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Staging of progressive supranuclear  
palsy-Richardson syndrome using MRI brain 
charts for the human lifespan

Vincent Planche,1,2 Boris Mansencal,3 Jose V. Manjon,4 Wassilios G. Meissner,1,5,6

Thomas Tourdias7,8 and Pierrick Coupé3

Brain charts for the human lifespan have been recently proposed to build dynamic models of brain anatomy in normal aging and various 
neurological conditions. They offer new possibilities to quantify neuroanatomical changes from preclinical stages to death, where longi
tudinal MRI data are not available. In this study, we used brain charts to model the progression of brain atrophy in progressive supra
nuclear palsy—Richardson syndrome. We combined multiple datasets (n = 8170 quality controlled MRI of healthy subjects from 
22 cohorts covering the entire lifespan, and n = 62 MRI of progressive supranuclear palsy—Richardson syndrome patients from the 
Four Repeat Tauopathy Neuroimaging Initiative (4RTNI)) to extrapolate lifetime volumetric models of healthy and progressive supra
nuclear palsy—Richardson syndrome brain structures. We then mapped in time and space the sequential divergence between healthy 
and progressive supranuclear palsy—Richardson syndrome charts. We found six major consecutive stages of atrophy progression: (i) ven
tral diencephalon (including subthalamic nuclei, substantia nigra, and red nuclei), (ii) pallidum, (iii) brainstem, striatum and amygdala, (iv) 
thalamus, (v) frontal lobe, and (vi) occipital lobe. The three structures with the most severe atrophy over time were the thalamus, followed 
by the pallidum and the brainstem. These results match the neuropathological staging of tauopathy progression in progressive supra
nuclear palsy—Richardson syndrome, where the pathology is supposed to start in the pallido-nigro-luysian system and spreads rostrally 
via the striatum and the amygdala to the cerebral cortex, and caudally to the brainstem. This study supports the use of brain charts for the 
human lifespan to study the progression of neurodegenerative diseases, especially in the absence of specific biomarkers as in PSP.

1  Institut des Maladies Neurodégénératives, Univ. Bordeaux, CNRS, UMR 5293, F-33000 Bordeaux, France
2  Centre Mémoire Ressources Recherches, Service de Neurologie des Maladies Neurodégénératives, Pôle de Neurosciences 

Cliniques, CHU de Bordeaux, F-33000 Bordeaux, France
3  CNRS, Univ. Bordeaux, Bordeaux INP, Laboratoire Bordelais de Recherche en Informatique (LABRI), UMR5800, F-33400 

Talence, France
4  Instituto de Aplicaciones de las Tecnologías de la Información y de las Comunicaciones Avanzadas (ITACA), Universitat 

Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
5  Service de Neurologie des Maladies Neurodégénératives, Réseau NS-Park/FCRIN, CHU Bordeaux, F-33000, Bordeaux, France
6  Department of Medicine, Christchurch, and New Zealand Brain Research Institute, Christchurch, 8011, New Zealand
7  Inserm U1215—Neurocentre Magendie, Bordeaux F-33000, France
8  Service de Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, F-33000 Bordeaux, France

Correspondence to: Vincent Planche, MD, PhD  
Institut des Maladies Neurodégénératives  
UMR CNRS 5293, Centre Broca Nouvelle-Aquitaine  
146 rue Léo Saignat  
33076 Bordeaux cedex, France  
E-mail: vincent.planche@u-bordeaux.fr

Keywords: progressive supranuclear palsy; Richardson syndrome; MRI; brain charts; staging

Received November 13, 2023. Revised December 22, 2023. Accepted February 19, 2024. Advance access publication February 20, 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of the Guarantors of Brain. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, 
distribution, and reproduction in any medium, provided the original work is properly cited.

BRAIN COMMUNICATIONS
https://doi.org/10.1093/braincomms/fcae055 BRAIN COMMUNICATIONS 2024: Page 1 of 10 | 1

D
ow

nloaded from
 https://academ

ic.oup.com
/braincom

m
s/article/6/2/fcae055/7611505 by guest on 01 June 2024

https://orcid.org/0000-0003-3713-227X
https://orcid.org/0000-0002-9190-4819
https://orcid.org/0000-0002-7151-6325
mailto:vincent.planche@u-bordeaux.fr
https://creativecommons.org/licenses/by/4.0/


Graphical Abstract

Introduction
Progressive supranuclear palsy (PSP) is a neurodegenerative 
disease with a heterogeneous clinical presentation. The 
neuropathological diagnosis is based on the presence of neur
onal and glial 4R-tau inclusions. Richardson’s syndrome 
(PSP-RS), with key features of supranuclear gaze palsy and 
postural instability, is the classical PSP phenotype and re
mains the most frequent syndromic presentation according 
to recent clinico-neuropathological studies.1 The clinical pro
gression of PSP is associated with the spreading of tau path
ology along connected neuronal pathways, as suggested by 
correlative studies combining functional MRI, tau-PET and 
post-mortem neuropathological assessment in patients with 
PSP,2 and also by more direct experimental evidence in maca
ques injected with patient-derived tau aggregates.3

In PSP-RS, a neuropathological staging system of disease 
progression has been recently proposed. It defines six sequen
tial stages, where tau pathology starts in the pallido- 
nigro-luysian system and spreads rostrally via the striatum 
and the amygdala to the cerebral cortex, and caudally to the 
brainstem and the cerebellum.4 This staging system, which 
has been replicated and validated,5 was built on post-mortem 
neuropathological examination of deceased PSP donors, pre
cluding reliable conclusions about the early stages of disease 
progression. Providing insights into the early temporo-spatial 
spreading of PSP pathology is crucial for early diagnosis and 
the development of disease-modifying therapies.

The use of tau-PET might theoretically help us in the future 
to describe the anatomical progression of PSP in vivo.6 That 

being said, current tau tracers, including second-generation 
ligands such as [18F]PI-2620 exhibit an heterogeneous bind
ing and have limited sensitivity for reliable detection of 4R 
tauopathy, in contrast to Alzheimer’s disease tauopathy.7,8,9

Moreover, longitudinal PET studies in PSP are scarce.10 Since 
brain atrophy correlates with the progression of tauopathy, 
structural MRI remains a reliable and affordable marker 
of PSP progression that outperforms first-generation 
tau-PET.10 Longitudinal MRI studies have highlighted the 
progression of atrophy in PSP-RS, mainly in the midbrain 
and the frontal lobe.10,11,12 These studies cover disease pro
gression over a span of 6–24 months. Unfortunately, achiev
ing a longer follow-up is challenging in the field of PSP, 
primarily due to factors such as late diagnosis and attrition. 
Consequently, it is essential to consider alternative methodo
logical approaches to comprehensively depict the entire 
course of PSP-RS, from its prodromal stages to death.

A probabilistic event-based model was recently applied to 
cross-sectional MRI to identify the most probable sequence 
of regional atrophy over the course of PSP-RS.13 This in vivo 
ordering of structural progression of PSP-RS corresponds 
broadly to the post-mortem neuropathological staging of tauo
pathy but with some notable exceptions, such as late atrophy of 
the pallidum, a structure among the first affected by the under
lying tauopathy.14 As a main limitation, these cross-sectional 
event-based models have no explicit timescale, and are unable 
to describe the time to transition between each anatomical 
stage. While models based on temporal events have been re
cently proposed to infer timelines of pathological events,15

they require longitudinal MRI, which is a scarce resource; 
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therefore, they have never been used to study PSP. 
Furthermore, these event-based models cannot infer the pro
dromal/preclinical stages of the disease (i.e. before the occur
rence of the first measurable event in patients).

In this study, we proposed a different modelling approach 
to define the structural progression of PSP-RS over the entire 
course of the disease. Indeed, recent advances in BigData 
sharing in neuroimaging have enabled the emergence of 
brain charts for the human lifespan,16,17 where large num
bers of cross-sectional MRI are used to build extrapolated 
dynamic models of brain anatomy. Such standards for hu
man brain measurement offer new possibilities to quantify 
neuroanatomical changes and to map the transition from 
normal aging to early stages of neurodegenerative diseases. 
Thanks to this methodology and its validation using ‘truly’ 
longitudinal data, we have recently proposed the anatomical 
MRI staging of Alzheimer’s disease18 and the three clinical 
variants of frontotemporal dementia (FTD).19 Here, we de
scribe the progressive pattern of neuroanatomical variations 
between PSP-RS and normal aging.

Methods
Standard protocol approvals, 
registrations and patient consents
All data were obtained in de-identified format upon request 
from external study centres, who ensured compliance with 
ethical guidelines. All subjects included in the MRI databases 
used in this study provided informed consent. The protocol 
for each study/cohort was approved by the institution review 
board at all sites (see the Acknowledgments section).

Datasets
Healthy and PSP-RS trajectories of brain atrophy were esti
mated thanks to the aggregation of 22 open-access datasets. 
We collected a total of 8318 T1-weighted MRIs scanned on 
1.5T or 3T magnets.

After quality control (see below), 8170 MRIs from healthy 
subjects, covering the entire lifespan (from 1 to 100 years of 
age) were included in the study. The 22 cohorts with healthy 
subjects used in this study are listed in Table 1. References 
and websites are listed in the Acknowledgements section.

For PSP-RS, we used MRI from the 4R Tauopathy 
Imaging Initiative (4RTNI, https://4rtni-ftldni.ini.usc.edu/). 
Patients with PSP in this dataset met the National Institute 
of Neurological Disorders and Stroke (NINDS) for PSP-RS 
criteria.20 We included 62 patients with PSP in this study 
and all were retained after quality control (Tables 1 and 2).

Image processing
All the T1-weighted MRI were processed with Assembly 
Net (freely available at https://github.com/volBrain/Assembly 
Net/).21 This software produces whole-brain segmentation of 

fine-grained structures using a large ensemble of deep neural 
networks. AssemblyNet is robust to acquisition protocols, 
age of subjects and presence of brain pathology.21 All images 
were preprocessed to locate them into a common geometrical 
and intensity space. The preprocessing steps started with de
noising,22 then the images were corrected for inhomogeneity23

and affine-registered into the Montreal Neurological Institute 
(MNI) space using ANTS.24 Finally, a tissue-based intensity 
normalization was used.25 For the segmentation process, the 
intracranial cavity was segmented using DeepICE method.26

Afterwards, structure segmentation was achieved using 250 
U-Nets through a multi-scale framework.21

All images were automatically quality controlled using the 
artificial intelligence-based method RegQCNET.27 After this 
first check, a human-based multi-stage quality control pro
cedure was performed blinded to the subject’s group, as pre
viously described.16,28 A visual assessment was done for all 
input images by checking screen shots of one sagittal, cor
onal and axial slices in the middle of the 3D volume. 
Images were rejected if partial head coverage, motion arte
fact, high distortion or abnormal noise level was detected. 
Then, a visual assessment of processing quality was carried 
out using the segmentation report, which provides screen
shots for each pipeline step. Images were rejected after this 
step in case of inaccurate registration in the MNI space, in
accurate intracranial cavity extraction, missing brain struc
tures or over/under-segmentation of brain structures. A last 
control was performed by individually checking all outliers 
(values higher/lower than 2 SD of the estimated model). 
For each outlier, the segmentation map was re-inspected 
using a 3D viewer (ITK-SNAP). In case of segmentation fail
ure, the subject was removed from the study.

On the structures produced by AssemblyNet following the 
Neuromorphometrics labels,29 we considered the 60 left and 
right grey matter regions: 9 subcortical structures, 17 frontal 
gyri/lobules, 8 temporal gyri/lobules, 6 parietal gyri/lobules, 
8 occipital gyri/lobules, 6 gyri in the limbic cortex, 5 sub- 
regions of the insular cortex and cerebellar grey matter. 
We also analysed 4 central structures: the brainstem and 
three groups of vermal structures (i.e. vermis I-V, vermis 
VI-VII and vermis VIII-X). As our goal was to describe the 
anatomical progression of atrophy in the brains of patients 
with PSP, testing the parallel with the presumed progression 
of tauopathy, we did not include ventricular volume in our 
analyses, even though it was provided by AssemblyNet. 
Because our preliminary analyses did not show evident 
asymmetry, left and right volumes of symmetric brain struc
tures were added to obtain a global volume.

Modelling brain charts and statistical 
analyses
To limit for the variability introduced by head size differ
ence, models were estimated on normalized volumes (% of 
total intracranial volume). Moreover, we used z-scores of 
normalized volumes to compare structures of different sizes. 
The normal distribution of each normalized volume 
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was tested using Kolmogorov–Smirnov test at 95%. 
Statistics were performed with Matlab using default 
parameters.

To study brain volumetric trajectories of PSP-RS across 
the entire lifespan and to extrapolate the early stages of 
PSP-RS, we followed the strategy we have previously pro
posed for Alzheimer’s disease and FTD.18,19 Our framework 
was based on the assumption that neurodegeneration is a 
continuous and progressive process along disease progres
sion. Therefore, to constrain the volumetric trajectories 
over the entire lifespan, we built our PSP-RS models using 
control MRIs taken before the age of the youngest patient. 
Different strategies were then considered to model the 
healthy and pathological trajectories of each brain struc
ture over time, as previously described.28 Briefly, the candi
date models were tested from the simplest to the most 
complex: (i) a linear model; (ii) a quadratic model; and (iii) 
a cubic model. A model was kept as a potential candidate 
only when simultaneously F-statistic based on ANOVA (i.e. 
model versus constant model) was significant (P < 0.05) 
and when all its coefficients were significant using t-statistic 
(P < 0.05). We finally used the Bayesian Information Criter
ion (BIC) to compare the candidate models and we selected 
the model providing the lowest BIC. This model selection 
procedure was applied to all the considered structures.

Afterwards, distances between healthy and PSP-RS trajec
tories were computed on the estimated models. The predic
tion bounds were estimated with a confidence level of 
95%. A brain structure was considered to be significantly 
smaller in PSP-RS compared to healthy aging when the two 

structural trajectories diverged and when their 95% confi
dence intervals no longer overlapped (Fig. 1). This approach 
is a conservative version of the t-test that compensates for 
multiple comparisons since the t-test can be significant 
when 95% confidence intervals overlap, while it is always 
significant when 95% confidence intervals do not overlap. 
Then, all divergent structures were mapped across time 
and space on standardized sagittal, coronal and axial 
MRI planes (Fig. 2). Finally, the sequence of significant di
vergence of the affected brain structures was listed in chrono
logical order to obtain the MRI staging scheme of PSP-RS 
(Fig. 2).

Results
Dataset description
To study the brain volumetric trajectories of healthy controls 
and PSP-RS across the entire lifespan, we compiled several 
open-access databases to construct two datasets. Their com
position and characteristics are described in Table 2. For 
PSP-RS, we used MRI from the 4RTNI. The patients with 
PSP-RS represented various disease duration and a large 
spectrum of disease severity, as assessed by the total score 
of the PSP rating scale30 ranging from 10/100 to 86/100. 
Regarding cognitive impairment, the mean MoCA was 
20.3 and the mean Mini Mental State Examination 
(MMSE) was 24.8, with also a large range of disease severity 
(Table 2).

Table 1 Complete list of the cohorts used in this study

DATASET Group n Gender Age range (years)

C-MIND (Cincinnati MR Imaging of Neurodevelopment) Controls 236 F = 129/M = 107 0.7–19
NDAR (National Database for Autism Research) Controls 382 F = 174/M = 208 1–50
ABIDE (Autism Brain Imaging Data Exchange) Controls 492 F = 84/M = 408 6–52
ICBM (International Consortium for Brain Mapping) Controls 294 F = 142/M = 152 18–80
IXI (Information eXtraction from Images) Controls 549 F = 307/M = 242 20–86
ADNI 1&2 (Alzheimer’s Disease Neuroimaging Initiative) Controls 404 F = 203/M = 201 60–90
AIBL (Australian Imaging Biomarkers and Lifestyle Study of Ageing) Controls 232 F = 175/M = 157 55–93
ADHD-200 (Attention-Deficit Hyperactivity Disorder-200 Consortium) Controls 544 F = 263/M = 281 7–26
DLBS (Dallas Lifespan Brain Study) Controls 315 F = 198/M = 117 21–89
ISYB (Imaging Chinese Young Brains) Controls 213 F = 155/M = 58 18–30
MIRIAD (Minimal Interval Resonance Imaging in Alzheimer’s Disease) Controls 23 F = 11/M = 12 58–86
PPMI (Parkinson’s 

Progression Markers Initiative)
Controls 166 F = 61/M = 105 31–83

PREVENT-AD (Pre-symptomatic Evaluation of Experimental or  
Novel Treatments for Alzheimer’s Disease)

Controls 307 F = 215/M = 92 55–84

AOMIC (Amsterdam open MRI collection) Controls 1361 F = 731/M = 630 18–26
Calgary preschool MRI dataset Controls 263 F = 115/M = 148 3–7
CamCAN (Cambridge Centre for Ageing and Neuroscience) Controls 653 F = 330/M = 323 18–89
PIXAR Controls 155 F = 84/M = 71 4–39
SALD (Southwest University Adult Lifespan Dataset) Controls 494 F = 307/M = 185 19–80
SRPBS (Japanese Strategic Research Program for the Promotion of Brain Science) Controls 791 F = 365/M = 426 18–80
NACC (National Alzheimer’s Coordinating Canter) Controls 161 F = 112/M = 49 30–100
NIFD (NeuroImaging in Frontotemporal dementia) Controls 135 F = 76/M = 59 39–81
4RTNI (4-repeat tauopathy neuroimaging initiative) PSP-RS 62 F = 36/M = 26 55–86

We combined the control groups of 22 cohorts covering the entire lifespan to model healthy trajectories and patients from the 4RTNI cohort to extrapolate lifetime volumetric 
models of PSP-RS.
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After quality control, 8170 MRI from healthy controls re
mained for the analyses and 62 MRI from patients with 
PSP-RS. We built our lifespan PSP-RS models by combining 
MRI of patients with PSP-RS with MRI of healthy controls 

because we assumed that neurodegeneration is a continuous 
and progressive process along the pathology evaluation. 
Herein, we combined the MRIs of PSP-RS patients with 
MRIs of 5743 healthy controls younger than 55 years 

Table 2 Final datasets description

Healthy controls PSP-RS

Number of subjects 8170 62
Age (years), mean [range] 36.8 [0.7–100] 70.4 [55–86]
Sex F = 4160; M = 3997 F = 36; M = 26
Disease duration (years), mean [range] – 5.5 [1–17]
Total PSP rating scale, mean [range] – 37.9 [10–86]
MoCA, mean [range] – 20.3 [1–28]
MMSE, mean [range] – 24.8 [1–30]

This table provides the total number (n) of considered images (after quality control), the average ages of participants and intervals in brackets for the gender proportion. It also provides 
the clinical characteristics of patients with PSP-RS included in the 4RTNI cohort. MoCA, Montreal Clinical Assessment; MMSE, Mini Mental State Examination; PSP, Progressive 
Supranuclear Palsy; PSP-RS, PSP-Richardson Syndrome.

Figure 1 Lifespan trajectories based on z-scores of normalized brain volumes for cognitively normal (CN) subjects (in black) 
and patients with PSP-RS (in blue). Black dots represent all healthy individuals and blue dots patients with PSP-RS. The orange curves 
represent the distance between the healthy and PSP-RS models. The orange areas indicate the time period where confidence intervals at 95% of 
both models do not overlap. Only models detected as significantly different between healthy aging and PSP-RS are presented in this figure. In 
AssemblyNet, the ventral diencephalon regroups the hypothalamus, the mammillary bodies, the subthalamic nuclei, the substantia nigra, the red 
nuclei and the geniculate nuclei. Suppl: Supplementary; Inf: Inferior.
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(the age of the youngest PSP patient) to build our lifespan 
PSP-RS model. Consequently, the parametric PSP model was 
constrained over the entire lifespan using 5805 subjects.28

Identification of brain structures 
diverging between healthy subjects 
and PSP-RS trajectories
We identified 15 brain structures (over the 64 grey matter 
structures tested using our segmentation pipeline) that sig
nificantly diverged during lifespan between PSP-RS and 
healthy aging models (Fig. 1). The three most affected struc
tures over time were the thalamus (distance between the 

healthy aging and our PSP-RS model at 90 years = 4.0), 
followed by the pallidum (distance = 2.9), and the brainstem 
(distance = 2.4).

The MRI staging scheme of PSP-RS
We mapped in time and space on standardized brains the 
diverging brain structures between PSP-RS and normal brain 
charts (Fig. 2, upper panel). We also built a timeline high
lighting the sequential progression of brain atrophy in 
PSP-RS (Fig. 2, lower panel). Schematically, six major stages 
of atrophy progression can be observed on this timeline, 
based on the order of divergence, the proximity of structures, 
as well as the grouping of anatomical substructures 

Figure 2 The MRI staging scheme of PSP-RS. The upper panel maps the progression of atrophy in the three axes (all brain structures 
identified in Fig. 1). The lower panel is a timeline representing the sequential divergence of significantly atrophied structures between healthy and 
PSP-RS volumetric trajectories. The effect-size of structural divergence is color-coded according to the bar at the bottom right of the figure. In 
AssemblyNet, the ventral diencephalon regroups the hypothalamus, the mammillary bodies, the subthalamic nuclei, the substantia nigra, the red 
nuclei and the geniculate nuclei. Suppl: Supplementary; Inf: Inferior; CN: cognitively normal.
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(e.g. putamen + caudate + accumbens = striatum; supple
mentary motor cortex + frontal pole + precentral gyrus +  
operculum + gyrus rectus = frontal cortex): (i) the ventral di
encephalon (regrouping the hypothalamus, the mammillary 
bodies, the subthalamic nuclei, the substantia nigra, the red 
nuclei and the geniculate nuclei); (ii) the pallidum; (iii) the 
brainstem, the striatum and the amygdala; (iv) the thalamus; 
(v) the frontal lobe; and (vi) the occipital lobe.

Discussion
In this study, we combined multiple large-scale MRI datasets 
and whole-brain segmentation of fine-grained structures 
using a large ensemble of deep neural networks to describe 
the chronological structural progression of PSP-RS over 
decades. We found six major consecutive stages of atrophy 
progression: (i) the ventral diencephalon (including the sub
thalamic nuclei, the substantia nigra, and the red nuclei); (ii) 
the pallidum; (iii) the brainstem, the striatum and the amyg
dala; (iv) the thalamus; (v) the frontal lobe; and (vi) the oc
cipital lobe. The most severely affected structures during 
the entire course of PSP-RS were the thalamus, followed by 
the pallidum and the brainstem.

This MRI staging scheme of atrophy progression is very 
close to the sequence of tau pathology in PSP-RS.4 More spe
cifically, our in vivo staging of atrophy progression overlaps 
with the sequence of neuronal tau pathology described in 
post-mortem neuropathological studies, which begins in 
the globus pallidus, the subthalamic nucleus, and the sub
stantia nigra (step 1), then accumulates in the midbrain 
and the pons (step 2), the striatum and the amygdala (step 
3), the frontal lobe (step 4), the parietal and temporal lobes 
(step 5) and finally the occipital cortex (step 6). These results 
further support the association between brain atrophy and 
the progression of neuronal tau pathology in PSP, as in other 
primary or secondary tauopathies.31,32 However, the pres
ence of the thalamus in our staging scheme (stage 4), and 
the severity of its atrophy over the entire course of the dis
ease, suggests that glial pathology also plays a role in the pro
gression of atrophy in PSP-RS. Indeed, astroglial and 
oligodendroglial tau pathology is described in the thalamic 
nuclei from step 3 in the neuropathologal staging scheme.4

These findings are consistent with studies comparing pre- 
mortem MRI volumetry to post-mortem neuropathology, 
which reported a correlation between glial tau lesions and fo
cal atrophy in PSP.33 The severity of thalamic atrophy is well 
supported by previous SPECT studies measuring the vesicu
lar acetylcholine transporter expression and showing altera
tions of the pontothalamic cholinergic pathways that 
increased with disease progression at both cell body and ter
minal levels.34 The severe but relatively late atrophy of the 
thalamus also suggests secondary neurodegeneration due 
to disconnection.

While waiting for new generation tau-PET tracers 
with good sensibility and specificity for 4R tauopathies, 
brain charts for the human lifespan appear as a relevant 

strategy to assess the sequential progression of PSP-RS. 
Probabilistic event-based modelling is an alternative method 
to infer the order in which biomarkers become abnormal 
using cross-sectional data. These data-driven models may 
be used to estimate the sequence in which brain atrophy pro
gresses using structural MRI and have been applied to many 
neurodegenerative diseases35 including PSP-RS.13 These 
probabilistic models are interesting for automatically detect
ing biomarker abnormalities and estimating their sequence 
of occurrence. However, they are not designed to study pre
clinical/prodromal stages when dedicated biomarkers for 
these stages (or genetic determinants) are not available. 
Furthermore, event-based models are ordinal and are not 
able to draw smooth evolution of volumes according to dis
ease duration.

Importantly, our MRI staging based on PSP-RS brain 
charts mirrored more closely to the neuropathological 
staging of the disease than event-based models. This is 
especially the case regarding the detection of early pallidal at
rophy.14 Contrary to our model and the neuropathological 
staging, the event-based models indeed report late pallidal 
atrophy and place brainstem atrophy first, which we find 
to occur later, in agreement with the progression of the tauo
pathy in neuropathologically confirmed cases.13 Subtype and 
Stage Inference (SuStaIn) is another framework that could 
theoretically allow the study of the temporal progression of 
brain atrophy with cross-sectional data.36 This method sim
ultaneously infers patient sub-groups and the corresponding 
trajectories of disease progression. So far, this unsupervised 
machine-learning technique has mainly used to cluster the 
heterogeneity of atrophy progression in PSP37,38 and other 
tauopathies.36

Compared to previous event-based modelling of PSP-RS, 
another advantage of our MRI staging approach is the estab
lishment of a timescale of atrophy progression. This provides 
a more precise indication of the time for the disease to pro
gress, including in its preclinical or prodromal phases. For in
stance, we found that the early nigro-luysian atrophy 
precedes brainstem atrophy by 6 years in PSP-RS (Fig. 2). 
This timeframe echoes our previous findings using the 
same methodological approach in the three FTD variants 
where subcortical atrophy preceded focal atrophy in specific 
behavioral and/or language networks by 8–10 years.19

Although we do not have MRI data for PSP-RS patients un
der 55 years old, the significant divergence of our PSP-RS 
model from the healthy subjects model is reported around 
40 years for the ventral diencephalon. Interestingly, this 
age corresponds to the minimum age required by the 
Movement Disorder Society in the diagnostic criteria for 
PSP, in relation to the earliest cases with histological con
firmation.1 These results are important in terms of internal 
validity regarding our statistical inference of the earliest 
stages of the disease.

Beyond these anatomical descriptions, it will be interest
ing to develop in the future a novel framework for automatic 
PSP-RS detection using normative and pathological 
lifespan models, as we previously proposed for Alzheimer’s 
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disease with the hippocampal-amygdalo-ventricular atrophy 
score.39 A future multi-pathology algorithm will be able to 
leverage the brain charts that we have developed for several 
neurodegenerative diseases now.18,19 It will then be import
ant to assess if the use of these brain charts will allow to dif
ferentiate PSP from other atypical parkinsonism and/or from 
other disorders of the FTLD spectrum.

It would have been interesting to compare the progression 
trajectories of other phenotypic presentations of PSP, as we 
have previously reported for the three FTD syndromic var
iants.19 However, existing MRI databases essentially contain 
data from patients diagnosed with the NINDS-SPSP criteria, 
i.e. with Richardson Syndrome. It is important to point out 
that this clinical presentation is highly specific to PSP neuro
pathology, as validated by autopsy, unlike other PSP pheno
types.1 In the absence of relevant 4R-tau biomarkers, this 
allows us to assume high diagnostic accuracy in our sample 
without post-mortem confirmation to propose the MRI sta
ging scheme of PSP-RS, which is a strength of the present 
work.

An important limitation of this study is the lack of a fine- 
grained assessment of cerebellar anatomy. Indeed, the den
tate nucleus is affected by tau pathology during the caudal 
spreading of the disease.4 Furthermore, atrophy of the 
superior cerebellar peduncles (closely related to the dentate 
nucleus) has long been reported in PSP40 and has been 
proposed as a biomarker to distinguish PSP from other 
Parkinsonian disorders.41 In the present study using 
AssemblyNet following the Neuromorphometrics labels, 
we only segmented the whole cerebellar grey matter and 
three groups of vermal structures (i.e. vermis I-V, vermis 
VI-VII and vermis VIII-X) but not the cerebellar peduncles. 
Although our analyses regarding these anatomical structures 
showed a trend for atrophy in our lifespan models, the diver
gence between healthy and PSP trajectories was not statistic
ally significant (data not shown). Future studies using brain 
charts will need to address this anatomical question better.

Another potential limitation of this study concerns the 
modelling of atrophy progression in relation to patients’ 
age rather than the duration of the disease or the severity 
of the disease. Our primary assumption is indeed that a 
younger patient may have less atrophy than an older patient. 
This approach is also a strength of the study because it en
ables us to extrapolate the preclinical/prodromal stages of 
the disease, which other methods based on cross-sectional 
data from symptomatic patients do not allow. This assump
tion could be questioned in Alzheimer’s disease, where the 
atrophy pattern differs between early-onset and late-onset 
Alzheimer’s disease.42 However, these differences are also 
explained by different syndromic presentations between 
early-onset and late-onset Alzheimer’s disease, which is dif
ferent here in a very specific population of patients with 
PSP presenting a Richardson phenotype. Furthermore, we 
have previously demonstrated that this modelling strategy 
corresponds well to the atrophy progression as described 
by ‘truly’ longitudinal data.18 Finally, if we consider the ex
ample of FTD variants, our results regarding the modelling 

of the earliest stages of atrophy progression align well with 
what is reported in the literature for pre-symptomatic indivi
duals carrying causal mutations.19 Taken together, all these 
elements make us fairly confident about the extrapolation of 
the MRI staging we are proposing for PSP-RS, which is sup
ported by neuropathology.4 We hope that this MRI staging 
scheme will help better characterize PSP-RS, amidst clinical 
criteria and, hopefully, future in vivo biological markers.

To conclude, we have modelled the global structural pro
gression of PSP-RS over the entire course of the disease. We 
proposed a descriptive MRI staging scheme that matches the 
neuropathological staging of tauopathy progression in 
PSP-RS, where the pathology starts in the pallido-nigro- 
luysian system and spreads rostrally via the striatum and 
the amygdala to the cerebral cortex, and caudally to the 
brainstem. This study further supports the use of structural 
MRI and brain charts for the human lifespan to study the 
progression of neurodegenerative diseases, especially in the 
absence of specific biomarkers as in PSP.
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