume Hanrot, Jean-Michel Muller, and Paul Zimmermann

[32] C. Iordache and D. W. Matula. 1999. On Infinitely Precise Rounding for Division, Square Root, Reciprocal and Square

Root Reciprocal. In Proceedings of the 14th IEEE Symposium on Computer Arithmetic (Adelaide, Australia), Koren and

Kornerup (Eds.). IEEE Computer Society Press, Los Alamitos, CA, 233–240.

[33] Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. 2017. Tight and Rigorous Error Bounds for Basic Building

Blocks of Double-Word Arithmetic. ACM Trans. Math. Software 44, 2 (2017). https://doi.org/10.1145/3121432

[34] W. Kahan. 1981. Why do we Need a Floating-Point Standard? Technical Report. Computer Science, UC Berkeley.

Available at https://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf.

[35] W. Kahan. 2004. A Logarithm Too Clever by Half. (2004). Available at http://http.cs.berkeley.edu/~wkahan/LOG10HAF.

TXT.

[36] Samy Khémira and Paul Voutier. 2011. Approximation diophantienne et approximants de Hermite-Padé de type I de

fonctions exponentielles. Ann. Sci. Math. Québec 35, 1 (2011), 85–116.
[37] Samy Khémira. 2005. Approximants de Hermite-Padé, déterminants d’interpolation et approximation diophantienne.

Ph.D. Dissertation. Université Paris 6, Paris, France. https://tel.archives-ouvertes.fr/tel-00657843

[38] T. Lang and J.-M. Muller. 2001. Bound on Run of Zeros and Ones for Algebraic Functions. In Proceedings of the 15th
IEEE Symposium on Computer Arithmetic (ARITH-16), N. Burgess and L. Ciminiera (Eds.). 13–20.

[39] C. Q. Lauter and V. Lefèvre. 2009. An Efficient Rounding Boundary Test for pow(x , y) in Double Precision. IEEE Trans.
Comput. 58, 2 (Feb. 2009), 197–207.

[40] V. Lefèvre. 2000. Moyens Arithmétiques Pour un Calcul Fiable. Ph.D. Dissertation. École Normale Supérieure de Lyon,

Lyon, France.

[41] V. Lefèvre. 2005. New Results on the Distance Between a Segment and Z2. Application to the Exact Rounding. In

Proceedings of the 17th IEEE Symposium on Computer Arithmetic (ARITH-17). IEEE Computer Society Press, Los Alamitos,

CA, 68–75.

[42] V. Lefèvre and J.-M. Muller. 2001. Worst Cases for Correct Rounding of the Elementary Functions in Double Precision.

In Proceedings of the 15th IEEE Symposium on Computer Arithmetic (ARITH-16), N. Burgess and L. Ciminiera (Eds.). Vail,

CO, 111–118. https://doi.org/10.1109/ARITH.2001.930110

[43] V. Lefèvre, J.-M. Muller, and A. Tisserand. 1997. Towards Correctly Rounded Transcendentals. In Proceedings of the
13th IEEE Symposium on Computer Arithmetic. IEEE Computer Society Press, Los Alamitos, CA, 132–137.

[44] Jay P. Lim and Santosh Nagarakatte. 2021. High performance correctly rounded math libraries for 32-bit floating

point representations. In PLDI’21: 42nd ACM SIGPLAN International Conference on Programming Language Design and
Implementation, Virtual Event, Stephen N. Freund and Eran Yahav (Eds.). ACM, 359–374. https://doi.org/10.1145/

3453483.3454049

[45] J. Liouville. 1844. Nouvelle démonstration d’un théorème sur les irrationnelles algébriques. C. R. Acad. Sci. Paris 18
(1844), 910–911.

[46] J. Liouville. 1844. Remarques relatives à des classes très-étendues de quantités dont la valeur n’est ni algébrique ni

même réductible à des irrationnelles algébriques. C. R. Acad. Sci. Paris 18 (1844), 883–885.
[47] J. Liouville. 1851. Sur des classes très étendues de quantités dont la valeur n’est ni algébrique ni même réductible à des

irrationnelles algébriques. J. Math. Pures Appl. 16 (1851), 133–142.
[48] Julien Le Maire, Nicolas Brunie, Florent de Dinechin, and Jean-Michel Muller. 2016. Computing floating-point

logarithms with fixed-point operations. In 23nd IEEE Symposium on Computer Arithmetic, ARITH 2016, Silicon Valley,
CA, USA, July 10-13, 2016, Paolo Montuschi, Michael J. Schulte, Javier Hormigo, Stuart F. Oberman, and Nathalie Revol

(Eds.). IEEE Computer Society, 156–163. https://doi.org/10.1109/ARITH.2016.24

[49] P. Markstein. 2000. IA-64 and Elementary Functions: Speed and Precision. Prentice-Hall, Englewood Cliffs, NJ.

[50] Érik Martin-Dorel, Guillaume Hanrot, Micaela Mayero, and Laurent Théry. 2015. Formally Verified Certificate Checkers

for Hardest-to-Round Computation. J. Autom. Reason. 54, 1 (2015), 1–29. https://doi.org/10.1007/s10817-014-9312-2

[51] James D. Mooney. 2004. Developing Portable Software. In Information Technology, Ricardo Reis (Ed.). Springer US,

Boston, MA, 55–84.

[52] Jean-Michel Muller and Laurence Rideau. 2022. Formalization of Double-Word Arithmetic, and Comments on "Tight

and Rigorous Error Bounds for Basic Building Blocks of Double-Word Arithmetic". ACM Trans. Math. Software 48, 1
(2022), 9:1–9:24. https://doi.org/10.1145/3484514

[53] J.-M. Muller. 2016. Elementary Functions, Algorithms and Implementation (3rd ed.). Birkhäuser, Boston.

[54] Jean-Michel Muller, Nicolas Brisebarre, Florent de Dinechin, Claude-Pierre Jeannerod, Vincent Lefèvre, Guillaume

Melquiond, Nathalie Revol, Damien Stehlé, and Serge Torres. 2010. Handbook of Floating-Point Arithmetic. Birkhäuser.
572 pages.

[55] Jean-Michel Muller, Nicolas Brunie, Florent de Dinechin, Claude-Pierre Jeannerod, Mioara Joldeş, Vincent Lefèvre,

Guillaume Melquiond, Nathalie Revol, and Serge Torres. 2018. Handbook of Floating-Point Arithmetic. Birkhäuser. 627
pages.

https://doi.org/10.1145/3121432
https://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf
http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT
http://http.cs.berkeley.edu/~wkahan/LOG10HAF.TXT
https://hal.archives-ouvertes.fr/tel-00009653
https://tel.archives-ouvertes.fr/tel-00657843
ftp://ftp.ens-lyon.fr/pub/LIP/Rapports/RR/RR1999/RR1999-06.ps.Z
https://doi.org/10.1109/ARITH.2001.930110
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1145/3453483.3454049
https://doi.org/10.1109/ARITH.2016.24
https://doi.org/10.1007/s10817-014-9312-2
https://doi.org/10.1145/3484514
https://www.springer.com/birkhauser/mathematics/book/978-0-8176-4704-9
http://www.springer.com/birkhauser/mathematics/book/978-3-319-76526-6


Correctly-rounded evaluation of a function: why, how, and at what cost? 25

[56] Y. V. Nesterenko and M. Waldschmidt. 1996. On the approximation of the values of exponential function and logarithm

by algebraic numbers (in Russian). Mat. Zapiski 2 (1996), 23–42. Available in English at https://arxiv.org/abs/math/

0002047.

[57] M. L. Overton. 2001. Numerical Computing with IEEE Floating-Point Arithmetic. SIAM, Philadelphia, PA.

[58] George Paul and M. Wayne Wilson. 1976. Should the elementary function library be incorporated into computer

instruction sets? ACM Trans. Math. Software 2, 2 (1976), 132–142.
[59] D. Piparo and V. Innocente. 2016. The CptnHook Profiler - A tool to investigate usage patterns of mathematical

functions. Journal of Physics: Conference Series 762, 1 (2016), 012038. https://doi.org/10.1088/1742-6596/762/1/012038

[60] D. Ridout. 1957. Rational approximations to algebraic numbers. Mathematika 4 (1957), 125–131. https://doi.org/10.

1112/S0025579300001182

[61] K. F. Roth. 1955. Rational Approximations to Algebraic Numbers. Mathematika 2 (1955), 1–20.
[62] Siegfried M. Rump. 2010. Verification methods: Rigorous results using floating-point arithmetic. Acta Numerica 19

(2010), 287–449. https://doi.org/10.1017/S096249291000005X

[63] M. J. Schulte and E. E. Swartzlander. 1993. Exact rounding of certain elementary functions. In Proceedings of the 11th
IEEE Symposium on Computer Arithmetic, E. E. Swartzlander, M. J. Irwin, and G. Jullien (Eds.). IEEE Computer Society

Press, Los Alamitos, CA, 138–145.

[64] Alexei Sibidanov, Paul Zimmermann, and Stéphane Glondu. 2022. The CORE-MATH Project. In 29th IEEE Symposium
on Computer Arithmetic. Preprint available at https://hal.inria.fr/hal-03721525.

[65] D. Stehlé. 2006. On the Randomness of Bits Generated by Sufficiently Smooth Functions. In Proceedings of the 7th
Algorithmic Number Theory Symposium, ANTS VII (Lecture Notes in Computer Science), F. Hess, S. Pauli, and M. E.

Pohst (Eds.), Vol. 4076. Springer-Verlag, Berlin, 257–274.

[66] D. Stehlé, V. Lefèvre, and P. Zimmermann. 2005. Searching Worst Cases of a One-Variable Function Using Lattice

Reduction. IEEE Trans. Comput. 54, 3 (March 2005), 340–346.

[67] Serge Torres. 2016. Tools for the Design of Reliable and Efficient Functions Evaluation Libraries. Ph.D. Dissertation. École
normale supérieure de Lyon – Université de Lyon, Lyon, France. https://tel.archives-ouvertes.fr/tel-01396907

[68] Lauriane Turelier. 2022. Extension of the SLZ algorithm to bivariate functions. Research Report. INRIA Nancy.

https://inria.hal.science/hal-03740209

[69] Michel Waldschmidt. 2000. Diophantine approximation on linear algebraic groups. Grundlehren der Mathematischen

Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 326. Springer-Verlag, Berlin. xxiv+633 pages.

https://doi.org/10.1007/978-3-662-11569-5 Transcendence properties of the exponential function in several variables.

[70] A. Ziv. 1991. Fast evaluation of elementary mathematical functions with correctly rounded last bit. ACM Trans. Math.
Software 17, 3 (Sept. 1991), 410–423.

https://arxiv.org/abs/math/0002047
https://arxiv.org/abs/math/0002047
https://doi.org/10.1088/1742-6596/762/1/012038
https://doi.org/10.1112/S0025579300001182
https://doi.org/10.1112/S0025579300001182
https://doi.org/10.1017/S096249291000005X
https://hal.inria.fr/hal-03721525
https://tel.archives-ouvertes.fr/tel-01396907
https://tel.archives-ouvertes.fr/tel-01396907
https://inria.hal.science/hal-03740209
https://doi.org/10.1007/978-3-662-11569-5


26 Nicolas Brisebarre, Guillaume Hanrot, Jean-Michel Muller, and Paul Zimmermann

A TRANSCENDENCE RESULTS
Khémira-Voutier’s theorem for exp
The exponential function is central in the study of correctly-rounded evaluation of the elementary

functions of libms: a relevant information on its hardness to round yields relevant information as

well on trigonometric and hyperbolic functions, and their respective reciprocals (see [54, §12.4.4],

Remark 4.5) the logarithm function and inverse trigonometric functions.

Following the works [56] and [37], Khémira and Voutier proved in [36] a lower bound (called

transcendence measure) for the expression

��eβ − α
��
, where α and β are algebraic numbers, β , 0.

When specialized in FP numbers, their result provides interesting upper bounds for htrexp(p).
Further, the strong relationship between exp and many functions as log, the trigonometric,

hyperbolic, inverse trigonometric and inverse hyperbolic functions allows one to deduce from their

Theorem statements applying to all those functions.

Letm and n ∈ N, we introduce the quantities

dn = l.c.m.(1, . . . ,n) and Dm,n =
m!∏

q⩽n,
q prime

qvq (m!)
,

where vq(m!) is the the largest integer k such that qk dividesm!.

Let α be an algebraic number of degree d over Q, so that the minimal polynomial over Z is

written a
∏d

i=1(X − α (i)), the roots α (i)
being complex numbers. We denote by

h(α) =
1

d

(
log |a | +

d∑
i=1

logmax

(
1,

���α (i)
���))

the absolute logarithmic height Weil of the algebraic number α .
We now state Khémira and Voutier’s Theorem in full generality.

Theorem A.1 (Theorem 1.1 from [36]). Let α and β ∈ C be two algebraic numbers, α , 0. Define
Dα ,β = [Q(α, β) : Q]/[R(α, β) : R], Aα ,β ⩾ 1,Bα ,β ⩾ 1 be such that

Dα ,βh(α) − log(max(1, |α |)) ⩽ logAα ,β ,

Dα ,βh(β) − log(max(1, |β |)) ⩽ logBα ,β .

For all integers K ⩾ 1, L ⩾ 2 and real number E > 1 such that

KL logE ⩾Dα ,βKL log 2 + Dα ,β (K − 1) log

(
e
√
3LdL−1

)
+ Dα ,β log(DK−1,L−1)

+ Dα ,β (1 + 2 log 2)(L − 1) + Dα ,β log

(
min

(
dK−1
L−2 , (L − 2)!

))
+ log((K − 1)!) (A.1)

+ (K − 1) log(Aα ,β/2) + LE |α | + L logE + (L − 1) log(Bα ,β/2),

we have | exp(α) − β | ⩾ E−KL .

This result is readily specialized to the case where α and β are both precision p floating-point

number by noting that in that case Dα ,β = 1, logAα ,β = max(0,p − 1 − eα ) log 2, logBα ,β =

max(0,p − 1 − eβ ) log 2, where eα and eβ are the respective exponents of α and β ; this gives an
estimate for the hardness to round for directed rounding modes.

Remark A.2. For the round-to-nearest rounding mode, we have to assume that α is the middle of

two consecutive FP numbers and that the numbers β and eα are in the same binade. The theorem

should then be used with max(p − 1 − eβ , 0) replaced by max(p − eβ , 0).
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We now turn to show how this result applies to other functions.

Consequences for hyperbolic and trigonometric functions
Lemma A.3. Let α , β with α , 0, |β | < 1 be two floating-point numbers in precision p. Assume that

| cos(α) − β | ⩽ ε .
Then there exist two algebraic numbers α ′, β ′ with Dα ′,β ′ = 2, logAα ′,β ′ = 2max(0,p − 1 −

eα ) log(2)+ log(max(1, |α |)) and logBα ′,β ′ = max(0,p−1−eβ ) log(2), |α ′ | = |α | such that | exp(α ′)−

β ′ | ⩽
√
2ε .

If, further, 1 − |β | ⩾ δ , we then have | exp(α ′) − β ′ | ⩽ 2ε/
√
δ .

The first part of this Lemma also holds for the sine function; the second part holds under the
assumption |β | ⩾ δ .

Proof. We write

| cosα − β | =
1

2

| exp(2iα) − 2β exp(iα) + 1| =
1

2

���exp(iα) − β + i
√
1 − β2

��� ���exp(iα) − β − i
√
1 − β2

��� .
As the product of the last two terms is at most 2ε , one of the two must be at most

√
2ε .

Put α ′ = iα , β ′ = β + si
√
1 − β2, for s ∈ {−1, 1} such that exp(α ′) − β ′

is minimal. Then, unless

1 − β2 is a perfect square (which is equivalent to β = 0, as 2
2p

is not a sum of two squares of

integers), [Q(α ′, β ′) : Q] = 4 whereas [R(α ′, β ′) : R] = 2, so Dα ′,β ′ = 2. If 1 − β2 is a perfect

square, we have Dα ′,β ′ = 1.

Further, the minimal polynomial of α ′
over Z is 2

2max(0,p−1−eα )(X 2 + α2), from which we de-

duce easily that h(α ′) = h(α); thus in all cases Dα ′,β ′h(α ′) − log(max(1, |α ′ |)) = Dα ′,β ′h(α) −
log(max(1, |α |)) ⩽ 2max(0,p − 1 − eα ) log(2) + log(max(1, |α |)).
Finally, the minimal polynomial of β ′

over Z is 2
max(0,p−1−eβ )(X 2 − 2βX + 1), and as the two

roots of this polynomial have modulus 1, h(β ′) = max(0,p − 1 − eβ ) log(2)/2; hence, Dα ′,β ′h(β ′) −

log(max(1, |β ′ |)) ⩽ max(0,p − 1 − eβ ) log(2) in all cases.

Assume now that 1 − |β | ⩾ δ ; then, |(β + i
√
1 − β2 |) − (β − i

√
1 − β2 |)| = 2

√
1 − β2 ⩾ 2

√
δ . Thus,

at least one of | exp(iα) − β + i
√
1 − β2 |, | exp(iα) − β − i

√
1 − β2 | must be ⩾

√
δ , and the other one

is ⩽ 2ε/
√
δ . We conclude as in the first case.

The proof follows the same lines for the sine function, with β ′ = s
√
1 − β2+iβ , for s ∈ {−1, 1}. □

The simplest way to use the previous Lemma is via the first inequality, which reduces directly

the problem of finding a lower bound for | cosα − β | to finding a lower bound for | exp(α ′) − β ′ |.

However, the second inequality is much more efficient in practice: over a given binade [2k , 2k+1), it
is quite easy to find the floating-point number in precision p closest to a multiple of π (resp. an

odd multiple of π/2 for the sine function, resp. to 0 for cosh), which gives a value for δ over this

interval.

Lemma A.4. Let α , β with α , 0, β ⩾ 1 be floating-point numbers in precision p. Assume that
| cosh(α) − β | ⩽ ε .
Then there exist two algebraic numbers α ′, β ′ with Dα ′,β ′ ⩽ 2, logAα ′,β ′ = max(0,p − 1 −

eα ) log(2) + log(max(1, |α |)), |α ′ | = |α |, logBα ′,β ′ = max(0,p − 1 − eβ ) log(2) + | log(2β)|, such that
| exp(α ′) − β ′ | ⩽

√
2ε .

If, further, 1 − |β | ⩾ δ , then we have | exp(α ′) − β ′ | ⩽ 2ε/
√
δ .

Proof. We have

| cosh(α) − β | =
exp(−α)

2

���exp(α) − β +
√
β2 − 1

��� ���exp(α) − β −
√
β2 − 1

��� .
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Up to changing α to −α , we can assume without loss of generality that α < 0, in which case the

product of the last two terms is again upper bounded by 2ε .

We thus take α ′ = ±α , β ′ = β ±
√
β2 − 1.

In this case, Dα ′,β ′ ⩽ 2.

Dα ′,β ′h(α ′) − log(max(|1|, |α ′ |)) ⩽ 2h(α) − log(max(|1|, |α |))

= max(0,p − 1 − eα ) log 2 + log(max(|1|, |α |)).

Further, β ′
is a root of the polynomial 2

max(0,p−1−eβ )(X 2 − 2βX − 1), which shows that h(β ′) ⩽
1

2

(
max(0,p − 1 − eβ ) log 2 + | log |β ′ | |

)
, so that

Dα ′,β ′h(β ′) − log(max(|1|, |β ′ |)) ⩽ max(0,p − 1 − eβ ) log 2 + | log |β ′ | | − log(max(1, |β ′ |))

⩽ max(0,p − 1 − eβ ) log 2 + | log(2β)|.

The second point is proved in the same way as in the previous lemma. □

Lemma A.5. Let α , β be two real numbers. Assume that | sinh(α) − β | ⩽ ε .
Then there exist two algebraic numbers α ′, β ′ with Dα ′,β ′ = 2, logAα ′,β ′ = max(−1,p − 2 −

eα ) log(2)+log(max(1, |α |) and |α ′ | = |α |, logBα ′,β ′ = max(0,p−1−eβ ) log(2)+ | log(|β |+
√
1 + β2)|,

such that | exp(α ′) − β ′ | ⩽ 4ε .

Proof. We have ε ⩾ | sinh(α) − β | =
exp(−α )

2
| exp(α) − β +

√
β2 + 1| | exp(α) − β −

√
β2 + 1|.

By a similar argument as before, we can restrict to α ⩽ 0. As the difference of the last two terms

is 2

√
β2 + 1 ⩾ 1, one of these terms is ⩾ 1/2, from which we get the result. □

We now turn to the tangent and cotangent functions.

Lemma A.6. Let α , 0, β , 0 be two floating-point numbers in precision p.
Assume that | tan(α) − β | ⩽ ε . Then there exist two algebraic numbers α ′, β ′ with Dα ′,β ′ = 1,

logAα ′,β ′ = max(0,p − 2−eα ) log 2, |α ′ | = 2|α |, logBα ′,β ′ = max(p − 1−eβ , 0) log 2+
1

2
log(1+ β2),

such that | exp(α ′) − β ′ | ⩽ 2ε . The same results holds for the cotangent function if α , 0.

Proof. We write

|tan(α) − β | =

���� exp(2iα) − 1

i(1 + exp(2iα))
− β

����
= |1 + exp(2iα)|−1 |exp(2iα) − 1 − iβ(1 + exp(2iα)|

⩾
1

2

|exp(2iα)(1 − iβ) − (1 + iβ)|

=
|1 − iβ |

2

����exp(2iα) − 1 + iβ

1 − iβ

����
⩾

1

2

����exp(2iα) − 1 + iβ

1 − iβ

���� .
We put α ′ = 2iα and β ′ = (1 + iβ)/(1 − iβ). Obviously, we have Dα ′,β ′ = 1.

The minimal polynomial of α ′
over Z is 2

2max(0,p−2−eα )(X 2 + 4α2), from which we deduce that

h(α ′) = max(p − 2 − eα , 0) log(2) + logmax(2|α |, 1)
We have h(α ′) = max(p − 2− eα ,−1) log(2)+ logmax(|α |, 1), from which the claim on logAα ′,β ′

follows.
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The minimal polynomial of β ′
over Z[X ] is 2max(2p−2−2eβ ,0)((β2 + 1)X 2 + (2β2 − 2)X + (β2 + 1));

as |β ′ | = 1 = |β ′ |, the height of β ′
is equal to Bα ′,β ′ and to max(p − 1 − eβ , 0) log 2 +

1

2
log(1 + β2),

which concludes the proof for the tangent function.

The proof for the cotangent function is the same with β ′ = (1 − iβ)/(1 + iβ). □

We now turn to the hyperbolic tangent and cotangent functions.

Lemma A.7. Let α > 0, β > 0 be two floating-point numbers in precision p. Assume that | tanh(α) −
β | ⩽ ε . Then there exist two algebraic numbers α ′, β ′ with Dα ′,β ′ = 1, logAα ′,β ′ = max(−1,p − 2 −

eα ) log 2, |α ′ | = 2|α |, logBα ′,β ′ = max(0,p − 1 − eβ ) log(2) + log |1 + β | such that

| exp(α ′) − β ′ | ⩽ 2ε .

The same result holds for the hyperbolic cotangent function, assuming α > 0, β > 1.

Proof. We have

|tanh(α) − β | =

����1 − exp(−2α)

1 + exp(−2α)
− β

����
= |1 + exp(−2α)|−1 |− exp(−2α) + 1 − β(1 + exp(−2α))|

⩾
1

2

|exp(−2α)(1 + β) − (1 − β)|

=
|1 + β |

2

����exp(−2α) − 1 − β

1 + β

����
⩾

1

2

����exp(−2α) − 1 − β

1 + β

���� .
We take α ′ = −2α and β ′ = (1 − β)/(1 + β). Obviously Dα ′,β ′ = 1, logAα ′,β ′ = max(−1,p − 2 −

eα ) log 2, |β
′ | = |1− β |/|1+ β |. The minimal polynomial of β ′

over Z[X ] is 2max(0,p−1−eβ )((1+ β)X −

(1 − β)), so that h(β ′) = max(0,p − 1 − eβ ) log(2) + log |1 + β | = logBα ′,β ′ .

For the hyperbolic cotangent, assuming α > 0, β > 1, we write

|cotanh(α) − β | = | cotanh(α)β | | tanh(α) − 1/β | ⩾ | tanh(α) − 1/β | ⩾
1

2

����exp(−2α) − β − 1

β + 1

���� ,
which eventually gives the same estimate. □
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