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Abstract

In this paper, we propose a generic algorithmic framework defining a unified view of fractal decom-
position algorithms for continuous optimization. Fractals allow building a hierarchical decomposition
of the decision space by using a self-similar geometrical object. The proposed generic framework is
made of five distinct and independent search components: fractal geometrical object, tree search,
scoring, exploration and exploitation. The genericity of the framework allowed the instantiation of
popular algorithms from the optimization, machine learning and computational intelligence commu-
nities. Moreover, new optimization algorithms can be designed using various strategies of the search
components. This shows the modularity of the proposed algorithmic framework. The computational
experiments emphasize the behaviors of fractal-based approaches in terms of scalability, robustness,
and the balance between exploitation and exploration in the search space. The obtained results
illustrate the workability and the significance of certain search components. They influence the perfor-
mances of fractal-based decomposition algorithms on different problems categories, such as sparable
or multi-modal functions.

Keywords: Continuous optimization, Metaheuristic, High-dimensional optimization, Decomposition,
Fractal, Tree search

1 Introduction

Optimizing a non-linear, non-convex, derivative
free, or a black-box function in a high dimensional
continuous search space is a complex task. Com-
monly we consider a minimization problem for an
objective function f : Λ ⊂ Rn → R:

x̂ ∈ argmin
x∈Λ

f(x) (1)

where x̂ is the global optima, f the objective func-
tion, and Λ a compact set made of inequalities
(e.g. infima and suprema of the search space).

In this paper and following framework, we do
not consider additional information as first or
secondary derivatives, unlike some other frame-
works [1].

Over the last twenty years, various optimiza-
tion algorithms from multiple communities have
been introduced to address continuous optimiza-
tion challenges. These algorithms can be classified
within a certain level of abstraction according to
the problems they tackle, their similarities and
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differences. These classifications allow identify-
ing common search components, helping in their
design and in understanding their behaviors [2, 3].

Metaheuristics is a family of partial search heuris-
tic algorithms for which convergence toward the
global optimum is not always guaranteed [2–4].
Among it, population-based algorithms generally
rely on evolutionary algorithms (e.g. differential
evolution, evolution strategies) and swarm intelli-
gence (e.g. particle swarm optimization) [5]. Local
search strategies are based on a single solution
improvement (e.g. gradient-based algorithms, sim-
ulated annealing). These algorithms are stochastic
and require a high number of evaluations to be
efficient.

Concerning optimization problems with expensive
objective functions, surrogate-based optimization
(e.g. Bayesian optimization) can be an alternative
to reduce the required budget. A major drawback
of surrogate-based strategies is that they can suf-
fer from the curse of dimensionality, and so, they
poorly scale on high dimensional optimization
problems [2, 3, 6].

In this paper, we investigate a particular class
of optimization algorithms, which could be clas-
sified as divide-and-conquer strategies based on a
hierarchical decomposition of the search space.

This work has been inspired by two distinct fam-
ilies of decomposition-based optimization algo-
rithms. The first one concerns heuristics based
on fractal decomposition, such as FRACTOP [7]
and FDA [8]. The second one is based on algo-
rithms derived from Lipschitzian global optimiza-
tion, such as SOO [9], DIRECT [10] and its
various extensions (e.g. eDIRECT, BIRECT, HD-
DIRECT) [11].

Previous similar mathematical frameworks
detailed some generalizations of partition-based
algorithms [1, 12, 13]. In this work, we aim
to include improper partition with overlapping
sets allowing to model a broader category of
algorithms including heuristics such as FDA.

In our framework, a fractal is a generalized con-
cept describing a high dimensional geometrical
object structuring the search space. It is also a
subset of an initial decision space or of another
fractal, and a node of a tree data structure.

A fractal is a never-ending pattern that can
be used to generate any-scale fractal trees [14].
The self-reproducing characteristic of fractals sug-
gests a new way for decomposing large-scale
search spaces with low time and space complex-
ity. Indeed, a fractal bears an unlimited number
of levels that can be generated using simple and
efficient analytical procedures with constant O(1)
complexity. More exactly, a fractal has certain
properties which can be exploited to better struc-
ture the search process, including recursion, scal-
ability and self-similarity. By considering at least
these three fundamental properties, it is possible
to explore a search space indefinitely (recursion)
in a structured manner and on all scales (scalabil-
ity and self-similarity). The search space is then
decomposed in a cascade of fractals organized by
levels. Starting from a first fractal supposed to
cover the whole search space, each fractal at a
given level gives rise recursively to smaller fractals.

A fractal-based decomposition algorithm is orga-
nized around five search components: fractal, tree
search, scoring, exploration and exploitation. It
partitions the search space via a given fractal
geometrical object. This partition of the space is
then modeled via a tree-like data structure. There-
fore, a tree search component is used to provide
a dynamic and hierarchical fractal decomposition
of the search space. A scoring search component
allows modeling the probability of a subspace to
contain the global optimum, by giving a fitness
value to fractals.

These five search components are translated into
software bricks within a generic Python framework
named Zellij 1. It offers a unified programming
paradigm for the instantiation of fractal-based
decomposition algorithms such as FDA (Fractal
Decomposition Algorithm), SOO (Simultaneous
Optimistic Optimization) or DIRECT (DIviding
RECTangles). Moreover, Zellij allows the design
of new optimization algorithms by combining
search components, and also the implementation
of alternative components thanks to a high level
of abstraction.

1The Zellij software is available under GitHub
https://github.com/ThomasFirmin/zellij.
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1.1 Contributions

The main contribution of this paper is to unify
fractal-based decomposition approaches into a
generic and flexible algorithmic framework. The
modularity of the framework allows the instan-
tiation of popular optimization algorithms from
the global optimization, machine learning and
computational intelligence communities. This flex-
ibility also allows the design of new optimiza-
tion algorithms by developing new strategies of
the framework’s elementary building blocks, here
called search components. These components are
translated into flexible software bricks, helping
the implementation of fractal-based decomposi-
tion algorithms. The workability of our framework
was demonstrated on the BBOB benchmark from
the Comparing Continuous Optimizer (COCO)
framework. It illustrates that some search com-
ponents have a great impact on the behaviors of
fractal-based algorithms, in terms of scalability in
dimensions, performances to certain types of prob-
lems or even on the tradeoff between exploration
and exploitation.

1.2 Outline

The paper is organized as follows. In section 2,
state-of-the art decomposition-based algorithms
and other similar frameworks are presented. In
section 3, the Zellij generic algorithmic frame-
work based on fractal decomposition is presented.
The following sections (sections 4 to 7) detail
successively the search components of the algo-
rithmic optimization framework: fractal geomet-
rical object, tree search, scoring, exploration,
and exploitation. Section 8, instantiate some
fractal-based algorithms within Zellij. These algo-
rithms are then used in Section 9, which depicts
the experimental setup to compare fractal-based
decomposition algorithms. Section 10 analyzes
the obtained computational results on the BBOB
benchmark from the COCO framework. Finally,
we summed up in section 11, the framework,
future works and new research opportunities for
tackling high dimensional optimization problem.

2 Background and related
works

This section introduces some popular fractal-
based optimization algorithms from the meta-
heuristics family and from Lipschitzian optimiza-
tion. Various frameworks generalizing some of
these algorithms are also presented.

2.1 FRACTOP, FDA and
PolyFRAC: Fractal-based
metaheuristics

FRACTOP is one of the first metaheuristic based
on fractal decomposition [7]. It uses hypercubes to
decompose the search space, a genetic algorithm
to explore each fractal, and simulated annealing to
exploit a promising fractal. The algorithm imple-
ments a fuzzy measure, called belief, as a scoring
method to determine the fitness of a fractal. One
major drawback of this algorithm is its poor scal-
ability in high dimension, due to an exponential
complexity (2n) to build a n-dimensional partition
of equal size hypercubes.

The FDA metaheuristic partly solves the curse
of dimensionality problem of FRACTOP [8].
Instead of a hypercube-based decomposition, it
uses hyperspheres. By using such fractals, the
decomposition has a lower complexity, but at
the cost of overlapping fractals due to an infla-
tion ratio. This ratio partially reduces the lack of
space coverage implied by hyperspheres decompo-
sition. The exploration component, called Promis-
ing Hypersphere Search (PHS), computes three
points: the center of the hypersphere and two
opposite points equidistant to the center. To score
an explored fractal, FDA uses the distance-to-the-
best solution found so far. To exploit a promising
fractal, FDA applies to the smallest subspaces a
heuristic named Intensive Local Search(ILS). The
ILS is similar to a coordinate descent algorithm
and is not bounded to a hypersphere, allowing to
reach some uncovered areas of the search space.

The polyFRAC algorithm is a modification
of FDA [15]. Rather than using hyperspheres,
polyFRAC takes advantage of H-polytope frac-
tals. The algorithm computes an approximation
of these fractals, since, finding the vertices (i.e. n-
faces) of a H-polytope is a complex procedure. The
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exploration, exploitation, and scoring strategies
are similar to those of FDA.

2.2 DIRECT: Dividing Rectangles

The DIRECT algorithm is initially a modification
of the Schubert’s algorithm [16]. It assumes that
the objective function is Lipschitz-continuous,
with a positive constant K:

|f(x)− f(y)| ≤ K∥x− y∥, ∀x, y ∈ ∗

Thus, there are several advantages of such an
assumption. Indeed, it allows to easily prove con-
vergence towards a global optimum. Additionally,
the algorithm is deterministic and few hyperpa-
rameters have to be set.

Before partitioning, DIRECT samples the center
of all sub-hyperrectangles. Then, at each itera-
tion, the algorithm uses a series of trisections
on the longest sides, depending on previously
sampled centers, to subdivide the search space
into smaller hyperrectangles. DIRECT introduces
the concept of Potentially Optimal Hyperrectangle
(POH), which is a strategy that selects the most
promising fractal for further partitioning [10].
POH can be seen as the computation of a Pareto
front between the size of hyperrectangles and their
fitness values, preventing a lack of exploration due
to over-dividing small subspaces.

However, DIRECT has several drawbacks. There
is a poor balance between exploration and
exploitation, and the computation complexity is
subject to the curse of dimensionality. Many
extended versions of DIRECT have been proposed
in the literature to counterbalance some of these
drawbacks. Some of them can be considered within
our search components:

• Partitioning/Fractal: BIRECT (bisec-
tion) [17], eDIRECT (Voronöı cell) [18],
DISIMPL (simplices) [19].

• Selection/Tree search: Pareto-Lipschitzian
optimization [20], DIRECT Restart [21].

• Exploitation: DIRMIN [22].

These modifications try to overcome DIRECT’s
lower performances in high dimensions, low con-
vergence rate when trapped by local optima, or
lack of a local optimizer.

2.3 DOO, SOO, NMSO: Optimistic
Optimization

DOO and SOO claim to be a generalization of
the DIRECT algorithm. These algorithms make
a strong assumption on the existence of a semi-
metric l. This assumption simplifies the Lipschitz-
continuous property by assuming a local smooth-
ness around the global optimum x̂ [9] :

f(x̂)− f(x) ≤ l(x̂, x), ∀x ∈ Λ

DOO is used when l is known; otherwise, SOO is
more adapted. The strength of these algorithms,
is their low number of parameters and the proof of
a convergence bound. Both algorithms are deter-
ministic. At each iteration and at each level of
the partition tree, the best fractal is selected
according to the evaluation of a representative
solution inside it (e.g. center). In SOO, the balance
between exploration and exploitation relies on
the tree search algorithm. It consists in selecting,
within the tree and in descending order, the best
fractal at each level only if no other fractals from
previous levels are better. In addition, a stochas-
tic version called Sto-SOO has been designed for
noisy loss function, where each fractal has to be
evaluated multiple times [23].

Another optimistic optimization algorithm, based
on a SOO scheme and named Naive Multi-scale
Search Optimization (NMSO) [24], performs well
on black-box optimization with expensive func-
tions and a low budget. It uses a trisection,
and more generally, k-section, to partition the
space into hyperrectangular subspaces. NMSO
computes the center of each hyperrectangle as
its representative point and a tree data-structure.
NMSO, compared to SOO, tends to be more
exploitive by favoring deep trees. However, com-
pared to DIRECT and SOO, NMSO has more
parameters; a total of four, impacting its sensitiv-
ity, the exploration-exploitation tradeoff and the
partition size.

2.4 Frameworks for partition-based
algorithms

One of the first frameworks proposed in 1987 by
Horst and Tuy [13, 25], precursors of branch-
and-bound [3], describes a common structure and
a proof of convergence for different partitioning
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algorithms such as the Shubert algorithm [16] or
ones within the Pintér’s class [26]. They proposed
a conceptual algorithm, including a definition of a
partition of a subset S ⊆ Λ based on boundaries
of S; ∂S. They proposed an indirect definition
of a refinement, i.e. a nested partition, using two
sets, P containing selected subsets to be refined,
and R the remaining ones. This approach was
later improved with the Divide-the-Best Algorithm
(DBA) framework [1]. DBA proposes a higher
level of abstraction by including parameters of
subsets, additional information about evaluations
(derivatives), and an improved abstraction of the
selection strategy, allowing to refine multiple sub-
sets at the same iteration. Later, in [12], a k-ary
tree structure is proposed to model a hierarchi-
cal partition of the search space. The authors
proposed the Multi-Scale Optimization (MSO)
framework and an analysis of its convergence using
the Hölder condition, boundedness and sphericity
of subspaces. Conversely to previously described
works, we cannot propose a theoretical conver-
gence within our framework, as we cannot ensure,
for all cases described in section 4, that the global
optima x̂ is always reachable. Modeling heuristics
comes at the expense of ensuring a proof of global
convergence.

Other more specific studies [27, 28], proposed
to break-down DIRECT-based algorithms into a
partitioning strategy, i.e. the partition and eval-
uation of a subset, and selection scheme, i.e.
our tree search component. The authors pro-
posed a different combination of three selection
and partitioning strategies. The three investigated
selection strategies are an improvement of the
POH from DIRECT, an aggressive one, and a
two-step-based Pareto selection. Concerning, the
partition, the selection can be combined with
bisections, 1-dimensional trisection (e.g. SOO)
and n-dimensional trisections (e.g. DIRECT). The
proposed algorithms can sample the center of
the hyperrectangles, two diagonal points or two
vertices. By combining, these components, they
designed 12 different DIRECT-type algorithms
and showed that proper combination of algorith-
mic components result in different behaviors and
performances on specific problems and situations.

These, works and frameworks pave the way toward
hyperheuristics and automated design of opti-
mization algorithms based on the partition of the

search space. Decomposing this family of algo-
rithms into search components, might result in
similar works about hyperheuristics applied to
population-based metaheuristics [29].

3 Zellij: A fractal-based
decomposition algorithmic
framework

This section introduces the basic concepts and
search components of the Zellij framework.

Definition 1 (Search space). Let us define a
continuous search space Λ of dimension n as a
bounded subset of a metric space:

Λ = L× U =

n∏
i=1

[li, ui] , (2)

with L,U ⊂ Rn, the infima and suprema, such that
∀i ∈ [1, ..., n], li < ui and ∀x ∈ Λ, ∀i ∈ [1, ..., n],
li ≤ xi ≤ ui .

For convenience, we consider a measure set
(Λ,Σ, µ), where Σ is a σ-algebra on the power set
of Λ and µ is a measure.

Definition 2 (Fractal). A fractal S is :

1. a subset of a search space : S ⊆ Λ

2. a non-empty set : S ̸= ∅

3. mesurable : S ∈ Σ

4. a child of an ancestor fractal (parent) denoted
AS.

5. a node of a rooted tree T structure : S ∈ T

6. the root of T if S = Λ

7. characterized by a set of m properties com-
puted using inheritance of AS: P (S,AS) :=
{p1(S, p1(AS , . . . )), . . . , pm(S, pm(AS , . . . ))}.

In our framework, a fractal S, is a self-similar geo-
metrical object which does not depend on any
information besides the nature of its ancestor. As a
simple example, decomposing a hypercube (i.e. n-
cube) into smaller hypercubes of equal size, relies
solely on the boundaries of the parent. The inher-
itance from the parent AS during the creation
of S is the only acceptable transfer of informa-
tion between fractals. This is modeled by the
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properties P (S,AS). However, a child S can only
compute its properties by considering AS and
cannot append P (AS ,AAS

), so to prevent com-
binatorial explosion. The number of properties m
is globally fixed for all fractals. The inheritance
prevents communication overhead during paral-
lelization of any fractal-based algorithm. This
inheritance-only mechanism has some drawbacks,
as we cannot model algorithms based on shared
information between fractals. For example, the
Multilevel Coordinate Search algorithm [30] can-
not be modeled. Indeed, points are sampled after
the creation of a fractal and at the borders of
hyperrectangles, so they can belong to different
fractals, involving transfer of information between
already created fractals.

Five properties characterize a fractal partition-
ing: partition size, building complexity, coverage,
overlap, and memory complexity (see Table 1 and
Figure 5). Coverage and overlap are measures
defined in Section 4 and bounded to improper par-
titions. These two properties are the consequences
of modeling heuristic approaches. Indeed, unlike
existing mathematical frameworks [1, 12, 13],
some parts of fractals can be outside their parents,
and can overlap. Two fractals with overlapping
boundaries can be considered as a special case of
negligible overlapping. Therefore, we do not define
the boundaries of a fractal S, often written as a
function of S: ∂S [13], δ(S) [1], β(S) [12]...

The decomposition of the search space can be
defined by a k-ary rooted partition tree [12]. The
root represents the initial complete search space,
Λ, and nodes correspond to the generated frac-
tals. The design of a tree search algorithm is
crucial to efficiently explore and exploit the frac-
tals. By introducing pruning strategies, one can
reduce the search space and tackle memory issues,
by eliminating some fractals. Popular tree search
algorithms are Best First Search (BFS) [31], Beam
Search [32] or Epsilon Greedy Search [33].

In the design of an optimization algorithm, high
performance requires a trade-off between the
exploration of the search space and the exploita-
tion of the acquired knowledge. One has to find
the best strategy for this dilemma [2–4, 34]. Explo-
ration (i.e. diversification) of the search space
allows one to obtain new knowledge. Non-explored

fractals must be visited to ensure that all frac-
tals are evenly explored and that search is not
confined to a reduced number of fractals. Exploita-
tion (i.e. intensification) into a reduced region of
the search space uses that knowledge (e.g. best
found fractals) to improve it. The promising frac-
tals are searched more thoroughly in the hope to
find better solutions.

Sampling in high dimensional search spaces is a
critical task. Moreover, one does not sample in
the same way in a hypercube or in a hypersphere.
In DIRECT [10] and SOO [9], only the centers of
the hyperrectangles are used in sampling. In our
framework, we consider both deterministic and
stochastic sampling. We also consider unique or
multiple points methods to sample inside a frac-
tal. The sampling process is essential for both
exploration and exploitation search components.

The exploration can be done in a passive way (e.g.
Markov Chain Monte Carlo (MCMC) sampling,
low discrepancy sequences [35]) or in an active
way (e.g. metaheuristics [2, 3, 36], surrogate-based
optimization [6]). The challenge here is to find effi-
cient sampling algorithms for diverse and complex
fractals such as polytopes.

When a fractal reaches the maximum depth of the
partition tree, an exploitation algorithm can be
applied to it. The exploitation phase has not to
be constrained within a fractal. The only bounds
will be ones from the initial search space so that
the exploitation can move freely toward a local
or global optimum. One can use local search
strategies such as gradient-based algorithms or
simulated annealing [2, 3, 36].

The role of the scoring search component is to
assign a quality, a fitness value, for a given fractal,
by using acquired knowledge following an explo-
ration phase. It can be seen as the quality value
obtained by an acquisition function in Bayesian
optimization. Many scoring methods can be used,
such as minimum, mean, median, distance-to-the-
best [8, 15], or belief [7].

The Zellij workflow is described in Figure 1. One
can identify the five search components, their
interactions and their algorithmic behaviors. The
two For each instructions correspond to line 14

and line 16 of Algorithm 1. Two tests are made
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at each iteration, the stopping criterion corre-
sponds to the while loop at line 13, and the
maximum depth test of the tree T to the line 17

in Algorithm 1.

Because each search component is independent of
another, it allows instantiating various strategies
for fractals, tree search, exploration, exploita-
tion and scoring search components. One can for
instance reproduce FRACTOP by using Hyper-
cubes, Best First Search, Belief, a Genetic Algo-
rithm (GA) for the exploration and a Simulated
annealing (SA) for the exploitation. Some search
components can be very basic. Indeed, in DIRECT
and SOO, there is no explicit exploitation strat-
egy. The exploration and scoring methods consist
in computing the center of each fractal and tak-
ing its objective value as its fitness. Other versions
of fractal-based algorithms implementing different
search components are discussed in Section 8.

To sum up, three main properties characterize
Zellij :

• Generalization: our goal is to build a
framework which unifies and generalizes
various popular fractal-based decomposition
algorithms from different communities (e.g.
global optimization, reinforcement learning,
computational intelligence).

• Modularity: the framework must be as
modular as possible, so one can easily
develop new optimization algorithms using
the fractal-based decomposition approach.

• Massively parallel: a transparent and effi-
cient parallel implementation of the algo-
rithms on various architectures (e.g. multi-
cores, GPUs). By decomposing the search
space, these algorithms create smaller sub-
problems. This is an interesting prop-
erty for their parallelization within a dis-
tributed environment. Previous works have
investigated such parallel approaches and
have demonstrated their workability [37–40].
Thus, by defining a common framework,
our long-term goal is to propose common
parallelization solutions to decomposition-
based algorithms for Peta- and Exa-scale
distributed architectures.

In the following sections, we will further describe
the five search components, and introduce some

theoretical background to fractal-based decompo-
sition algorithms.

4 Geometrical fractal object

The fractal search component within Zellij frame-
work allows structuring high dimensional search
spaces to better explore and exploit it. Several
types of fractals can be used in the decomposi-
tion of the search space, such as hyperspheres,
hypercubes or Voronöı cells (see Figure 5). This
geometrical object has a great impact on the
behaviors of fractal-based decomposition algo-
rithms. We start by describing a usual partition
of the search space Λ, for which some principles
can be found in [1, 12, 13]. To model heuristic
approaches such as FDA, we extend these previous
frameworks to improper partitions.

Definition 3 (k-partition). A k-partition of a
fractal α ⊆ Λ, can be defined by the union of
k non-empty and disjoint subspaces. These sub-
sets can be obtained by a partition operator F :
α, P (α,Aα)→ {Si}i∈[1,...k], with Si ⊂ α, and:

α =
⋃

F (α, P (α,Aα)) =

k⋃
i=1

Si , (3)

where P (α,Aα) are properties of α inherited from
its parent Aα.

Here ∀i ∈ [1, .., k], Si ̸= ∅, and
k⋂

i=1

Si = ∅. This def-

inition does not consider overlapping subspaces,

nor improper partitions; α ̸=
k⋃

i=1

Si or
k⋂

i=1

Si ̸= ∅.

For concision, we now write F (α, P (α,Aα)) as
F (α), properties of a fractal are always accessible
by any functions taking a fractal as an argument.

Additionally, all five components of our framework
can use additional information about a fractal α,
such as a measure of the size of a fractal. For exam-
ple, the σ function in DIRECT [41], with σ2 or
σ∞, measures the size of hyperrectangles. These
properties are handled by P (α,Aα).

Using a given fractal, one can build a recursive
decomposition of Λ or a decomposition of a subset
of Λ. Building a k-partition of an existing sub-
set is called a refinement. Thus, when refining a
fractal, the definition of S does not change. The
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Fig. 1: The workflow of the Zellij framework. In blue, the five search components. In orange, the tests
made at each iteration.

refinement is a self-similar object, it uses the same
definition as S to build children of a fractal; all Si

are of the same nature.

Definition 4 (Hierarchical k-refinement). Let D
be the number of successive refinements of a sub-
set Sl,j,i ⊆ Λ. We write j ∈ [1, ..., El], with El

the number of sets that have been refined l times,
and i ∈ [1, ..., k] the ith set of a k-partition of a
superset j. A hierarchical k-refinement of Sl,j,i of
maximum level D (i.e. depth) is written as:

∀l ∈ [2, ..., D − 1],

∃(x, y, j) ∈ ([1, ..., El−1], [1, ..., k], [1, ..., El]) :

Sl,x,y =
⋃

F (Sl,x,y)

=

k⋃
i=1

Sl+1,j,i

(4)

Here, a subset identified by (l, j, i) corresponds to
the fractal at level l, child number i of the frac-
tal j at level l− 1. An appropriate data structure
used to model Definition 4 is a k-ary rooted tree.
Hence, one can rewrite the initial search space Λ
as the root of this tree: S(1,0,1) = Λ, where E0 = ∅.
A fractal is now considered as a node of a k-ary
rooted tree T . Figure 2 shows an example of a
2-refinement of depth 4, of a 2D square using a
bisection, drawn as a red dotted line, along the
longest side.

For a fixed l ∈ [1, ..., D − 1], one can write the
set l of supersets (ancestors) at level l that have
children at level l + 1. Let us denote a leaf at the
level l of a tree T as ◦[l, j, i]. An interesting prop-
erty of using a k-ary tree on a k-refinement that
fully covers Λ is that the initial search space will
be equal to the union of all the leaves.
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Fig. 2: Example of a 2-refinement of depth 4, with
a bisection along the longest side.

Theorem 1. Let Λ be a search space and the
root of a k-ary partition tree T of maximum depth
D. For all 1 < l ≤ D, the union of all leaves
◦[l, j, i], children of nodes numbered by [1, ..., El−1]
as defined in Definition 4, is equal to Λ:

Λ = S(1,0,1) =

D⋃
l=2

El−1⋃
j=1

k⋃
i=1

◦[l, j, i] (5)

Proof. We consider a k-ary rooted tree T (d) of
depth d, with 1 < d ≤ D. Considering l the set
of fractals at level l having children at level l + 1:⋃

d−1 =
Ed−1⋃
j=1

k⋃
i=1

◦[d, j, i]

If we remove all ◦[d, j, i] from T d, we obtain a tree
T (d−1). So, the leaves of T (d−1) at level d− 1 can
be written as {◦[d− 1, j, i],d−1 }.

Thus,
⋃

d−2 =
Ed−2⋃
j=1

k⋃
i=1

◦[d− 1, j, i]
⋃

d−1

and so on, until T (1):

Λ =1=
k⋃

i=1

◦[2, 1, i]
⋃

2

For simplicity, one can write all leaves ◦[l, j, i] of
T (d), a tree T of depth d, as LT (d) .

As mentioned before, Theorem 1 is valid for an
exhaustive and mutually exclusive partition. This
is not the case for some fractal-based algorithms

such as FDA, which uses hyperspheres [8]. Indeed,
fractals can overlap and do not necessarily cover Λ.
Additionally, it is important to mention that, the
higher the dimension of the problem, the smaller
the covering of the hyperspheres. In FDA, the cov-
ering is increased according to a parameter, called
the inflation ratio, no matter the overlap between
fractals. However, the inflation ratio can make a
part of the hypersphere going outside Λ. In our
algorithmic framework, we consider the intersec-
tion between fractals and Λ. A fractal, or a part
of a fractal, cannot be outside the initial search
space Λ. If so, then the fractal is trimmed.

We previously described the basic principles of
fully covering fractal-based decomposition algo-
rithms. To extend our framework to improper
partitions, we have to measure what the overlap
and coverage are for fractal-based decomposition
algorithms. By considering a tree T (d) and (Λ,Σ)
a measurable set, we can write LT (d) ⊆ Σ and
LT (d) ∈ Σ. We define a measure, µ : Σ→ [0,+∞].
A stricter condition is applied to µ, µ(A) = 0 ⇐⇒
A = ∅. Hence, the result of a k-partition cannot be
made of null sets. Because F cannot produce null
sets, and because D, the maximum tree depth, is
finite, we can define a measure of the coverage of
Λ by LT (d) and their overlap.

Definition 5 (Coverage). Let (Λ,Σ, µ) a measure
space, and A,B ⊆ Λ, A,B ∈ Σ and B ⊆ A. A
measure of the coverage of A by B can be written
as:

C(A,B) = µ
(
∁AB

)
(6)

However if B ⊈ A such as in FDA:

C(A,B) = µ
(
A \

(
A
⋂

B
))

(7)

From Equation 7 we can infer B \ A, the part of
B outside A.

One can distinguish two types of coverage:
C(Λ,

⋃
LT (d)) measures the coverage of the initial

fractal by LT (d) , and C(Sl,j,i,
⋃

F (Sl,j,i)) mea-
sures the coverage of a fractal by its children.

Definition 6 (Overlap). Let (Λ,Σ, µ) a mea-
sure space, and A ̸= ∅ a countable set such that
∀n ∈ N,∀an ∈ A : an ∈ Σ and

⋃
n∈N

an ∈ Σ. A mea-

sure of the overlap between all an can be written

9



Fig. 3: 2-dimensional illustration of covering and
overlap applied on a FDA scheme.

as:

O(A) = µ

|A|−1⋃
i=1

|A|⋃
j=i+1

(
ai

⋂
aj

) (8)

Coverage and overlap properties are illustrated in
Figure 3 as a 2-dimensional FDA scheme. One can
see, in hatched-magenta, the uncovered space and
in solid-green the overlap between fractals. More-
over, because of the inflation of hyperspheres, the
gridded-gray space represents parts of the fractals
outside Λ.

As the monotonic property of measures is
not strict, A ⊆ B =⇒ µ(A) ≤ µ(B), one can-
not say that LT (d) covers Λ by only looking
at C(Λ,

⋃
LT (d)). Thus, several assumptions are

made. For continuous dimensions, we consider
that

⋃
LT (d) covers Λ if C(Λ,

⋃
LT (d)) = 0, even

if
⋃
LT (d) does not include Λ boundaries. To

describe necessary assumptions of an improper
partition, we have to redefine the partition opera-
tor F described in Definition 2.

Definition 7 (Partition operator). Consider-
ing a search space Λ and its measure space
(Λ,Σ, µ). A partition operator F is a function,
F : α, P (α,Aα)→ {Si}i∈[1,...k], describing how to
create children Si of a given fractal α ⊆ Λ such
that :

1. Children cannot be empty nor null sets:

∀i ∈ [1, . . . , k] , (Si ̸= ∅) ∧ (µ(Si) > 0)

2. The union of the children cannot be empty,
and its measure is significant:(⋃

Si ̸= ∅
)
∧
(
µ
(⋃

Si

)
> 0

)
3. The intersection between children must be

part of the search space or can be empty:(⋂
Si ⊆ Λ

)
∨
(⋂

Si = ∅
)

4. Two children are strictly different subsets,
and a child cannot be a subset of another:

∀i, j ∈ [1, . . . , k] , i ̸= j, (Si ̸= Sj) ∧ (Si ̸⊆ Sj)

5. A subset of a child must be part of its ancestor
and the measure of their intersection must be
significant:

∀i ∈ [1, . . . , k] ,(
Si

⋂
α ̸= ∅

)
∧
(
µ
(
Si

⋂
α
)
> 0

)
6. A child must be significantly smaller than its

ancestor:

∀i ∈ [1, . . . , k] , µ(Si) < µ(α)

Even if, Definition 7 allows modeling many dif-
ferent improper partitions, open questions remain
about stricter conditions that could be applied to
the definition of the partition operator. Notably,
about enforcing the part of a child outside its
parent to be significantly smaller than the part
inside it; µ (Si

⋂
α) ≫ µ (Si \ α). Which could

also be applied to all children; µ (
⋃

Si

⋂
α) ≫

µ (
⋃

Si \ α).

By using Definitions 2, 5, 6 and 7, we can now
modify Theorem 1 for an improper k-partition.

Theorem 2. Let Λ be a search space, Σ = A(Λ)
a σ-algebra on Λ, and (Λ,Σ, µ) a measure space.
Λ is the root of a k-ary partition tree T (d) of
depth d and LT (d) its leaves. C(., .) and O(., .) are
measures of the coverage and overlapping between
fractals. We suppose that LT (d) is not a null set
and µ(A) = 0 ⇐⇒ (A = ∅) ∨ (

⋃
A = ∅). Then, a

given decomposition-based algorithm is said to be:

10



1. Preservative: If the union of the leaves cov-
ers the search space;
∀d > 1, C(Λ,

⋃
LT (d)) = 0 and:

(a) Proper: If the fractals never significantly
overlap;
O(LT (d)) = 0

(b) Improper: If the fractals significantly
overlap;
O(LT (d)) > 0

Then,

µ(Λ) = µ
(⋃
LT (d)

)
(9)

2. Sacrificial: If the union of the leaves does
not cover the search space;
∀d > 1, C(Λ,

⋃
LT (d)) > 0 and:

(a) Lowly: If children do not cover their
ancestor for the first decomposition of the
search space;
∀l > 1, C(Sl,i,j ,

⋃
F (Sl,i,j)) = 0 and

C(Λ,
⋃

F (Λ)) > 0. Then,

µ(Λ) > µ
(⋃
LT (d)

)
(10)

with ∀d > 1, µ (
⋃
LT (d)) ≤ µ (

⋃
LT (d+1))

(b) Highly: If after every refinement children
do not cover their ancestor;
∀l > 1, C(Sl,i,j ,

⋃
F (Sl,i,j)) > 0 and⋃

F (Sl,i,j) \ Sl,i,j = ∅. Then, ∀d > 1,

µ(Λ) > µ
(⋃
LT (d)

)
> µ

(⋃
LT (d+1)

)
(11)

(c) Unbounded: If after every refinement a
part of the children are outside their
ancestor;
∀l > 1, C(Sl,i,j ,

⋃
F (Sl,i,j)) > 0 and⋃

F (Sl,i,j) \ Sl,i,j ̸= ∅. Then, we cannot
infer any relations between measures of
the leaves:

µ(Λ) > µ
(⋃
LT (d)

)
⋚ µ

(⋃
LT (d+1)

)
(12)

Proof. We consider a k-ary rooted tree T of depth
d, with 1 < d ≤ D. This tree is denoted as T (d),
and the leaves of T (d) as LT (d) . One can consider
a partitioning function F defined by Equation 3.

Preservative:
If ∀d > 1, C(Λ,∪LT (d)) = 0.
Then Λ = ∪LT (d) , because by construction
∪LT (d) ⊆ Λ and

C(A,B) = 0 ⇐⇒ µ
(
A \

(
A
⋂

B
))

= 0

⇐⇒ A = B

So, we have:

Λ =
⋃
LT (d) =⇒ µ(Λ) = µ

(⋃
LT (d)

)
Lowly sacrificial:
If ∀d > 1, C(Λ,∪LT (d)) > 0 and
C(Sd,j,i,∪F (Sd,j,i)) = 0. Then, Λ ⊃ ∪LT (d) =⇒
µ(Λ) > µ (∪LT (d))
and ∪LT (d) ⊆ ∪LT (d+1) .
So we have,

∀a ∈ LT (d) , F (a) ∈ LT (d+1)

=⇒ µ(a) ≤ µ
(⋃

F (a)
)

=⇒ µ
(⋃
LT (d)

)
≤ µ

(⋃
LT (d+1)

)
Highly sacrificial:
If ∀d > 1, C(Λ,∪LT (d)) > 0, C(Sd,j,i, F (Sd,j,i)) >
0 and ∪F (A) \ A = ∅ (Subsets cannot have solu-
tions outside their parents).
Then, Λ ⊃ ∪LT (d) =⇒ µ(Λ) > µ (∪LT (d))
and ∪LT (d) ⊃ ∪LT (d+1) .
So we have,

∀a ∈ LT (d) , F (a) ∈ LT (d+1)

=⇒ µ(a) > µ
(⋃

F (a)
)

=⇒ µ
(⋃
LT (d)

)
> µ

(⋃
LT (d+1)

)
Unbounded sacrificial:
If ∀d > 1, C(Λ,∪LT (d)) > 0, C(Sd,j,i, F (Sd,j,i)) >
0 and ∪F (A) \A ̸= ∅.
Then, Λ ⊃ ∪LT (d) =⇒ µ(Λ) > µ (∪LT (d))
and ∪LT (d) ⊃ ∪LT (d+1) . If µ (∪F (A) \A) = 0,
then the part of F (A) outside A is negligible, so

11



behaviors are similar to highly sacrificial:

∀a ∈ LT (d) , F (a) ∈ LT (d+1)

=⇒ µ(a) > µ
(
F (a)

⋂
a
)
+ µ

(⋃
F (A) \A

)
=⇒ µ(a) > µ

(⋃
F (a)

)
=⇒ µ

(⋃
LT (d)

)
> µ

(⋃
LT (d+1)

)
Otherwise, if µ (∪F (A) \A) > 0, then we need
additional information or constraints to determine
the inequalities.

This theorem describes behaviors of an improper,
k-refinement where leaves might overlap or not
fully cover the initial search space. Preservative
algorithms describe a partition that covers Λ no
matter whether there is overlap between leaves or
not, as we consider ∪LT (d) . The proper preserva-
tive situation, is comparable to previous frame-
works [1, 12, 13], where two fractals, A and B, are
disjoint if and only if: A∩B = β(A)∩β(B), where
β are the boundaries of a fractal. So A ∩ B ̸= ∅
but the overlap is negligible, µ(β(A) ∩ β(B)) = 0.

However, low-sacrifice based algorithms describe
leaves of the tree that do not fully cover Λ, but
where children of the fractal cover its parent.
In this case, one accepts to lose a part of the
search space at the first refinement of Λ. Then
future refinements should not sacrifice solutions
anymore.

For high-sacrifice based algorithms, one only con-
siders fractals that cannot expand outside their
parents. If so, it becomes hard to define the notion
of sacrifice, as we can imagine a decomposition
where successive children do not fully cover their
parents and shift outside an ancestor fractal. This
can be the case in unbounded situations, where
fractals can cover solutions outside the parent
space. One should be aware of these properties,
and determine if it is acceptable to lose some solu-
tions to carefully choose the right decomposition
function F .

According to Theorem 2, let us consider an initial
search space Λ defined by a hypercube. In FDA [8],
the algorithm considers the inscribed hypersphere
as the initial search space. The algorithm accepts
to ”sacrifice” points between the hypercube and
the inscribed hypersphere to perform an improper

k-refinement using hyperspheres. To overcome
this, the exploitation phase of FDA can ignore
fractals’ borders, so it can reach uncovered solu-
tions.

These different situations are described in
Figure 4. Proper preservative in Figure 4a based
on SOO, preserve the initial search space Λ, no
space is lost. Improper preservative algorithms
in Figure 4b illustrate a case where overlapping
fractal fully cover Λ. Low sacrifice fractals, on
Figure 4c, are here based on Sierpinski triangles.
Such fractals sacrifice space of Λ to use a geometry
based on triangles. And finally, the examples on
Figure 4d and 4e, based on an FDA scheme, sac-
rifice space after each refinement. The unbounded
sacrificial example shows how difficult it can be to
describe overlapping and coverage when children
can expand outside their ancestors.

The main challenge when selecting a type of
fractal is its scalability in dimension. Scalability
can be measured by three properties defined in
Table 1: the partition size k, the building com-
plexity O(F ) and the data structure. According
to the partition size property, the hypercube [7]
and simplices [19] are not scalable for high dimen-
sional search space. This non-scalability impacts
the complexity of the partitioning function F .

According to the building complexity property
O(F ), the Voronöı cell needs a particular close
attention. Indeed, most of the algorithms used for
computing the Voronöı diagram are well studied
for 2D and 3D (e.g. QuickHull [42], Fortune’s algo-
rithm [43], Bowyer-Watson algorithm [44]). How-
ever, they suffer from the curse of dimensionality.
Hence, one has to use heuristics to create such
fractals. Indeed, one cannot build the exact dia-
gram in high dimensions [18, 45–48], and then one
has to use stochastic methods to build an approx-
imation, such as SpokeDart with hyperplane sam-
pling [46]. We distinguish two approaches, the
fixed (Figure 5f) and dynamic (Figure 5e) Voronöı
diagrams. In the fixed Voronöı diagram, a child
cell will inherit its parent’s boundaries, whereas
in the dynamic diagram, when building a child,
the whole diagram is re-computed to consider
children’s boundaries. This approach implies vari-
ations of the borders of fractals. In a dynamic
approach, a Voronöı cell is a very complex type
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(a) Proper preservative (b) Improper preservative

(c) Lowly sacrificial (d) Highly sacrificial

(e) Unbounded sacrificial

Fig. 4: 2-dimensional illustrations of Theorem 2.
The hatched-magenta area corresponds to uncov-
ered space resulting from successive decompo-
sition: C(Λ,∪LT (d)). Solid-green corresponds to
overlapping: O(LT (d)).

of fractal, as its definition depends on varying
information on other fractals. For example, when
recomputing the diagram, points sampled in a
dynamic Voronöı cell, can be relocated to other
ones. Whereas in the fixed approach, once a frac-
tal, i.e., a Voronöı cell is built, then its borders
cannot be changed anymore. Other hypervolumes
showed in Figure 5 are easier to compute, and
further details can be found in [7, 8, 10].

(a) (b) (c)

(d) (e) (f)

Fig. 5: Various examples of fractals in 2 dimen-
sions: (a) hypercubes, (b) bisections, (c) trisec-
tions, (d) hyperspheres, (e) dynamic Voronöı, (f)
fixed Voronöı.

Furthermore, if we look at the coverage and over-
lap properties, one can clearly see the major draw-
back of hyperspheres compared to other hypervol-
umes. C(Λ,LT (d)) and C(Sl,j,i,

⋃
F (Sl,j,i)) mea-

sure the uncovered space. If these measures are
strictly superior to 0, then the partition does not
fully cover the search space or a parent fractal.

According to [8], the inflation ratio applied on
n-spheres can reduce the substantial lack of cov-
erage by increasing the overlap. However, we have
to mention the impact of the curse of dimension-
ality on such objects. Indeed, if we look at the
Hausdorff measure of a unit n-ball, the n-volume
and the n-surface tend to zero as the dimension
tends to infinity. This can explain the empirical
results obtained in this paper, indicating that the
deeper is the decomposition tree, the lower FDA
performs.

Figure 5 illustrates that 2D representations are
misleading. Even if they are intuitive and allow to
better understand basic principles, we cannot infer
what will happen in n-dimension by only looking
at 2D or 3D drawings. Thus, the choice of a fractal
can be informed by carefully examining the six
properties defined in Table 1.
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Table 1: Example of fractals and their properties

Sl,j,i n-cube Trisection Bisection n-sphere Voronöı Simplex

Partition
size

k 2n 3 2 2n c a n!

Partition
building
complex-

ity

O(F ) O(2n) O(n) O(n) O(n) O(2n) b O(n! )

Coverage
of Λ

C(Λ,
⋃
LT (d)) 0 0 0 > 0 0 0

Children
coverage

C(A,
⋃

F (A)) 0 0 0 > 0 0 0

Overlap O(LT (d)) 0 0 0 > 0 0 or > 0 c 0

Data
structure

∅
center
and side
length

2 points
of size n

2 points
of size n

center
and

radius
See c

n+ 1
points of
size n

Examples ∅ [7] [9] [17] [8] [15, 18] [19]

aNumber of centroids defined by the user.
bValid for usual algorithms, we can reduce this complexity by approximating the Voronöı diagram in high dimensions. This

complexity, also depends on c, the number of centroids. But here we consider the complexity depending on the dimension n.
cIt depends on the algorithm used to compute the diagram. It can be a set of vertices for the QuickHull algorithm or a set of

hyperplanes for sampling methods. An exact algorithm or a heuristic approach impacts the properties.

5 Tree search

One can define a tree search algorithm as a func-
tion τ which selects Q unique fractals among all
LT (d) according to a vector of size s = |LT (d) | :

τ : LT (d) , P (LT (d)), Rs → {e1, ..., eQ} , (13)

where ∀q ∈ [1, ..., Q] : eq ∈ LT (d) , 1 ≤ Q ≤ s. The
vector Rs resulting from the scoring search compo-
nent describes the quality value of each leaf. The
properties of the leaves are denoted P (LT (d)) =
{P (a,Aa) | ∀a ∈ LT (d)}

One can instantiate tree search algorithms using
an OPEN and CLOSED lists [31]. The OPEN list con-
tains non-explored or non-exploited fractals. The
CLOSED list contains expanded fractals. Thus, the
tree search component is a rule defining how to
append non-expanded fractals to these lists, and
how to select them. The CLOSED list is gener-
ally used to prevent the algorithm from selecting
expanded fractals.

When building a k-refinement, tree search algo-
rithms are crucial and have an impact on the
exploration and exploitation tradeoff. In the
DIRECT algorithm, this issue is tackled by the
POH strategy, and many variations of DIRECT
are based on this selection strategy [21, 41]. The
FDA algorithm uses a sorted depth first search,
called Move-up, which favors the selection of
deep fractals. The FDA algorithm focuses on the
exploitation phase applied at the last levelD. Such
strategy impacts the capacity of the algorithm to
efficiently explore the search space.

Moreover, Breadth First Search (BrFS) is totally
useless in our case. Indeed, all fractals at a certain
level will be decomposed before selecting frac-
tals of the next level. Thus, Depth First Search
(DFS) can be considered a greedy exploitation
only, whereas BrFS can be qualified as a greedy
exploration only algorithm [49]. Both strategies
are ineffective, as the scores given to fractals do
not impact the selection. We lose the notion of
hierarchy between fractals.
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(a) (b) (c)

(d) (e) (f)

Fig. 6: Fractal decomposition with hypercubes
applied on 2D Styblinski-Tang function with var-
ious tree search: (a) Depth First Search, (b)
Breadth First Search, (c) Best First Search, (d)
Beam Search, (e) Cyclic Best First Search, (f)
Epsilon Greedy Search.

A tree search algorithm can be characterized by its
balance between exploration and exploitation of
the tree. Thus, one efficient and easy to use algo-
rithm, which can replace DFS or BrFS, is the Best
First Search [31] algorithm. Some of these tree
search are stochastic (e.g. Epsilon Greedy Search,
Diverse Best First Search [50]) or, others, allow
having the hand on the exploration-exploitation
tradeoff (e.g. Cyclic best First Search [51]). The
notion of sacrifice defined in Theorem 2 also
concerns tree search algorithms and pruning tech-
niques. For time and memory complexity reasons,
it can be necessary to prune some leaves. For
instance, in the Beam Search algorithm [32], only
a given number of leaves are stored.

Figure 6 illustrates how the tree search algorithm
impacts the behaviors of fractal decomposition-
based algorithms. One can clearly see the differ-
ence between depth and breadth first search. BrFS
explored the entirety of each level before tackling
the next one, no matter the hierarchy. Whereas
DFS is focused on the deepest fractal.

6 Scoring fractals

The tree search component needs a heuristic value
determining how promising a fractal is. We define

a scoring method γ which takes a set of solutions
restricted to a fractal and assigns a quality value.
Such as in [1, 13], γ is similar to the character-
istic value defining the probability that a fractal
contains the global optimum:

γ : α, P (α,Aα), R, f |α (R)→ R (14)

The scoring method γ takes a fractal α, a sample
of solutions R restricted to the region of α, and
their corresponding objective values f |α (R). The
properties of the leaves, denoted P (α,Aα), can
also be considered. The function returns a score
within R which defines the quality of α.

For DIRECT and SOO, γ returns f(x), with x
the center of the fractal. In FRACTOP, the Belief
is used. It depends on a fuzzy measure computed
with the best evaluation found so far, and sampled
points within the fractal. This score has the par-
ticularity to inherit a part of the parent’s score.
In FDA, the algorithm maximizes the distance-to-
the-best solution found so far among all sampled
solutions.

The combination between τ and γ is essential, and
has different purposes concerning the exploration
and exploitation tradeoff. Finally, τ and γ can use
additional information, such as a measure of the
size of a fractal. For example, the σ function in
DIRECT, with σ2 or σ∞, measures the size of
hyperrectangles according to their level and the
length of their longest side [41]. We can notice that
for a fractal for which its children are smaller and
of identical size (regularity), the level of a fractal
can be considered as a measure of its size. This
is the case for FDA, but not in DIRECT and for
Voronöı fractals.

7 Exploration and
exploitation strategies

The exploration Explore and exploitation Exploit
search components can be defined by the following
functions applied on a fractal α:

Explore : α, P (α,Aα)→ R, f |α (R)

Exploit : α, P (α,Aα)→ R, f |α (R) ,
(15)

where R is a set of sampled point restricted to the
region of the fractal α.
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To assess the potential of a fractal, one has to sam-
ple relevant solutions from it. This is the purpose
of the Explore function. For instance, FRACTOP
uses a genetic algorithm, whereas in FDA, three
fixed solutions are computed.

Sampling in hyperrectangles or hypercubes is
a simple procedure. One can apply all sam-
pling methods or metaheuristics using infima and
suprema. For example, low discrepancy sequences
such as Sobol, Halton, and Kronecker methods
can be used [35]. Sampling in a hypersphere
requires a few tricks to satisfy the equation of
a n-ball. The Box-Muller method can be a solu-
tion [52–54]. However, sampling inside a Voronöı
cell (i.e. polytope) is a complex procedure. One
could use methods to approximate the Lebesgue
measure [55], hit-and-run sampling [56], hyper-
planes sampling [46], or MCMC sampling [57].
For active algorithms, such as metaheuristics (e.g.
local search, evolutionary algorithms, swarm opti-
mization), one must adapt the search operators
(e.g. neighborhood, mutation, crossover, velocity
update) to the type of fractal.

Finally, if the algorithm lacks of exploitation,
one could apply an exploitation algorithm within
leaves. In our framework, this algorithm is named
Exploit. Such a function starts from a solution
within a leaf fractal and if needed can ignore its
boundaries to converge towards an optimum. This
is the case for FRACTOP and FDA algorithms.

It is a thorough task to select an exploration
and an exploitation search components. In our
framework, the exploitation search component
is exclusively applied to fractals of maximum
depth to emphasize the search around promising
areas. Consequently, it is appropriate to allocate
larger budget to the exploitation compared to the
exploration strategy within each fractal. However,
according to the cost of the objective function, the
maximum depth of the tree or the partition size
(i.e. number of children per fractal), one should
carefully choose the budget of the exploration and
exploitation. Indeed, a budget that is too high for
the exploration search component, can result in
a low exploitation phase. Whereas, a budget that
is too low for the exploration phase, can result in
expensive exploitation in low confidence areas.

Algorithm 1 Fractal-based decomposition algo-
rithm

Inputs:
1: Λ Initial search space
2: D Maximum depth
3: F Fractal decomposition function
4: Explore Exploration strategy
5: Exploit Exploitation strategy
6: τ Tree search
7: γ Scoring

Outputs: x̂ Best solution found
8: x̂←∞
9: OPEN← {Λ} List of non-expanded fractals

10: CLOSED← {·} List of expanded fractals
11: current← {Λ}
12: scores← {+∞}
13: while stopping criterion not reached do
14: for each leaf ∈ current do
15: children← F (leaf) Decomposition
16: for each child ∈ children do
17: if level(child) < D then
18: R, values← Explore(child)
19: score← γ(child, R, values)
20: Append child to OPEN

21: Append score to scores

22: if min(values) < x̂ then
23: x̂← min(values)

24: else
25: values← Exploit(child)
26: if min(values) < x̂ then
27: x̂← min(values)

28: Append leaf to CLOSED

29: index← Index of leaf in OPEN

30: Remove element at index from OPEN

31: Remove element at index from
scores

32: current← τ(OPEN, scores)
return x̂

8 Instantiating algorithms
within Zellij

This section introduces how to instantiate some
popular fractal-based optimization algorithms
within Zellij. Moreover, it shows how one can
extend these algorithms using various search
strategies for the different components. These
algorithms are presented, per search components,
in Table 2
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8.1 FDA

FDA decomposes the search space Λ by using
2n hyperspheres. The initial center C1 of Λ is
computed by C1 = L + U−L

2 . The radius of the

hypersphere of center C1 is r1 = U−L
2 . So the

region of Sl,i,j is defined by the hypersphere of
center Cl,i,j and its radius rl at level l. To simplify
notation, only C.,.,. are considered instead of the
region S.,.,.. Centers are points of size n from the
search space, C.,.,. ∈ Λ. The partition operator F
is defined by:

F (Cl,.,.) ={Cl+1,.,j | ∀j ∈ [1, . . . , n],

Cl+1,.,j = Cl,.,. + (−1)j(rl − rl+1)e⃗j} ,

where e⃗j is the unit vector at dimension j and
rl+1 = rl

1+
√
2
.

The PHS, i.e. the exploration component, consists
in computing the center of the current hyper-
sphere and two symmetrical points. So, Explore :
Sl,i,j , P (Sl,i,j ,ASl,i,j

)→ R, f |Sl,i,j
(R), where

R =

{
Cl,i,j − λ

rl√
n
, Cl,i,j , Cl,i,j + λ

rl√
n

}
,

where λ > 1 is the inflation ratio.

From these 3 sampled points, the scoring method
is defined by taking the maximum of a slope, such
that,

γ : Sl,i,j , R→ max
r∈R

(
f(r)

∥r − BSF∥

)
,

where BSF is the best solution found so far.

Concerning the tree search component, i.e. Move-
Up, it is comparable to a sorted Depth First
Search algorithm. Here, the best fractal of maxi-
mum current depth d is selected at each iteration,
only if it is not a fractal of maximum depthD. The
Move-Up algorithm is described in Algorithm 2

The exploitation component, i.e. ILS, which is
similar to a coordinate search is defined in [8, 40].

Algorithm 2 Move-Up

Inputs:
1: LT (d) Leaves
2: d Current depth
3: D Maximum depth
4: γ Scoring component
5:

Outputs: α Selected fractal
6: if d = D then
7: depth← d− 1
8: else
9: depth← d

10: α← ∅
11: while (α = ∅) ∧ (depth>1) do
12: leaf = {Sdepth,i,j | ∀i, j, Sdepth,i,j ∈ LT (d)}
13: α← argmin

a∈leaf
(γ(a))

14: depth← depth− 1
return α

8.2 SOO and NMSO

SOO and NMSO divide the search space Λ by
using trisections (K = 3) along the current longest
side. Similarly to the Definition 1, here the region
of a fractal Sl,i,j is defined by a hyperrectangle of
bounds Ll,i,j and Ul,i,j . So the simplified partition
operator can be written,

F ((Ll,i,j , Ul,i,j)) = {(Ll,i,j + k · λ · e⃗λ,
Ul,i,j − (K − k − 1) · λ · e⃗λ)}k∈[0,···,K−1] ,

where λ is the index of the longest dimension of
Sl,i,j e⃗λ is the unit vector at λ.

The exploration component of SOO and NMSO,
consists in computing the center of each frac-
tal. So, Explore : Sl,i,j , P (Sl,i,j ,ASl,i,j

) →
R, f |Sl,i,j

(R), where

R =

{
Ul,i,j − Ll,i,j

2

}
,

Then, the scoring component is the objective value
of the center γ : Sl,i,j , R → f(R). The tree
search of SOO consists in selecting, within the
tree T (d) in a top-down manner, the best fractal
at each level only if it is better than all fractals
of previous levels. This component is described in
Algorithm 3.
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Algorithm 3 SOO tree search

Inputs:
1: LT (d) Leaves
2: d Current depth
3: D Maximum depth
4: γ Scoring component
5:

Outputs: A Selected fractals
6: depth← 1
7: vmax ← +∞
8: A← {·}
9: while depth < min(d,D) do

10: leaf = {Sdepth,i,j | ∀i, j, Sdepth,i,j ∈ LT (d)}
11: α← argmin

a∈leaf
(γ(a))

12: if (α ̸= ∅) ∧ (γ(α) ≤ vmax) then
13: A← A ∪ {α}
14: vmax ← γ(α)

15: depth← depth+ 1
return A

The tree search of NMSO is more complex, we give
here an overview of the algorithm, more details
about the implementation are found in [24] and
their source code 2. This component balances in
width and depth exploration of T (d), by build-
ing sequences of depth first search selection. Then
according to criteria based on the slopes between
centers of the children of a fractal, and their
sizes, NMSO restarts a new sequence from one of
the highest (low level), non-expanded fractal. The
fractals from stopped sequences are put in a bas-
ket. If after a certain number of iterations these
leaves from the basket are visited a certain num-
ber of times according to their quality, then they
are selected to resume the stopped sequences.

SOO and NMSO do not have any exploitation
component. The balance between exploration and
exploitation is mainly guided by the tree search
component.

8.3 DIRECT

The instantiation of DIRECT within Zellij is
based on the following user guide [58]. Like
SOO and NMSO, DIRECT is based on trisec-
tions applied to hyperrectangle of bounds Ll,.,.

and Ul,.,. for a level l. The partition operator

2https://github.com/ash-aldujaili/NMSO/tree/master

requires the exploration of the fractal to sort the
dimensions of maximal sizes of a given fractal.
Then, a series of trisections along all dimensions
of maximal sizes, is iteratively applied on the
resulting central hyperrectangles. The exploration
of a fractal Sl,.,. can be written has: Explore :
Sl,.,., P (Sl,.,.,ASl,.,.

)→ R, f |Sl,.,.
(R), where

R = {Cl,.,. − λe⃗j , Cl,.,. + λe⃗j}j∈I ,

with the center of a fractal Cl,.,. =
Ul,.,.−Ll,.,.

2 ,
the set I containing the indices of the dimen-
sions of maximum size for a given fractal, I =
argmaxi∈[1,···,n](Ul,.,.[i] − Ll,.,.[i]), and λ is equal
to one third of the longest side of a given fractal,
λ = max(Ul,.,. − Ll,.,.)/3. Once, a hyperrectan-
gle has been explored, the resulting points along
all dimensions of maximum sizes are used to iter-
atively trisects the fractal, refer to [58] for more
details.

The tree search algorithm of DIRECT is complex
and bounds the Lipschitz constant of leaves LT (d)

by building the set of POHs, i.e. a tradeoff between
the score of a fractal and its size. The selection
of POHs is described in Algorithm 4 and is based
on [58]. For each leaf, the algorithm builds three
sets of fractals according to their size. One set is
made of leaves that are of equal size and two others
are made of leaves that are bigger, respectively
smaller, than the current leaf. Then, by computing
different inequalities, the algorithm determines if
the Lipschitz constant can be bounded or not. So,
here we have to include the size of fractals to their
properties, P (Sl,.,.,ASl,.,.

) = σ(Sl,.,.), where σ is
a measure of the size of a hyperrectangle [41]. In
the pseudocode the best fractal found so far (the
best center) is denoted BSF, ϵ > 0 is a small value
defining how a score of a fractal should exceed BSF

to be considered better.

As SOO and NMSO, the scoring of a fractal is
the objective value of its center, and there is no
exploitation component.

Two extensions of DIRECT, known as Locally
biased DIRECT (DIRECT-L) [41], and DIRECT
restart(DIRECT-R) [21], slightly modify Algo-
rithm 4 and the measure σ, to obtain different
behaviors.
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Algorithm 4 POHs

Inputs:
1: LT (d) Leaves
2: d Current depth
3: D Maximum depth
4: γ Scoring component
5: ϵ
6:

Outputs: A POHs
7: A← {·}
8: for each a ∈ LT (d) do
9: I1 = {b | ∀b ∈ LT (d) , σ(b) < σ(a)}

10: I2 = {b | ∀b ∈ LT (d) , σ(b) > σ(a)}
11: I3 = {b | ∀b ∈ LT (d) , σ(b) = σ(a)}
12: if γ(a) ≤ γ(b), ∀b ∈ I3 then

13: maxI1 = max
b∈I1

(
γ(a)−γ(b)
σ(a)−σ(b)

)
14: minI2 = min

b∈I2

(
γ(b)−γ(a)
σ(b)−σ(a)

)
15: if BSF = 0 then
16: err = −ϵ+ γ(BSF)−γ(a)

|γ(BSF)| +
σ(a)·minI2

|γ(BSF)|
17: else
18: err = −γ(a) + σ(a) · minI2
19: if (minI2−maxI1 > 0)∧(err ≥ 0) then
20: A← A ∪ {a} a is a POH

return A

8.4 Modifications of popular
fractal-based algorithms

Thanks to our generic framework, we have mod-
ified some previous algorithms to illustrate the
flexibility of Zellij. Concerning FDA, we decided
to replace the Move-Up algorithm, by a Q-Best-
First-Search (Q-BFS), which is a greedy algorithm
consisting in selecting the Q best nodes from LT (d)

at each iteration (FDA-BFS, FDA-DBFS). The
same replacement was applied to SOO (SOO-
BFS). The advantage of using Q-BFS, instead of
Beam search for example, is that all fractals are
kept. So for SOO, the entirety of the search space
is still accessible, Q-BFS might modify its rate of
convergence.

We also tested FDA and FDA-DBFS using deep
trees, i.e. the maximum depth D was set to 5 for
FDA and FDA-BFS, and to 10 for FDA-D and
FDA-DBs. Additionally, we replaced the distance-
to-the-best scoring (γ) of FDA by a centered
version of it (FDA-C). The measure is centered on

the best solution found so far,

γ : Sl,i,j , R→ min
r∈R

(
f(r)− f(BSF)

∥r − BSF∥

)
.

In the original version of FDA, as the algo-
rithm selects the highest ratio, the one associated
to a better solution can be considered as non-
promising if the point is far from BSF, whereas a
bad solution can be considered as good if it is close
to BSF.

9 Experimental setup

The objective of these comparisons is to illus-
trate the workability of our software framework
by instantiating several popular algorithms within
the Zellij framework. One can also evaluate their
scalability and their sensitivity according to the
different search components: fractal, tree search,
scoring, exploration and exploitation components.
We summed-up all 11 implemented algorithms
and their different search components in Table 2.

Thus, the optimization algorithms were evalu-
ated on the BBOB benchmark from the Com-
paring Continuous Optimizer framework [60].
This benchmark is made of 24 functions with
peculiar properties such as, separability, ill-
conditioning, multi-modality and weak structured
multi-modality. Each function has 15 different
instances, and are available for 6 dimensions,
n ∈ {2, 3, 5, 10, 20, 40}. COCO compares algo-
rithms on the number of solved problems, under a
given tolerance ∆f = 10−8, such that,

f(x̂) ≤ f(x⋆) + ∆f , (16)

where x⋆ is the known global optimum and f(x̂)
is the acceptable optimum to consider a prob-
lem as solved. Then COCO computes a metric
called the Expecting Running Time (ERT), based
on the number of problems solved and the budget
of the optimization. Here, the budget, budget, is
the number of function evaluations and depends
on the dimensionality of the problem, budget =
104 · n, as in [24].

COCO is based on the number of problems solved.
Hence, to extend the comparison, we also analyze
the best solutions found for all problems, which
might not follow the equation 16. To do so, we

19



Table 2: Instantiated algorithms using Zellij

Algorithm Fractal
Tree
Search

Explor. Exploit. Scoring Depth Source

FRACTOP n-cube
Best First
Search

GA SA Belief 4 [7]

FDA n-sphere Move-Up PHS ILS DTTB 5 [8]

FDA-BFS n-sphere Q-BFS a PHS ILS DTTB 5 This work

FDA-C n-sphere Move-Up PHS ILS C-DTTB 5 This work

FDA-D n-sphere Move-Up PHS ILS DTTB 10 [8]

FDA-
DBFS

n-sphere Q-BFS a PHS ILS DTTB 10 This work

SOO Trisection
Best at
each
level b

Center ∅ ∅ hmax
c [9]

SOO-BFS Trisection Q-BFS a Center ∅ ∅ hmax
c This work

NMSO Trisection See [24] Center ∅ ∅ 600 [9]

DIRECT Trisection All POH Center ∅ ∅ 600 d [10]

DIRECT-
L

Trisection
1 POH
per level

Center ∅ ∅ 600 d [41]

DIRECT-
R

Trisection
Adaptive
POH

Center ∅ ∅ 600 d [21]

aAt each iteration Q = n(dimension) nodes are returned.
bIf the best fractal at a given level is worse than one from previous levels, then it is not selected [9].
cHere hmax = 10

√
log(n104)3 [59].

dThe maximum depth is set to 600, as the maxdeep variable in the original FORTRAN implementation. In the original code, a
maxdiv variable, set to 3000, limits the number of successive decomposition of a fractal. In Zellij, when the difference between an
infimum and a supremum is inferior to a value ϵ set to 1e − 16, the fractal cannot be decomposed anymore.

use the two-sided Wilcoxon signed-rank test and
corresponding mean ranks for each of the 11 algo-
rithms. We perform this test for each subclass of
functions and dimension. Thus, we were able to see
their reliability. We define an error rate, p-value,
of 5% for the statistical test. The two hypotheses
are:

• H0: The two samples come from the same
distribution.

• H1: The two samples come from different
distributions.

The two-sided Wilcoxon signed-rank test is based
on the mean of the ranking of all 11 algorithms

for each subclass of functions and for each dimen-
sion. Summing these means and taking the lowest
results is not enough to determine if an algo-
rithm is better than another. Indeed, giving a rank
to an algorithm for a function is arbitrary. An
algorithm ranked second is not necessarily and sig-
nificantly worse than the first one. We resumed the
comparison between ranks and statistical test in
Figures 10, Figure 11 and Figure 12. These figures
can be read column by column. Each column
represents comparisons of an algorithm (column
label) with all other 10 algorithms (row labels). As
an example, in Figure 12, for dimensions 3, if we
focus on DIRECT-L (last column), we can com-
pare it with SOO (sixth row). The color indicates
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that there is a statistical evidence that DIRECT-
L is better than SOO. In Figure 10, Figure 11 and
Figure 12, there are three color codes:

• Solid-Grey: α > 0.05, we cannot reject the
null hypothesis.

• Gridded-Green: α ≤ 0.05 and
rank(columni) < rank(rowj). We can reject
the null hypothesis, and the algorithm with
the label of the column i has a lower rank (is
better) than the algorithm of the row j.

• Dotted-Red: α ≤ 0.05 and
rank(columni) > rank(rowj). We can reject
the null hypothesis, and the algorithm with
the label of the column i has a higher rank
(is worse) than the algorithm of the row j.

All experiments were carried-out on
Grid’5000 [61], a large-scale and flexible testbed
for experiment-driven research. We used a multi-
CPUs cluster containing Intel Xeon Gold 5220 of
18 cores, each CPU has 96 GiB of RAM.

10 Results analysis and
discussion

10.1 Sensitivity to the
dimensionality

The initial observations reveal that for dimensions
from 2 to 40, while FDA-based algorithms perform
poorly on low dimensional problems, it can main-
tain certain performances when dimension grows.
It is illustrated in Figures 8, 9, 11 and 12. For
dimension 40, performances of FDA-based algo-
rithms are comparable to SOO, SOO-BFS and
NMSO. We can mention that FDA-D and FDA-
DBFS always perform worse than FDA algorithms
with a shallow tree. This confirms results obtained
in [8], illustrating that the deeper the tree, the
lower the performances of FDA. DIRECT-based
algorithms are one of the best performing ones
in low dimensionalities, with performances com-
parable to SOO and NMSO. However, it scales
poorly, except for multi-modal functions, where
all DIRECT algorithms perform better than FDA
ones, but are worse than SOO and NMSO. It is
important to notice the low number of successes
in solving high dimensional problems in Figures 8
and 9, 11. Therefore, the two-sided Wilcoxon

signed-rank tests illustrated in Figures 10, 12,
and 12, are interesting to get a more in-depth
analysis.

So, the algorithms that scale the best up-to dimen-
sion 40, appear to be SOO, NMSO and FDA.
However, because FDA and SOO-BFS are greedy
algorithms, they perform poorly in lower dimen-
sions has they seem to be easily trapped into local
optima.

10.2 Sensitivity to the tree search

In the following lines, we focus on FDA-BFS,
SOO-BFS and FDA-BFS. Concerning, SOO-BFS,
it is clear that the original tree search algorithm
performs better than the Q-BFS. So, replacing
this search component from SOO by one that is
too greedy has a significant impact on the perfor-
mances of the algorithms. The same observations
can be made for FDA, FDA-BFS and FDA-DBFS.

Concerning DIRECT, DIRECT-R and DIRECT-
L, it appears that biasing DIRECT toward
exploitation (DIRECT-L), helps to scale the algo-
rithm in higher dimensions. While in Figure 9,
DIRECT-L solves almost always more prob-
lems than DIRECT, their performances (in ERT
according to budget) for dimension 40 are com-
parable. To break the tie, the two-sided Wilcoxon
signed-rank tests, in Figures 10, 12 shows that
DIRECT-L is more likely to find a better solution
than DIRECT, even if it cannot always solve the
problem. However, DIRECT-R seems to be worse
than DIRECT and DIRECT-L.

This section, illustrates how fractal-based decom-
position algorithms are sensitive to the tree search
algorithm and its parametrization. So, a particu-
lar attention is needed to the design of this search
component.

10.3 Sensitivity to function
properties

Concerning separable functions, NMSO and SOO
are ones of the top algorithms, no matter
the dimensions. When comparing the ERT in
Figures 7 and 8, their performances in solv-
ing low dimensional problems are comparable to
DIRECT-L and DIRECT. However, when dimen-
sions grow, FDA-based algorithms, except FDA-D
and FDA-DBFS, benefit from their exploitation

21



(a) Dimension 2

S
ep
a
ra
b
le

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
FDA-BFS
FDA-D
SOO-BFS
FDA-C
FDA
DIRECT-R
SOO
DIRECT
DIRECT-L
NMSO
best 2009bbob f1-f5, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

M
o
d
er
at
e

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
FDA-DBFS
FDA-D
FDA-BFS
DIRECT-L
DIRECT-R
SOO
DIRECT
NMSO
FDA
FDA-C
best 2009bbob f6-f9, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

Il
l-
co
n
d
.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
SOO-BFS
FDA-D
FDA-C
FDA
FDA-BFS
SOO
NMSO
DIRECT-R
DIRECT
DIRECT-L
best 2009bbob f10-f14, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

M
u
lt
i-
m
o
d
al
.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-D
FDA-DBFS
FDA-BFS
FDA-C
FDA
SOO-BFS
DIRECT-R
SOO
NMSO
DIRECT
DIRECT-L
best 2009bbob f15-f19, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

W
ea
k
ly

st
ru
ct
.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
FDA-DBFS
FDA-D
FDA-BFS
DIRECT
DIRECT-L
DIRECT-R
SOO
FDA-C
FDA
NMSO
best 2009bbob f20-f24, 2-D

51 targets: 100..1e-08
15 instances

v2.6.3

(b) Dimension 3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
FDA-D
FDA-C
FDA
FDA-BFS
SOO-BFS
DIRECT-R
DIRECT
NMSO
DIRECT-L
SOO
best 2009bbob f1-f5, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
FDA-DBFS
FDA-D
FDA-BFS
FDA-C
FDA
SOO
DIRECT
DIRECT-R
NMSO
DIRECT-L
best 2009bbob f6-f9, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
SOO-BFS
FDA-BFS
FDA-D
FDA
FDA-C
SOO
NMSO
DIRECT-R
DIRECT
DIRECT-L
best 2009bbob f10-f14, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-D
FDA-C
FDA
FDA-DBFS
FDA-BFS
SOO-BFS
SOO
DIRECT-R
NMSO
DIRECT
DIRECT-L
best 2009bbob f15-f19, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
FDA-D
FDA-DBFS
FDA
FDA-C
FDA-BFS
DIRECT
DIRECT-L
SOO
NMSO
DIRECT-R
best 2009bbob f20-f24, 3-D

51 targets: 100..1e-08
15 instances

v2.6.3

(c) Dimension 5

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
FDA-D
FDA-C
FDA
FDA-BFS
SOO-BFS
DIRECT-R
DIRECT
DIRECT-L
NMSO
SOO
best 2009bbob f1-f5, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
DIRECT
FDA-DBFS
DIRECT-L
DIRECT-R
SOO
FDA-D
FDA-BFS
FDA
FDA-C
NMSO
best 2009bbob f6-f9, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
FDA-DBFS
FDA-D
FDA-BFS
FDA
FDA-C
DIRECT
DIRECT-L
DIRECT-R
SOO
NMSO
best 2009bbob f10-f14, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-D
FDA
FDA-DBFS
FDA-BFS
FDA-C
SOO-BFS
SOO
DIRECT-R
DIRECT
DIRECT-L
NMSO
best 2009bbob f15-f19, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
SOO-BFS
FDA-D
FDA-BFS
FDA
FDA-C
DIRECT-R
DIRECT
DIRECT-L
SOO
NMSO
best 2009bbob f20-f24, 5-D

51 targets: 100..1e-08
15 instances

v2.6.3

Fig. 7: Empirical cumulative distribution according to the budget divided by the dimensions for each
functions’ subclass and dimension 2, 3 and 5.

22



(a) Dimension 10

S
ep
a
ra
b
le

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DIRECT-R
FDA-DBFS
FDA-D
FDA-C
FDA
FDA-BFS
NMSO
DIRECT-L
DIRECT
SOO-BFS
SOO
best 2009bbob f1-f5, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

M
o
d
er
a
te

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DIRECT
DIRECT-L
DIRECT-R
SOO-BFS
SOO
NMSO
FDA-DBFS
FDA-D
FDA-BFS
FDA-C
FDA
best 2009bbob f6-f9, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

Il
l-
co
n
d
.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
SOO-BFS
NMSO
DIRECT-L
DIRECT-R
DIRECT
SOO
FDA-D
FDA-C
FDA-BFS
FDA
best 2009bbob f10-f14, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

M
u
lt
i-
m
o
d
al
.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
FDA-BFS
FDA-C
FDA-D
FDA
DIRECT-R
SOO-BFS
DIRECT
DIRECT-L
SOO
NMSO
best 2009bbob f15-f19, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

W
ea
k
ly

st
ru
ct
.

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

SOO-BFS
DIRECT-L
DIRECT
SOO
FDA-D
DIRECT-R
NMSO
FDA-DBFS
FDA-BFS
FDA
FDA-C
best 2009bbob f20-f24, 10-D

51 targets: 100..1e-08
15 instances

v2.6.3

(b) Dimension 20

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DIRECT-R
FDA-DBFS
DIRECT
NMSO
FDA-D
FDA-BFS
FDA
FDA-C
DIRECT-L
SOO-BFS
SOO
best 2009bbob f1-f5, 20-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0
Fr

ac
tio

n 
of

 fu
nc

tio
n,

ta
rg

et
 p

ai
rs

DIRECT-R
DIRECT-L
DIRECT
SOO-BFS
NMSO
SOO
FDA-DBFS
FDA-D
FDA-BFS
FDA
FDA-C
best 2009bbob f6-f9, 20-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DIRECT-R
NMSO
SOO-BFS
DIRECT
DIRECT-L
SOO
FDA-DBFS
FDA-D
FDA-BFS
FDA
FDA-C
best 2009bbob f10-f14, 20-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

FDA-DBFS
FDA-C
FDA-BFS
FDA-D
FDA
DIRECT-R
DIRECT-L
DIRECT
SOO-BFS
SOO
NMSO
best 2009bbob f15-f19, 20-D

51 targets: 100..1e-08
15 instances

v2.6.3

0 1 2 3 4 5 6 7
log10(# f-evals / dimension)

0.0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 fu

nc
tio

n,
ta

rg
et

 p
ai

rs

DIRECT-R
SOO-BFS
DIRECT
DIRECT-L
SOO
NMSO
FDA-D
FDA-DBFS
FDA
FDA-BFS
FDA-C
best 2009bbob f20-f24, 20-D

51 targets: 100..1e-08
15 instances

v2.6.3

(c) Dimension 40
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Fig. 8: Empirical cumulative distribution according to the budget divided by the dimensions for each
functions’ subclass and dimension 10, 20 and 40.
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Fig. 9: Empirical cumulative distribution according to the budget divided by the dimensions for all
functions and dimensions.

components to scale. When ERT and statistical
tests are compared together, the exploitation com-
ponent makes FDA competitive with NMSO and
SOO, yet NMSO seems slightly superior.

For low dimensional (2, 3 and 5) and moderate
problems, SOO, DIRECT, NMSO and FDA seems
to perform similarly with a dominance of NMSO,
SOO and DIRECT-L, in Figure 7. However, when
the dimension grows, FDA becomes better, except
for dimension 40, for which SOO, FDA and NMSO
have similar behaviors.

Ill-condtioned problems are harder, and algo-
rithms have difficulties scaling when the dimension
grows. NMSO, DIRECT-L and SOO seem to
dominate low dimensional problems. And, once
again, for higher dimensions, FDA scales bet-
ter. For dimension 40, FDA, SOO and NMSO
have similar performances, even if they solve fewer
problems than FDA. Which can be explained by
the exploitation component of FDA, allowing the
algorithm a faster convergence.

As mentioned in [8], the ILS of FDA seems to take
advantage of separable functions, and can be eas-
ily dragged toward local optima. The multi-modal
problems illustrate these behaviors, while SOO
and NMSO are the best performing algorithms
in high dimensions (10, 20 and 40), followed by
DIRECT-based algorithms. The same behaviors
are observable for weakly structured multi-modal
problems, except that FDA performs better than
DIRECT-based algorithms for dimension 40, and
has similar performances compared to SOO and
NMSO.

Finally, it appears that to design an efficient
fractal-based algorithm, an exploitation compo-
nent allows to significantly improve performances
and convergence on certain problems. However, a
greedy exploitation component, unable to escape
from local optima, can decrease the performance
of an algorithm. Thus, the balance between explo-
ration and exploitation seems to rely on combining
an exploitation component, an efficient partition
of the search space and a not too greedy tree
search.
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(b) Dimension 3 (c) Dimension 5

Fig. 10: Ranks and Pair Wise Wilcoxon test comparisons for each functions’ subclass and dimensions 2,
3 and 5. Solid-Grey: Statistically unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red:
Worse.
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(a) Dimension 10
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(b) Dimension 20 (c) Dimension 40

Fig. 11: Ranks and Pair Wise Wilcoxon test comparisons for each functions’ subclass and dimensions 10,
20 and 40. Solid-Grey: Statistically unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red:
Worse.
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(a) Dimension 2 (b) Dimension 3 (c) Dimension 5

(d) Dimension 10 (e) Dimension 20 (f) Dimension 40

Fig. 12: Ranks and Pair Wise Wilcoxon test comparison for all functions and dimensions. Solid-Grey:
Statistically unsignificative (α > 0.05). Gridded-Green: Better. Dotted-Red: Worse.

11 Conclusion

In this paper, we propose a unified and flexible
algorithmic framework for fractal-based decom-
position algorithms. This algorithmic framework
allows modeling decomposition-based algorithms
according to five search components: geomet-
rical fractal, tree search, scoring, exploration,
and exploitation. A Python package named Zel-
lij has been developed and is available on
GitHub3. Thanks to this framework, we can model
various decomposition-based algorithms such as
DIRECT, SOO, FRACTOP, FDA and much
more. Furthermore, the modular programming
standard used in Zellij, allows to prototype new
algorithms quickly.

3https://github.com/ThomasFirmin/zellij

Computational results have been obtained com-
paring popular and extended deterministic algo-
rithms according to the search components and
their parameters. Their sensitivities to the dimen-
sion of the problem and to some of their com-
ponents have also been analyzed. fractal-based
algorithms are seemingly very sensitive to cer-
tain of their components, directly impacting the
exploration-exploitation tradeoff. The proposed
framework opens a door for developing and ana-
lyzing various search components to improve exist-
ing algorithms and designing new ones.

Future works will focus on the extension of the
fractal-based decomposition algorithmic frame-
work for combinatorial and mixed optimization
problems, containing various types of variables
(e.g. discrete, continuous, categorical). We will
also investigate other geometrical fractal objects
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such as Voronöı fractals and Latin hypercubes,
which implies stochasticity.

In long-term works, we plan to tackle the mas-
sive parallelization of fractal-based decomposition
algorithms on large scale heterogeneous architec-
tures including multi-cores and accelerators such
as GPU, towards Exascale architectures.

Because our algorithmic framework is made of five
distinct and independent components, one could
imagine an autonomous search for the best com-
binations of them. As it as already been done for
population-based algorithm [29]. Thus, we could
figure out autonomous fractal decomposition-based
algorithms dedicated to specific problems [28].
In terms of applications, some computational
experiments are under development on solving
high-impact optimization problems such as hyper-
parameter optimization and automated design of
deep neural networks.

Acknowledgment

Experiments presented in this paper were car-
ried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria
and including CNRS, RENATER and several
Universities as well as other organizations (see
https://www.grid5000.fr).

This work has been supported by the Univer-
sity of Lille, the ANR-20-THIA-0014 program
AI PhDLille and the ANR PEPR Numpex.

Data availability statement

The datasets generated during the current study,
containing raw data, summaries, and statistics of
all experiments, are available free of charge on
GitHub at https://github.com/ThomasFirmin/
fdb zellij exp.

References

[1] Sergeyev, Y.D.: On convergence of ”divide
the best” global optimization algorithms.
Optimization 44(3), 303–325 (1998)
https://doi.org/10.1080/02331939808844414
. Accessed 2024-04-03

[2] Stork, J., Eiben, A.E., Bartz-Beielstein,
T.: A new taxonomy of global opti-
mization algorithms. Natural Computing
21(2), 219–242 (2022) https://doi.org/10.
1007/s11047-020-09820-4 . Accessed 2024-05-
05

[3] Locatelli, M., Schoen, F.: (Global) Opti-
mization: Historical notes and recent devel-
opments. EURO Journal on Computational
Optimization 9, 100012 (2021) https://doi.
org/10.1016/j.ejco.2021.100012 . Accessed
2024-05-05

[4] Talbi, E.-G.: Metaheuristics: from Design to
Implementation. John Wiley & Sons, Hobo-
ken, N.J (2009)

[5] Bansal, J.C.: In: Bansal, J.C., Singh,
P.K., Pal, N.R. (eds.) Particle Swarm
Optimization, pp. 11–23. Springer,
Cham (2019). https://doi.org/10.1007/
978-3-319-91341-4 2 . https://doi.org/10.
1007/978-3-319-91341-4 2

[6] Garnett, R.: Bayesian Optimization. Cam-
bridge University Press, Cambridge (2023).
https://doi.org/10.1017/9781108348973

[7] Demirhan, M.e.a.: FRACTOP: A Geometric
Partitioning Metaheuristic for Global Opti-
mization. Journal of Global Optimization
14(4), 415–436 (1999) https://doi.org/10.
1023/A:1008384329041 . Accessed 2022-03-
01

[8] Nakib, A., Ouchraa, S., Shvai, N., Souquet,
L., Talbi, E.-G.: Deterministic metaheuristic
based on fractal decomposition for large-
scale optimization. Applied Soft Computing
61, 468–485 (2017) https://doi.org/10.1016/
j.asoc.2017.07.042 . Accessed 2022-03-01

[9] Munos, R.: Optimistic Optimization of a
Deterministic Function without the Knowl-
edge of its Smoothness, 9 https://doi.org/10.
5555/2986459.2986547

[10] Jones, D.R., Perttunen, C.D., Stuckman,
B.E.: Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization
Theory and Applications 79(1), 157–181

28

https://github.com/ThomasFirmin/fdb_zellij_exp
https://github.com/ThomasFirmin/fdb_zellij_exp
https://doi.org/10.1080/02331939808844414
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1007/s11047-020-09820-4
https://doi.org/10.1016/j.ejco.2021.100012
https://doi.org/10.1016/j.ejco.2021.100012
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1017/9781108348973
https://doi.org/10.1023/A:1008384329041
https://doi.org/10.1023/A:1008384329041
https://doi.org/10.1016/j.asoc.2017.07.042
https://doi.org/10.1016/j.asoc.2017.07.042
https://doi.org/10.5555/2986459.2986547
https://doi.org/10.5555/2986459.2986547


(1993) https://doi.org/10.1007/BF00941892
. Accessed 2022-01-27

[11] Jones, D.R., Martins, J.R.R.A.: The
DIRECT algorithm: 25 years Later.
Journal of Global Optimization 79(3),
521–566 (2021) https://doi.org/10.1007/
s10898-020-00952-6 . Accessed 2022-03-01

[12] Al-Dujaili, A., Suresh, S., Sundarara-
jan, N.: MSO: a framework for
bound-constrained black-box global opti-
mization algorithms. Journal of Global
Optimization 66(4), 811–845 (2016)
https://doi.org/10.1007/s10898-016-0441-5 .
Accessed 2024-03-22

[13] Horst, R., Tuy, H.: On the convergence of
global methods in multiextremal optimiza-
tion. Journal of Optimization Theory and
Applications 54(2), 253–271 (1987) https:
//doi.org/10.1007/BF00939434 . Accessed
2024-04-03

[14] Mandelbrot, B.B., Wheeler, J.A.: The frac-
tal geometry of nature. American Journal of
Physics 51(3), 286–287 (1983) https://doi.
org/10.1119/1.13295

[15] Khodabandelou, G., Nakib, A.: H -polytope
decomposition-based algorithm for continu-
ous optimization. Information Sciences 558,
50–75 (2021) https://doi.org/10.1016/j.ins.
2020.12.090 . Accessed 2022-03-01

[16] Shubert, B.O.: A Sequential Method Seeking
the Global Maximum of a Function. SIAM
Journal on Numerical Analysis 9(3), 379–
388 (1972) https://doi.org/10.1137/0709036 .
Accessed 2022-09-29
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