
HAL Id: hal-04474444
https://hal.science/hal-04474444

Preprint submitted on 23 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A fractal-based decomposition framework for continuous
optimization

Thomas Firmin, El-Ghazali Talbi

To cite this version:
Thomas Firmin, El-Ghazali Talbi. A fractal-based decomposition framework for continuous optimiza-
tion. 2022. �hal-04474444�

https://hal.science/hal-04474444
https://hal.archives-ouvertes.fr

A fractal-based decomposition framework for continuous

optimization

Thomas Firmin 1* and El-Ghazali Talbi 1

1*CRIStAL UMR CNRS 9189, University of Lille, Cité Scientifique, Villeneuve-d’Ascq,
F-59650, France.

*Corresponding author(s). E-mail(s): thomas.firmin@univ-lille.fr;
Contributing authors: el-ghazali.talbi@univ-lille.fr;

Abstract

In this paper, we propose a generic algorithmic framework which defines a unified view of fractal
decomposition algorithms for continuous optimization. Fractals allow building a hierarchical decompo-
sition of the decision space by using a self-similar geometrical object. The proposed generic framework
is made of five distinct and independent search components: fractal geometrical object, tree search,
scoring, exploration and exploitation. The genericity of the framework allowed the instantiation of
popular algorithms from the optimization, machine learning and computational intelligence commu-
nities. Moreover, new optimization algorithms can be designed using various strategies of the search
components. This shows the modularity of the proposed algorithmic framework. The computational
experiments emphasize the behaviors of fractal-based approaches in terms of scalability, robustness,
and the balance between exploitation and exploration in the search space. The obtained results show
the significance of each search component of the fractal framework, and the necessity to build harder
and well-defined benchmarks which can assess the performance of deterministic, axis-aligned and
symmetrical decomposition-based algorithms.

Keywords: Continuous optimization, Metaheuristic, High-dimensional optimization, Decomposition,
Fractal, Tree search

1 Introduction

Optimizing a non-linear, non-convex, derivative
free, or a black-box function in a high dimensional
continuous search space is a complex task. Com-
monly we consider a minimization problem for an
objective function f : S ⊂ Rn → R:

x̂ ∈ argmin
x∈S

f(x) (1)

where x̂ is the global optima, f the objective func-
tion, and S a compact set made of inequalities
(e.g. upper and lower bounds of the search space).

In the past two decades, several optimization algo-
rithms have been proposed to tackle continuous
optimization problems. Population-based algo-
rithms generally rely on evolutionary algorithms
(e.g. differential evolution, evolution strategies)
and swarm intelligence (e.g. particle swarm opti-
mization) [1]. Local search strategies are based
on a single solution improvement (e.g. gradient-
based algorithms, simulated annealing). Most of
the state-of-the-art optimization algorithms are
stochastic and require a high number of evalua-
tions to be efficient. For optimization problems

1

https://orcid.org/https://orcid.org/0000-0002-5157-8393
https://orcid.org/https://orcid.org/0000-0003-4549-1010

with expensive objective functions, surrogate-
based optimization (e.g. Bayesian optimization)
can be an alternative. A major drawback of
surrogate-based strategies is that they can suf-
fer from the curse of dimensionality, and so, they
poorly scale on high dimensional optimization
problems [2].

In this paper, we investigate a particular class of
optimization algorithms, which could be classified
as divide-and-conquer strategies based on hier-
archical decomposition of the search space. This
class of algorithms can overcome the dimensional-
ity problem by creating flexible, scalable and mas-
sively parallel decomposition-based algorithms for
high dimensional optimization problems.

This work has been inspired by two distinct fam-
ilies of decomposition-based optimization algo-
rithms. The first one is based on algorithms
derived from Lipschitzian global optimization [3],
such as DIRECT and its various extensions (e.g.
eDIRECT, BIRECT, HD-DIRECT) [4]. The sec-
ond one concerns metaheuristics based on fractal
decomposition, such as FRACTOP [5] and FDA
[6].

The main contribution of this paper is to unify
fractal-based decomposition approaches into a
generic and flexible algorithmic framework. The
modularity of the framework allows the instantia-
tion of popular optimization algorithms from the
global optimization, machine learning and compu-
tational intelligence communities. This flexibility
also allows the design of new optimization algo-
rithms by developing new strategies of the frame-
work’s elementary building blocks, here called
search components.

In our framework, a fractal is a generalized con-
cept describing a high dimensional geometrical
object structuring the search space. It is also a
subset of an initial decision space or of another
fractal, and a node of a tree.

A fractal is a never-ending pattern that can
be used to generate any-scale fractal trees [7].
The self-reproducing characteristic of fractals sug-
gests a new way for decomposing large-scale
search spaces with low time and space complex-
ity. Indeed, a fractal bears an unlimited number
of levels that can be generated using simple and
efficient analytical procedures with constant O(1)

complexity. More exactly, a fractal has certain
properties which can be exploited to better struc-
ture the search process including recursion, scal-
ability and self-similarity. By considering at least
these three fundamental properties, it is possible
to explore a search space indefinitely (recursion)
in a structured manner and on all scales (scalabil-
ity and self-similarity). The search space is then
decomposed in a cascade of fractals organized by
levels. Starting from a first fractal supposed to
cover the whole search space, each fractal at a
given level gives rise recursively to smaller fractals.

A fractal-based decomposition algorithm is orga-
nized around five search components: fractal, tree
search, scoring, exploration and exploitation. It
decomposes the search space via a given frac-
tal geometrical object. Tree search provides a
dynamic and hierarchical fractal decomposition
of the search space. A scoring search component
allows to balance the exploration and exploita-
tion of the search space by giving a fitness value
to fractals. A generic software framework named
Zellij 1 has been developed. It offers a unified
programming paradigm for the instantiation of
state-of-the-art fractal-based decomposition algo-
rithms such as DIRECT (DIviding RECTangles),
SOO (Simultaneous Optimistic Optimization) and
FDA (Fractal Decomposition Algorithm). More-
over, one can also design new optimization algo-
rithms according to the definition of new strategies
for the search components.

The paper is organized as follows. In section 2,
the Zellij generic algorithmic framework based on
fractal decomposition is presented. The follow-
ing sections (section 3 to 6) detail successively
the search components of the algorithmic opti-
mization framework: fractal geometrical object,
tree search, scoring, exploration, and exploitation.
In section 7, state-of-the art decomposition-based
algorithms have been instantiated to the frame-
work and extended by defining new strategies
for their search components. Section 8 depicts
the experimental setup for comparing five pop-
ular fractal-based decomposition algorithms and
six new designed ones. Section 9 analyzes the
obtained computational results on CEC2020 and
SOCO2011 benchmarks. Finally, we summed up in

1The Zellij software is available under GitHub
https://github.com/ThomasFirmin/zellij.

2

section 10, the framework, future works and new
research opportunities for tackling high dimen-
sional optimization problem.

2 Zellij: A fractal-based
decomposition algorithmic
framework

This section introduces the basic concepts and
search components of the Zellij framework.

Definition 1 (Search space). Let us define a
continuous search space S of dimension n as a
bounded subset of a metric space:

S = L× U =

n∏
i=1

[li, ui] (2)

with L,U ∈ Rn, the lower and upper bounds, such
that ∀i ∈ [1, ..., n], li < ui and ∀x ∈ S, ∀i ∈
[1, ..., n], li ≤ xi ≤ ui

In our framework, a fractal is a self-similar geo-
metrical object which does not depend on any
information besides the nature of its parent. As a
simple example, decomposing a hypercube (i.e n-
cube) into smaller hypercubes of equal size, relies
solely on the boundaries of the parent. To gen-
eralize our approach to other geometrical objects
than fractals, we can also consider geometrical
objects that depend on additional knowledge. For
instance, in the DIRECT algorithm, the decompo-
sition process in smaller hyperrectangles depends
on the sampling and the evaluation of their cen-
ters. Selecting a particular geometrical object (e.g.
hypercube, hypersphere) has a major impact on
the decomposition process. Five properties charac-
terize a fractal: partition size, building complexity,
coverage, overlap, and memory complexity (see
Table 1 and Figure 5). These properties are dis-
cussed in Section 3.

The decomposition of the search space can be
defined by a k-ary rooted partition tree. The root
represents the initial complete search space, and
nodes correspond to the generated fractals. The
design of a tree search algorithm is crucial to
efficiently explore and exploit the fractals. By
introducing pruning strategies, one can reduce
the search space and tackle memory issues, by
eliminating some fractals. Popular tree search

algorithms are Best First Search [8], Beam Search
[9] or Epsilon Greedy Search [10].

In the design of an optimization algorithm, high
performance requires a trade-off between the
exploration of the search space and the exploita-
tion of the acquired knowledge. One has to find
the best strategy for this dilemma [11]. Explo-
ration (i.e. diversification) of the search space
allows one to obtain new knowledge. Non-explored
fractals must be visited to ensure that all frac-
tals are evenly explored and that search is not
confined to a reduced number of fractals. Exploita-
tion (i.e. intensification) into a reduced region of
the search space uses that knowledge (e.g. best
found fractals) to improve it. The promising frac-
tals are searched more thoroughly in the hope to
find better solutions.

Sampling in high dimensional search spaces is a
critical task. Moreover, one does not sample in
the same way in a hypercube or in a hypersphere.
In DIRECT [3] and SOO [12], only the center
of the hyperrectangle is used in sampling. In our
framework, we consider both deterministic and
stochastic sampling. We also consider unique or
multiple points methods to sample inside a frac-
tal. The sampling process is essential for both
exploration and exploitation search components.

The exploration could be done in a passive way
(e.g. Markov chain Monte Carlo (MCMC) sam-
pling, low discrepancy sequences [13]) or in an
active way (e.g. metaheuristics [14], surrogate-
based optimization [2]). The challenge here is to
find efficient sampling algorithms for diverse and
complex fractals such as polytopes.

When a fractal reaches the maximum depth of the
partition tree, an exploitation algorithm can be
applied to it. The exploitation phase has not to
be constrained within a fractal. The only bounds
will be ones from the initial search space so that
the exploitation can move freely toward a local
or global optimum. One can use local search
strategies such as gradient-based algorithms or
simulated annealing [14].

The role of the scoring search component is to
assign a quality, a fitness value, for a given fractal,
by using acquired knowledge following an explo-
ration phase. It can be seen as the quality value
obtained by an acquisition function in Bayesian

3

optimization. Many scoring methods can be used,
such as minimum, mean, median, distance-to-the-
best [6][15], or belief [5].

The Zellij workflow is described in Figure 1.
One can identify the five search components,
their interactions and their algorithmic behav-
iors. The two For each instructions correspond to
line 14 and line 16 of Algorithm 1. Two tests
are made at each iteration, the stopping crite-
rion corresponds to the while loop at line 13,
and the maximum depth test to the line 17 in
Algorithm 1.

Because each search component is independent of
another, it allows instantiating various strategies
for fractals, tree search, exploration, exploita-
tion and scoring search components. One can for
instance reproduce FRACTOP by using Hyper-
cubes, Best First Search, Belief, a Genetic Algo-
rithm(GA) for the exploration and a Simulated
annealing(SA) for the exploitation. Some search
components can be very basic. Indeed, in DIRECT
and SOO, there is no explicit exploitation strat-
egy. The exploration and scoring methods consist
in computing the center of each fractal and tak-
ing its objective value as its fitness. Other versions
of DIRECT implementing different search compo-
nents are discussed in Section 7.

To sum up, three main properties characterize
Zellij :

• Generalization: our goal is to build a
framework which unifies and generalizes
various popular fractal decomposition-based
algorithms from different communities (e.g.
global optimization, reinforcement learning,
computational intelligence).

• Modularity: the framework must be as
modular as possible, so one can easily develop
new optimization algorithms using the fractal
decomposition-based approach.

• Massively parallel: a transparent and effi-
cient parallel implementation of the algo-
rithms on various architectures (e.g. multi-
cores, GPUs) is carried out. The main chal-
lenge is the parallelization of the tree search
component of the framework. Many parallel
tree search algorithms can be considered.

In the following sections, we will further describe
the five search components, and introduce some
theoretical background to fractal-based decompo-
sition algorithms.

3 Geometrical fractal object

The fractal search component within Zellij frame-
work allows structuring high dimensional search
spaces to better explore and exploit it. Several
types of fractals can be used in the decomposition
of the search space, such as hyperspheres, hyper-
cubes or Voronöı cells (see Figure 5). This geomet-
rical object has a great impact on the behaviors
of fractal-based decomposition algorithms.

Definition 2 (k-partition). A k-partition of a
subset α ⊆ S can be defined by the union of k non-
empty and disjoint subspaces. These subsets can
be obtained by a fractal building function F : α→
{Si}i∈[1,...k], where Si ⊂ α, and:

α =
⋃

F (α) =

k⋃
i=1

Si (3)

Here ∀i ∈ [1, .., k], Si ̸= ∅, and
k⋂

i=1

Si = ∅. This def-

inition does not consider overlapping subspaces,
nor partial partitions.

Using a given fractal, one can build a recursive
decomposition of S or a decomposition of a subset
of S. Building a k-partition of an existing sub-
set is called a refinement. Thus, when refining a
fractal, the definition of S does not change. The
refinement is a self-similar object, it uses the same
definition as S to build children of a fractal; all Si

are of the same nature.

Definition 3 (Hierarchical k-refinement). Let D
be the number of successive refinements of a sub-
set Sl,j,i ⊆ S. We write j ∈ [1, ..., El−1], with El

the number of sets that have been refined l times,
and i ∈ [1, ..., k] the ith set of a k-partition of a
superset j. A hierarchical k-refinement of Sl,j,i of
maximum level D (i.e. depth) is written as:

4

Fig. 1: The workflow of the Zellij framework. In blue, the five search components. In orange, the tests
made at each iteration.

∀l ∈ [2, ..., D − 1],

∃(x, y, j) ∈ ([1, ..., El−1], [1, ..., k], [1, ..., El]) :

Sl,x,y =
⋃

F (Sl,x,y) =

k⋃
i=1

Sl+1,j,i

(4)

Here, a subset identified by (l, j, i) corresponds to
the fractal at level l, child number i of the frac-
tal j at level l− 1. An appropriate data structure
used to model Definition 3 is a k-ary rooted tree.
Hence, one can rewrite the initial search space S
as the root of this tree: S(1,0,1) = S, where E0 = ∅.
A fractal is now considered as a node of a k-ary
rooted tree T . Figure 2 shows an example of a
2-refinement of depth 4, of a 2D square using a
bisection, drawn as a red dotted line, along the
longest side.

For a fixed l ∈ [1, ..., D−1], one can write the set Pl

of supersets (parents) at level l that have children

Fig. 2: Example of a 2-refinement of depth 4, with
a bisection along the longest side.

5

at level l+1. Let us denote a leaf at the level l of a
tree T as ◦[l, j, i]. An interesting property of using
a k-ary tree on a k-refinement that fully covers S
is that the initial search space will be equal to the
union of all the leaves.

Theorem 1. Let S be a search space and the
root of a k-ary partition tree T of maximum depth
D. For all 1 < l ≤ D, the union of all leaves
◦[l, j, i], children of nodes numbered by [1, ..., El−1]
as defined in Definition 3, is equal to S:

S = S(1,0,1) =

D⋃
l=2

El−1⋃
j=1

k⋃
i=1

◦[l, j, i] (5)

Proof. We consider a k-ary rooted tree T (d) of
depth d, with 1 < d ≤ D. Considering Pl the set
of fractals at level l having children at level l + 1:⋃

Pd−1 =
Ed−1⋃
j=1

k⋃
i=1

◦[d, j, i]

If we remove all ◦[d, j, i] from T d, we obtain a tree
T (d−1). So, the leaves of T (d−1) at level d− 1 can
be written as {◦[d− 1, j, i], Pd−1}.

Thus,
⋃

Pd−2 =
Ed−2⋃
j=1

k⋃
i=1

◦[d− 1, j, i]
⋃

Pd−1

and so on, until T (1):

S = P1 =
k⋃

i=1

◦[2, 1, i]
⋃

P2

For simplicity, one can write all leaves ◦[l, j, i] of
T (d), a tree T of depth d, as LT (d) .

As mentioned before, Theorem 1 is valid for an
exhaustive and mutually exclusive partition. This
is not the case for some fractal-based algorithms
such as FDA, which uses hyperspheres [6]. Indeed,
fractals can overlap and do not necessarily cover S.
Additionally, it is important to mention that, the
higher the dimension of the problem, the smaller
the covering of the hyperspheres. In FDA, the
covering is maximized according to a parameter,
called the inflation ratio, no matter the overlap
between fractals. However, the inflation ratio can
make a part of the hypersphere going outside S. In
our algorithmic framework, we consider the inter-
section between fractals and S. A fractal, or a part
of a fractal, cannot be outside the initial search
space S. If so, then the fractal is trimmed.

We previously described the basic principles of
fully covering fractal-based decomposition algo-
rithms. To extend our framework to partial par-
titions, we have to measure what the overlap
and coverage are for fractal-based decomposition
algorithms. For a tree T (d), let Σ = P(S) be a
σ-algebra of S. So (S,Σ) is a measurable set,
where LT (d) ⊆ Σ and LT (d) ∈ Σ. We can define
a measure, µ : Σ→ [0,+∞]. A stricter condition
is applied to µ, µ(A) = 0 ⇐⇒ A = ∅. Hence,
the result of a k-partition cannot be made of null
sets. Because F cannot produce null sets, and
because D, the maximum tree depth, is finite, we
can define a measure of the coverage of S by LT (d)

and their overlap.

Definition 4 (Coverage). Let (S,Σ, µ) a measure
space, and A,B ⊆ S, A,B ∈ Σ and B ⊆ A. A
measure of the coverage of A by B can be written
as:

C(A,B) = µ
(
∁AB

)
(6)

However if B ⊈ A such as in FDA:

C(A,B) = µ
(
A \

(
A
⋂

B
))

(7)

From Equation 7 we can infer B \ A, the part of
B outside A.

One can distinguish two types of coverage:
C(S,

⋃
LT (d)) measures the coverage of the initial

fractal by LT (d) , and C(Sl,j,i,
⋃

F (Sl,j,i)) mea-
sures the coverage of a fractal by its children.

Definition 5 (Overlap). Let (S,Σ, µ) a mea-
sure space, and A ̸= ∅ a countable set such that
∀n ∈ N,∀an ∈ A : an ∈ Σ and

⋃
n∈N

an ∈ Σ. A mea-

sure of the overlap between all an can be written
as:

O(A) = µ

|A|−1⋃
i=1

|A|⋃
j=i+1

(
ai

⋂
aj

) (8)

Coverage and overlap properties are illustrated in
Figure 3 as a 2-dimensional FDA scheme. One can
see, in hatched-magenta, the uncovered space and
in solid-green the overlap between fractals. More-
over, because of the inflation of hyperspheres, the
gridded-gray space represents parts of the fractals
outside S.

6

Fig. 3: 2-dimensional illustration of covering and
overlap applied on a FDA scheme.

As the monotonic property of measures is
not strict, A ⊆ B =⇒ µ(A) ≤ µ(B), one can-
not say that LT (d) covers S by only looking
at C(S,

⋃
LT (d)). Thus, several assumptions are

made:

• For continuous dimensions, we consider that⋃
LT (d) covers S if C(S,

⋃
LT (d)) = 0, even

if
⋃
LT (d) does not include S boundaries.

• By construction, we consider that F , the
decomposition function, produces fractals
that are strictly smaller than the parent:
∀Ai ∈ F (A), µ(Ai) < µ(A)

Hence, we can modify Theorem 1 for overlap and
partial k-partition.

Theorem 2. Let S be a search space, Σ =
P(S) a σ-algebra on S, and (S,Σ, µ) a mea-
sure space. S is the root of a k-ary partition tree
T (d) of depth d and LT (d) its leaves. C(., .) is
a measure of the coverage according to Defini-
tion 4. We suppose that LT (d) is not a null set
and µ(A) = 0 ⇐⇒ (A = ∅) ∨ (

⋃
A = ∅). Then, a

given decomposition-based algorithm is said to be:

1. Preservative: if C(S,
⋃
LT (d)) = 0. Then,

µ(S) = µ
(⋃
LT (d)

)
(9)

2. Low-sacrifice based:
if C(S,

⋃
LT (d)) > 0 and C(S,

⋃
F (S)) > 0

and if ∀l > 1, C(Sl,j,i,
⋃

F (Sl,j,i)) = 0. We

have,

µ(S) > µ
(⋃
LT (d)

)
(10)

with ∀d > 1, µ (
⋃
LT (d)) ≤ µ (

⋃
LT (d+1))

3. High-sacrifice based:
if C(S,

⋃
LT (d)) > 0 and C(S,

⋃
F (S)) >

0 and if ∀l > 1, C(Sl,j,i,
⋃

F (Sl,j,i)) > 0 and
F (Sl,j,i)/Sl,j,i ̸= ∅. Then, ∀d > 1, we have,

µ(S) > µ
(⋃
LT (d)

)
> µ

(⋃
LT (d+1)

)
(11)

Proof. We consider a k-ary rooted tree T of depth
d, with 1 < d ≤ D. This tree is denoted as T (d),
and the leaves of T (d) as LT (d) . One can consider a
decomposition function F defined by Equation 3.

Preservative:
If ∀d > 1, C(S,

⋃
LT (d)) = 0.

Then S =
⋃
LT (d) , because by construction⋃

LT (d) ⊆ S
and C(A,B) = 0 ⇐⇒ µ (A \ (A

⋂
B)) = 0 ⇐⇒ A = B.

So, we have:

S =
⋃
LT (d) =⇒ µ(S) = µ

(⋃
LT (d)

)
Low-sacrifice based:
If ∀d > 1, C(S,

⋃
LT (d)) > 0 and

C(Sd,j,i,
⋃

F (Sd,j,i)) = 0.
Then, S ⊃

⋃
LT (d) =⇒ µ(S) > µ (

⋃
LT (d))

and
⋃
LT (d) ⊆

⋃
LT (d+1) .

So we have,

∀a ∈ LT (d) , F (a) ∈ LT (d+1)

=⇒ µ(a) ≤ µ
(⋃

F (a)
)

=⇒ µ
(⋃
LT (d)

)
≤ µ

(⋃
LT (d+1)

)
High-sacrifice based:
If ∀d > 1, C(S,

⋃
LT (d)) > 0, C(Sd,j,i, F (Sd,j,i)) >

0 and F (A)\A = ∅ (Subsets cannot have solutions
outside their parents).
Then, S ⊃

⋃
LT (d) =⇒ µ(S) > µ (

⋃
LT (d))

and
⋃
LT (d) ⊃

⋃
LT (d+1) .

7

So we have,

∀a ∈ LT (d) , F (a) ∈ LT (d+1)

=⇒ µ(a) > µ
(⋃

F (a)
)

=⇒ µ
(⋃
LT (d)

)
> µ

(⋃
LT (d+1)

)

This theorem describes behaviors of a partial,
k-refinement where leaves might not fully cover
the initial search space. Preservative algorithms
describe a partition that covers S no matter
whether there is overlap between leaves or not, as
we consider

⋃
LT (d) .

However, low-sacrifice based algorithms describe
leaves of the tree that do not fully cover S, but
where children of the fractal cover its parent.
In this case, one accepts to lose a part of the
search space at the first refinement of S. Then
future refinements should not sacrifice solutions
anymore. Moreover, sometimes the refinement of
a fractal can result in children, which when unified
form a bigger object than the parent. This is the
case for fractals that can cover solutions outside
the parent space.

According to Theorem 2, let us consider an ini-
tial search space S defined by a hypercube. In
FDA [6], the algorithm considers the inscribed
hypersphere as the initial search space. The
algorithm accepts to ”sacrifice” points between
the hypercube and the inscribed hypersphere to
perform a k-refinement using hyperspheres. To
overcome this, the exploitation phase of FDA can
ignore fractals’ borders, so it can reach uncovered
solutions. The algorithm is based on a high sac-
rifice rate when such a sacrifice happens at each
refinement. Hence, some solutions are lost at each
refinement. So, the deeper is the tree, the fewer
solutions are reachable by the algorithm.

For high-sacrifice based algorithms, one only con-
siders fractals that cannot expand outside their
parents. If so, it becomes hard to define the notion
of sacrifice, as we can imagine a decomposition
where successive children do not fully cover their
parents and shift outside an ancestor fractal. One
should be aware of this property, and determine if

(a) Preservative fractals (b) Low sacrifice fractals

(c) High sacrifice fractals

Fig. 4: 2-dimensional illustrations of the three
levels of sacrifice of the fractal search compo-
nent. The hatched-magenta area corresponds to
uncovered space resulting from successive decom-
position: C(Sl,j,i,

⋃
F (Sl,j,i))

it is acceptable to lose some solutions to carefully
choose the right decomposition function F .

These three levels of sacrifice are described in
Figure 4. Preservative fractals in Figure 4a, based
on SOO in this example, preserve the initial search
space S, no space is lost. While low sacrifice
fractals, on Figure 4b, here based on Sierpinski
triangles, sacrifice space of S to use a geometry
based on triangles. And finally, the example on
Figure 4c, based on an FDA scheme, sacrifices
space after each refinement.

The main challenge when selecting a type of
fractal is its scalability in dimension. Scalability
can be measured by three properties defined in
Table 1: the partition size k, the building com-
plexity O(F) and the data structure. According
to the partition size property, the hypercube [5]
and simplices [16] are not scalable for high dimen-
sional search space. This non-scalability impacts
the complexity of the partitioning function F .

8

According to the building complexity property
O(F), the Voronöı cell needs a particular close
attention. Indeed, most of the algorithms used
for computing the Voronöı diagram are well stud-
ied for 2D and 3D (e.g. QuickHull [17], Fortune’s
algorithm [18], Bowyer-Watson algorithm [19]).
However, they suffer from the curse of dimension-
ality. Hence, one has to use heuristics to create
such fractals. Indeed, one cannot build the exact
diagram in high dimensions [20–24], and then one
has to use stochastic methods to build an approx-
imation, such as SpokeDart with hyperplane sam-
pling [22]. We distinguish two approaches, the
fixed (Figure 5f) and dynamic (Figure 5e) Voronöı
diagrams. In the fixed Voronöı diagram, a child
cell will inherit its parent’s boundaries, whereas
in the dynamic diagram, when building a child,
the whole diagram is re-computed to consider
children’s boundaries. This approach implies vari-
ations of the borders of fractals. In a dynamic
approach, a Voronöı cell is a very complex type
of fractal, as its definition depends on varying
information on other fractals. For example, when
recomputing the diagram, points sampled in a
dynamic Voronöı cell, can be relocated to another
ones. Whereas in the fixed approach, once a frac-
tal, i.e., a Voronöı cell is built, then its borders
cannot be changed anymore. Other hypervolumes
showed in Figure 5 are easier to compute, and
further details can be found in [3][5][6].

Furthermore, if we look at the coverage and over-
lap properties, one can clearly see the major draw-
back of hyperspheres compared to other hypervol-
umes. C(S,LT (d)) and C(Sl,j,i,

⋃
F (Sl,j,i)) mea-

sure the uncovered space. If these measures are
strictly superior to 0, then the partition does not
fully cover the search space or a parent fractal.

According to [6], the inflation ratio applied on
n-spheres can reduce the substantial lack of cov-
erage by increasing the overlap. However, we have
to mention the impact of the curse of dimension-
ality on such objects. Indeed, if we look at the
Hausdorff measure of a unit n-ball, the n-volume
and the n-surface tend to zero as the dimension
tends to infinity. This can explain the empirical
results obtained in this paper, indicating that the
deeper is the decomposition tree, the lower FDA
performs.

(a) (b) (c)

(d) (e) (f)

Fig. 5: Various examples of fractals in 2 dimen-
sions: (a) hypercubes, (b) bisections, (c) trisec-
tions, (d) hyperspheres, (e) dynamic Voronöı, (f)
fixed Voronöı.

According to Figure 5, 2D representations are mis-
leading. Even if they are intuitive and allow to
better understand basic principles, we cannot infer
what will happen in n-dimension by only looking
at 2D or 3D drawings. Thus, the choice of a frac-
tal can be informed by carefully examining the six
properties defined in Table 1.

4 Tree search

One can define a tree search algorithm as a func-
tion τ which selects Q unique fractals among all
LT (d) according to a vector of size s = |LT (d) |:

τ : LT (d) ,Rs → {e1, ..., eQ} (12)

where ∀q ∈ [1, ..., Q] : eq ∈ LT (d) , 1 ≤ Q ≤ s. The
vector Rs resulting from the scoring search com-
ponent describes the quality value of each leaf.

One can instantiate tree search algorithms using
an OPEN and CLOSED lists [8]. The OPEN list con-
tains non-explored or non-exploited fractals. The
CLOSED list contains expanded fractals. Thus, the
tree search component is a rule defining how to
append non-expanded fractals to these lists, and
how to select them. The CLOSED list is gener-
ally used to prevent the algorithm from selecting
expanded fractals.

9

Table 1: Example of fractals and their properties

Sl,j,i n-cube Trisection Bisection n-sphere Voronöı Simplex

Partition
size

k 2n 3 2 2n ca n!

Partition
building
complex-

ity

O(F) O(2n) O(n) O(n) O(n) O(2n)b O(n!)

Coverage
of S C(S,

⋃
LT (d)) 0 0 0 > 0 0 0

Children
coverage

C(A,
⋃

F (A)) 0 0 0 > 0 0 0

Overlap O(LT (d)) 0 0 0 > 0 0 0

Data
structure

∅
center
and side
length

2 points
of size n

2 points
of size n

center
and

radius
See c

n+ 1
points of
size n

Examples ∅ [5] [12] [25] [6] [15, 20] [16]

aNumber of centroids defined by the user.
bValid for usual algorithms, we can reduce this complexity by approximating the Voronöı diagram in high dimensions. This

complexity, also depends on c, the number of centroids. But here we consider the complexity depending on the dimension n.
cIt depends on the algorithm used to compute the diagram. It can be a set of vertices for the QuickHull algorithm or a set of

hyperplanes for sampling methods.

When building a k-refinement, tree search algo-
rithms are crucial and have an impact on the
exploration and exploitation tradeoff. In the
DIRECT algorithm, this issue is tackled by the
Potentially Optimal Rectangle (POR), and many
variations of DIRECT are based on this selection
strategy [26][27]. The FDA algorithm uses a sorted
depth first search, called Move-up, which favors
the selection of deep fractals. The FDA algorithm
focuses on the exploitation phase applied at the
last level D. Such strategy impacts the capacity
of the algorithm to efficiently explore the search
space.

Moreover, Breadth First Search (BFS) is totally
useless in our case. Indeed, all fractals at a certain
level will be decomposed before selecting fractals
of the next level. Thus, Depth First Search (DFS)
can be seen as a greedy exploitation only, whereas
Breadth First Search (BFS) can be qualified as
a greedy exploration only algorithm [28]. Both
strategies are uneffective, as the scores given to

fractals do not impact the selection. We lose the
notion of hierarchy between fractals.

A tree search algorithm can be characterized by
its balance between exploration and exploitation
of the tree. Thus, one efficient and easy to use
algorithm, which can replace DFS or BFS, is the
Best First Search [8]. Some of these algorithms
are stochastic (e.g. Epsilon Greedy Search, Diverse
Best First Search [29]) or, others, allow having the
hand on the exploration-exploitation tradeoff (e.g.
Cyclic best First Search [30]). The notion of sacri-
fice defined in Theorem 2 also concerns tree search
algorithms and pruning techniques. For time and
memory complexity reasons, it can be necessary
to prune some leaves. For instance, in the Beam
Search algorithm [9], only a given number of leaves
are stored.

Figure 6 illustrates how the tree search algorithm
impacts the behaviors of fractal decomposition-
based algorithms. One can clearly see the differ-
ence between depth and breadth first search. BFS

10

(a) (b) (c)

(d) (e) (f)

Fig. 6: Fractal decomposition with hypercubes
applied on 2D Styblinski-Tang function with var-
ious tree search: (a) Depth First Search, (b)
Breadth First Search, (c) Best First Search, (d)
Beam Search, (e) Cyclic Best First Search, (f)
Epsilon Greedy Search.

explored the entirety of each level before tackling
the next one, no matter the hierarchy. Whereas
DFS is focused on the deepest fractal.

5 Scoring fractals

The tree search component needs a heuristic value
determining how promising a fractal is. We define
a scoring method γ which takes a set of solutions
restricted to a fractal and assigns a quality value:

γ : ◦[l, j, i], P, f |◦[l,j,i] (P)→ R (13)

The scoring method γ takes a leaf ◦[l, j, i], a sam-
ple of solutions P restricted to this leaf, and
their corresponding objective values f |◦[l,j,i] (P).
It returns a score within R which defines the
quality of ◦[l, j, i].

For DIRECT and SOO, γ returns f(x), with x
the center of the fractal. In FRACTOP, the Belief
is used. It depends on a fuzzy measure computed
with the best evaluation found so far, and sampled
points within the fractal. This score has the par-
ticularity to inherit a part of the parent’s score.
In FDA, the algorithm maximizes the distance-to-
the-best solution found so far among all sampled
solutions.

We have noticed that the combination between τ
and γ is essential, and has different purposes con-
cerning the exploration and exploitation tradeoff.
Finally, τ and γ can use additional information,
such as a measure of the size of a fractal. For exam-
ple, the σ function in DIRECT, with σ2 or σ∞,
measures the size of hyperrectangles according to
their level and the length of their longest side [26].
We can notice that for a fractal for which its chil-
dren are smaller and of identical size (regularity),
the level of a fractal can be considered as a mea-
sure of its size. This is the case for FDA, but not
in DIRECT and for Voronöı fractals.

6 Exploration and
exploitation strategies

The exploration Explore and exploitation Exploit
search components can be defined by the following
functions applied on a fractal α:

Explore : α→ P, f |α (P)

Exploit : α→ P, f |α (P)
(14)

To assess the potential of a fractal, one has to sam-
ple relevant solutions from it. This is the purpose
of the Explore function. For instance, FRACTOP
uses a genetic algorithm, whereas in FDA, three
fixed solutions are computed.

Sampling in hyperrectangles or hypercubes is a
simple procedure. One can apply all sampling
methods or metaheuristics using upper and lower
bounds. For example, low discrepancy sequences
such as Sobol, Halton, and Kronecker methods
can be used [13]. Sampling in a hypersphere
requires a few tricks to satisfy the equation of
a n-ball. The Box-Muller method can be a solu-
tion [31–33]. However, sampling inside a Voronöı
cell (i.e. polytope) is a complex procedure. One
could use methods to approximate the Lebesgue
measure [34], hit-and-run sampling [35], hyper-
planes sampling [22], or MCMC sampling [36].
For active algorithms, such as metaheuristics (e.g.
local search, evolutionary algorithms, swarm opti-
mization), one must adapt the search operators
(e.g. neighborhood, mutation, crossover, velocity
update) to the type of fractal.

Finally, if the algorithm lacks of exploitation,
one could apply an exploitation algorithm within

11

leaves. In our framework, this algorithm is named
Exploit. Such a function starts from a solution
within a leaf fractal and if needed can ignore its
boundaries to converge towards an optimum. This
is the case for FRACTOP and FDA algorithms.

It is a thorough task to select an exploration
and an exploitation search components. In our
framework, the exploitation search component
is exclusively applied to fractals of maximum
depth to emphasize the search around promising
areas. Consequently, it is appropriate to allocate
larger budget to the exploitation compared to the
exploration strategy within each fractal. However,
according to the cost of the objective function, the
maximum depth of the tree or the partition size
(i.e. number of children per fractal), one should
carefully choose the budget of the exploration and
exploitation. Indeed, a budget that is too high for
the exploration search component, can result in
a low exploitation phase. Whereas, a budget that
is too low for the exploration phase, can result in
expensive exploitation in low confidence areas.

7 Extension of popular
decomposition-based
algorithms

This section instantiates some popular fractal-
based optimization algorithms to our algorith-
mic framework. Moreover, it shows how one
can extend these algorithms using various search
strategies for the different components.

7.1 FRACTOP, FDA and
PolyFRAC: Fractal-based
optimization algorithms

FRACTOP is one of the first algorithms based on
fractal decomposition [5]. It uses hypercubes to
decompose the search space, a genetic algorithm
to explore each fractal, and simulated annealing
to exploit a promising leaf fractal. The algorithm
implements a fuzzy measure, called belief, as a
scoring method. One major drawback of this algo-
rithm is its poor scalability in high dimension (see
Table 1).

The FDA algorithm partly solves the curse of
dimensionality problem of FRACTOP [6]. Instead
of a hypercubes-based decomposition, it uses

Algorithm 1 Fractal-based decomposition algo-
rithm

Inputs:
1: S Initial search space
2: D Maximum depth
3: F Fractal decomposition function
4: Explore Exploration strategy
5: Exploit Exploitation strategy
6: τ Tree search
7: γ Scoring

Outputs: x̂ Best solution found
8: x̂←∞
9: OPEN← S List of non-expanded fractals

10: CLOSED← [·] List of expanded fractals
11: current← S
12: scores← [+∞]
13: while stopping criterion not reached do
14: for each leaf ∈ current do
15: children← F (leaf) Decomposition
16: for each child ∈ children do
17: if level(child) < D then
18: P, values← Explore(child)
19: score← γ(child, P, values)
20: Append child to OPEN

21: Append score to scores

22: if min(values) < x̂ then
23: x̂← min(values)

24: else
25: values← Exploit(child)
26: if min(values) < x̂ then
27: x̂← min(values)

28: Append leaf to CLOSED

29: index← Index of leaf in OPEN

30: Remove element at index from OPEN

31: Remove element at index from
scores

32: current← τ(OPEN, scores)
return x̂

hyperspheres. By using such fractals, the decom-
position has a lower complexity, but at the cost of
overlapping fractals due to an inflation ratio (see
Table 1). This ratio partially reduces the lack of
space coverage implied by hyperspheres decompo-
sition. The exploration component, called Promis-
ing Hypersphere Selection (PHS), computes three
points: the center of the hypersphere and two
opposite points equidistant to the center. The
heuristic, used to score a fractal, is the distance-
to-the-best solution found so far. Finally, a leaf at

12

the maximum depth level of the tree, is exploited
with an Intensive Local Search (ILS), which is a
coordinate descent algorithm with adaptive step
size.

The polyFRAC algorithm is a modification
of FDA [15]. Rather than using hyperspheres,
polyFRAC takes advantage of H-polytope frac-
tals. Since, finding the vertices (i.e. n-faces) of a H-
polytope is a complex procedure, thus polyFRAC
approximates them. The exploration, exploitation,
and scoring strategies are similar to those of FDA.

Thanks to our generic and flexible framework,
we have extended and improved those algorithms
by replacing the tree search component of FDA
(Move-up procedure), by a beam search2, we
called this extension FDABs. We also tested
FDA and FDABs using deep trees3, we named
them FDAD and FDADBs. Additionally, we
replaced the distance-to-the-best (DTTB) scoring:

f(x)
∥x−Best∥ by a centered version of it (C-DTTB).

The measure is centered on the best solution found
so far, f(x)−f(Best)

∥x−Best∥ , where x is a sampled point

and Best the best solution found so far. As we
select the highest ratio, on the first version, the
ratio associated to a better solution can be con-
sidered as non-promising if the point is far from
Best, whereas a bad solution can be considered as
good if it is close to Best. We named this version,
FDAC.

7.2 Direct: Dividing Rectangles

The DIRECT algorithm is initially a modification
of the Schubert’s algorithm [37]. It assumes that
the objective function is Lipschitz-continuous,
with a positive constant K:

|f(x)− f(y)| ≤ K∥x− y∥, ∀x, y ∈ S

Thus, there are several advantages of such an
assumption. Indeed, it allows to easily prove con-
vergence towards a global optimum. Moreover, few
hyperparameters have to be set, and the algorithm
is deterministic.

However, Lipschitzian optimization has several
drawbacks. The constant K must be known;

2The beam length was set to 3000
3The maximum depth was set to 5 for FDA and FDABs,

and to 10 for FDAD and FDADBs

there is a poor balance between exploration and
exploitation, and the computation complexity is
subject to the curse of dimensionality. The algo-
rithm computes a solution at the center of a
hyperrectangle before decomposing. At each iter-
ation, the algorithm uses a series of trisections on
the longest sides to subdivide the search space into
smaller hyperrectangles. DIRECT introduces the
concept of Potentially Optimal Rectangle (POR),
which is a selection criterion that determines if a
fractal is promising [3]. Many extended versions
of DIRECT have been proposed in the literature.
These can be considered within our five search
components:

• Fractal component: BIRECT (bisection) [25],
eDIRECT (Voronöı cell) [20], DISIMPL (sim-
plices) [16].

• Tree search component: Pareto-Lipschitzian
optimization [38], DIRECT Restart [27].

• Exploitation component: DIRMIN [39].

These modifications try to overcome some
DIRECT drawbacks, such as lower performances
in high dimensions, low convergence rate when
trapped by local optima, and a lack of a local
optimizer. In this paper, we introduce another
extension of DIRECT, called DIRECTBs, where
we replace the POR tree search, by a Beam search.
Furthermore, we have implemented under our
framework two well-known versions of DIRECT,
which are locally biased DIRECT (DIRECTL)
[26], and DIRECT Restart (DIRECTR) [27].

7.3 SOO: Simultaneous Optimistic
Optimization

DOO and SOO claim to be a generalization of
the DIRECT algorithm. These algorithms make
a strong assumption on the existence of a semi-
metric l. This assumption simplifies the Lipschitz-
continuous property by assuming a local smooth-
ness around the global optimum x̂ [12] :

f(x̂)− f(x) ≤ l(x̂, x), ∀x ∈ S

DOO is used when l is known; otherwise, SOO is
more adapted. The strength of these algorithms,
is their low number of parameters and the proof of
a convergence bound. Both algorithms are deter-
ministic. At each iteration and at each level of the

13

partition tree, the best fractal is selected accord-
ing to the evaluation of a representative solution
inside it (e.g. center). Here, the balance between
exploration and exploitation relies on the tree
search algorithm. In addition, a stochastic ver-
sion called Sto-SOO has been designed for noisy
loss function, where each fractal has to be eval-
uated multiple times [40]. In the same way as
DIRECTBs, we replaced the SOO tree search
algorithm, by a Beam Search component, denoted
by SOOBs algorithm.

8 Experimental setup

8.1 Algorithms selection

We have experimented more than 20 extensions
of the presented popular algorithms. We tried dif-
ferent tree search algorithms, such as Best First
Search and Cyclic Best First Search, different
beam lengths for Beam Search, different maximum
tree depth and scoring methods. In this paper,
we have selected the most relevant ones. We focus
on deterministic fractal-based decomposition algo-
rithms. Hence, only one run on each function
is necessary to evaluate their performances. We
have excluded some popular stochastic algorithms
such as FRACTOP, Sto-SOO and some versions
of DIRECT, such as eDIRECT [20] or glcClus-
ter [41]. Even that some designed algorithms have
been parallelized, a focus is made on a sequential
version of the algorithms. Indeed, some paral-
lel algorithms may have different behaviors in
terms of convergence and search time. For a fair
comparison, all the studied algorithms have been
implemented under the Zellij framework.

The first aim of this comparison is to show that we
can instantiate several popular algorithms within
the Zellij framework. One can also evaluate their
scalability and their sensitivity according to the
different search components: fractal, tree search,
scoring, exploration and exploitation components.
Thus, we have instantiated FDA [6], DIRECT [3],
DIRECTL [26], DIRECTR [27] and SOO [12].
We resumed all 11 implemented algorithms and
their different search components in Table 2. An
unsought property of our selection is that all algo-
rithms sample points in an axis-aligned fashion.
This is a behavior that we must keep in mind when
selecting benchmark functions.

8.2 Benchmark selection

For the selection of benchmarks, five essential
properties have been considered. Functions must
be shifted or rotated, or at least not have their
global optimum located at the center of the search
space. Indeed, for some well-known benchmark
functions (e.g. Rastrigin, Ackley, Sphere), some
selected algorithms (e.g. DIRECT, FDA, SOO)
can directly place a point, or the center of a fractal
onto the global optimum. Moreover, some bench-
mark functions must be multimodal, so to trap
the algorithms into local optima, and thus eval-
uate their exploration capability. The benchmark
functions must be non-separable, meaning that all
dimensions have to be optimized to find the global
optimum. This prevents algorithms from taking
advantage of their axis align property to optimize
only one or a few dimensions. Moreover, functions
must be non-symmetrical, as some algorithms use
symmetry to sample points. Therefore, we decided
to select the CEC2020 benchmark [42]. We con-
sider all functions as black box, and we reduce
the maximum number of calls to the objective
function at 5000n, as in [6][15]. We also tried to
reproduce the computational results obtained in
[6], on the SOCO2011 single objective benchmark.
However, we select the first six functions, as the
others are not shifted nor rotated, and their global
optimum are located on (0, 0, ..., 0).

In our results’ analysis, we use the two-sided
Wilcoxon signed-rank test and corresponding
mean ranks for each of the 11 algorithms. We per-
formed this test on each benchmark. Thus, we
were able to see their reliability. We take an error
rate α = 0.05 for the statistical test. Tested dimen-
sions are 10, 15, 20, 30, 50, 100, which are the
dimensions that both benchmarks have in com-
mon. For the Wilcoxon test, the two hypotheses
are:

• H0: The two samples come from the same
distribution.

• H1: The two samples come from different
distributions.

14

Table 2: Instantiated algorithms using Zellij

Algorithm Fractal
Tree
Search

Explor. Exploit. Scoring Depth Source

FRACTOP n-cube
Best First
Search

GA SA Belief 4 [5]

FDA n-sphere
Sorted
DFS

PHS ILS DTTB 5 [6]

DIRECT Trisection All POR Center ∅ ∅ 600 a [3]

DIRECTL Trisection
1 POR per

level
Center ∅ ∅ 600 a [26]

DIRECTR Trisection
Adaptive
POR

Center ∅ ∅ 600 a [27]

SOO Trisection
Best

fractal at
each level

Center ∅ ∅ 600 [12]

FDABs n-sphere
Beam

Search b PHS ILS DTTB 5 This work

DIRECTBs Trisection
Beam
Searchb

Center ∅ ∅ 600 a This work

SOOBs Trisection
Beam
Searchb

Center ∅ ∅ 600 This work

FDAC n-sphere
Sorted
DFS

PHS ILS C-DTTB 5 This work

FDAD n-sphere
Sorted
DFS

PHS ILS DTTB 10 [6]

FDADBs n-sphere
Beam
Searchb

PHS ILS DTTB 10 This work

aThe maximum depth is set to 600, as the maxdeep variable in the original FORTRAN implementation. In the original code, a
maxdiv variable, set to 3000, limits the number of successive decomposition of a fractal. In Zellij, when the difference between a
lower and an upper bound is inferior to a value ϵ set to 1e − 13, the fractal cannot be decomposed anymore.

bThe beam length was set to 600.

9 Results analysis and
discussion

First, all results are based on the gaps between
the best solution found by each algorithm and the
known global optimum of each function. Figure 7
shows the mean of the ranking of all 11 algo-
rithms on all CEC2020 benchmark functions for
each dimension. Summing these means and taking
the lowest results is not enough to determine if an

algorithm is better than another. Indeed, giving a
rank to an algorithm for a function is arbitrary.
An algorithm ranked second does not mean that
the first one is significantly better. We need a cor-
responding statistical test and p-value for each
algorithm. We resumed the comparison between
ranks and p-values in Figure.8. These figures can
be read column by column. Each column repre-
sents comparisons of an algorithm (column label)
with all other 10 algorithms (row labels). As an

15

Table 3: Functions of the CEC2020 benchmark[42]

Function Shifted Rotated Unimodality Separability Symmetrical

1 Bent f1 Yes Yes Yes No Yes

2 Schwefel Yes Yes No No No

3
Lunacek

Bi-Rastrigin
Yes Yes No No No

4
Rosenbrock
+ Griewangk

No No Yes No Yes

5 Hybrid 1 No Yes No No No

6 Hybrid 2 No Yes No No No

7 Hybrid 3 No Yes No No No

8
Composition

1
Yes Yes No No No

9
Composition

2
Yes Yes No No No

10
Composition

3
Yes Yes No No No

Table 4: Functions of the SOCCO2011 benchmark[6]

Function Shifted Rotated Unimodality Separable Symmetrical

1 Sphere Yes No Yes Yes Yes

2
Schwefel

Problem 2.21
Yes No Yes Yes Yes

3 Rosenbrock Yes No Yes No Yes

4 Rastrigin Yes No No No Yes

5 Griewangk Yes No No No Yes

6 Ackley Yes No No No Yes

7
Schwefel

Problem 2.22
No No Yes No Yes

8
Schwefel

Problem 1.2
No No Yes Yes Yes

9 Bohachevsky No No No Yes Yes

10 Schaffer No No No No Yes

16

example, on CEC2020, for dimensions 10, if we
focus on FDA (first column), we can compare it
with SOO (fifth row). The color indicates that
there is no statistical evidence that FDA is worse
or better than SOO. In Figure 8, Figure 9 and
Figure 10, there are three color codes:

• Solid-Grey: α > 0.05, we cannot reject the
null hypothesis.

• Gridded-Green: α ≤ 0.05 and
rank(columni) < rank(rowj). We can reject
the null hypothesis, and the algorithm with
the label of the column i has a lower rank (is
better) than the algorithm of the row j.

• Dotted-Red: α ≤ 0.05 and
rank(columni) > rank(rowj). We can reject
the null hypothesis, and the algorithm with
the label of the column i has a higher rank
(is worse) than the algorithm of the row j.

The following analysis is based on the CEC2020,
as it satisfies the properties we have previously
defined.

9.1 Sensitivity of dimensionality

The initial observations reveal that for dimen-
sions from 10 to 20, FDAD and FDADBs are the
worst algorithms. Moreover, for all dimensions, we
can see that these two algorithms are the worst
among other FDA versions. This confirms what
authors in [6] noticed, the deeper the tree, the
worse the results. Which appears to be true even
if we replace the tree search (FDADBs).

For dimensions from 10 to 50, it is not cer-
tain that FDA is better than other algorithms,
except FDAD and FDADBs, which are always
worse. But for dimensions 100, FDA is better
than DIRECT, DIRECTL and DIRECTR, which
was expected. Indeed, DIRECT does not scale
well in dimensions. In dimension 50, one can
note that FDA, DIRECT, DIRECTL, DIRECTR,
SOO, DIRECTBs, FDABs are equivalent.

Concerning SOO, we can observe that it is unclear
if it is working better than other algorithms
besides FDAD and FDADBs. Because SOO must
generate many fractals to significantly reduce the
search space, SOOBs quickly fill the beam, which
can explain a significant decrease in terms of

performances as n increases. SOO becomes sig-
nificantly less effective than FDA, DIRECTL,
DIRECTBs, FDABs and FDAC in dimension n =
100.

In low dimensions, DIRECTBs does not per-
form better compared to other DIRECT vari-
ations. However, it scales better when dimen-
sion increases. Indeed for n = 100, DIRECTBs,
DIRECTR and DIRECTL are better than the
original DIRECT. It shows the effect of the
tree search algorithm replacement. We can say
that depending on which dimension DIRECT is
applied, we should adapt some of its features to
make it scale better.

Finally, the best algorithms for high dimensional
continuous problems, are, FDA, FDAC, FDABs
and DIRECTBs.

9.2 Sensitivity of tree search

The selected algorithms are sensitive to different
parameters. For FDA, increasing D, the maxi-
mum tree depth, reduces drastically the perfor-
mances. It is interesting to compare the maximum
tree depth of each algorithm. DIRECT and SOO
require a deeper tree to perform well, conversely
to FDA.

However, in FDA, modifying Move-up by a Beam
search does not have a significant impact. For
DIRECTL we can see that modifying the tree
search, All POR by 1 POR per level and the mea-
sure of the size of a fractal (from σ2 to σ∞), makes
DIRECTL better than DIRECT for higher dimen-
sions. Nonetheless, it does not scale well. For SOO,
the replacement of the tree search by a Beam
Search, worsens it.

Finally, this work, empirically shows that by mod-
ifying some parts of fractal decomposition-based
algorithms, we can obtain different behaviors and
scalability. The most prominent example is the
comparison between DIRECT, DIRECTL and
DIRECTBs. DIRECT does not scale well for
dimensions 100, while other versions can perform
better.

9.3 Sensitivity of scoring

FDAC and FDA are similar for all dimensions.
We noticed that the modification of the scoring

17

method did not have a significant impact on the
algorithm’s behaviors. It is not clear which part of
the algorithm makes it work. We have changed the
scoring and tree search components, but we did
not notice any change in terms of efficacy, except
for FDAD and FDADBs. The step size of ILS
depends on the radius of the hypersphere in which
it is applied, this can explain bad performances
when we increase the maximum depth. Future
works might focus on the exploitation phase, and
its consequences on the performances of FDA.

9.4 Sensitivity of instances

The goal here, is to compare results obtained on
the CEC2020 with the SOCO2011 benchmarks, in
terms of sensitivity to the benchmark properties.
The following analysis is based on Figure 9 and
Figure 10.

With the 6 functions SOCO2011, the obtained
results do not permit to clearly demonstrate which
of FDA, FDAC, FDABs, DIRECT, DIRECTL,
DIRECTR, DIRECTBs, SOO is the best. Even-
if DIRECTBs seems to have better performances
for n = 100 than the other DIRECT based ver-
sions. As for CEC2020, FDAD seems to be the
worst algorithm for all dimensions, followed by
FDADBs. Moreover, for low dimensions from 10
to 20, it is unclear, we cannot conclude that any
of the algorithms performs better than the oth-
ers (except FDAD and FDADBs). For dimensions
30 to 100, DIRECTBs, is better than all other
DIRECT versions.

We even obtain different scalability. According
to SOCO2011, the best algorithm to use in very
high dimension (n = 100) is DIRECTBs, whereas
CEC2020 shows that FDA, FDAC, FDABs and
DIRECTBs are suitable solutions for this dimen-
sionality.

Selecting all 10 functions of the SOCO2011 is not
relevant, as F7 to F10 have their global opti-
mum located at (0, 0, ..., 0). But here we want to
show that when selecting a benchmark we have
to study behaviors of the selected algorithms and
properties of the benchmark to avoid worthless
comparisons.

We can notice that by adding 4 new functions
that are obviously easy to solve as, DIRECT,
DIRECTL, DIRECTR, SOO, DIRECTBs,

Fig. 7: Mean ranks on CEC2020 benchmark.

SOOBs find instantly the global optimum, does
not impact the results. Except FDAC which
becomes better than FDADBs and FDAD in
dimensions n = 20, n = 30 and n = 50. By adding
these worthless functions to the benchmark and
seeing no significant difference, we can suppose
that SOCO2011 is not sufficiently robust to assess
performances of selected algorithms. Therefore,
we must question the relevance of this benchmark
to compare decomposition-based algorithms.

9.5 Real-world problem: Sharpe
ratio maximization

Portfolio optimization is a problem coming from
the financial and investment management fields.
It aims to find a portfolio of assets that offers the
best possible trade-off between expected return
and risk. The primary goal of portfolio optimiza-
tion is to help investors make informed decisions
about how to allocate their investments among
different assets or securities. A portfolio is made of
various assets such as bonds or real estate. These
are defined by different levels of risks and returns.
The expected return is the average return one
can expect from a given portfolio over a specific
period.

Let’s consider w the weight vector of assets and
µ the expected return for each one. Then the
portfolio expected return is equal to Rp = wTµ.
Weights w are subject to the following constraints:
n∑

i=0

(wi) = 1 and wi ≥ 0. Here the goal is

not to tackle constrained optimization, so we do

18

(a) n = 10 (b) n = 15

(c) n = 20 (d) n = 30

(e) n = 50 (f) n = 100

Fig. 8: Ranks and Pair Wise Wilcoxon test
comparison on CEC2020. Solid-Grey: Statisti-
cally unsignificative (α > 0.05).Gridded-Green:
Better. Dotted-Red: Worse

not directly model
n∑

i=0

(wi) = 1. However, when

weights wi are passed to the objective functions,
these are normalized to follow the constraint. So
the search space is a unit hypercube of dimension
n, where n is the number of assets, and the bounds
are [0, 1]n.

One way to select the best portfolio, is to maxi-
mize the Sharpe ratio: Sp =

Rp−Rf

σp
With, Sp the

Sharpe ratio, Rp the expected return of a portfolio
p, Rf the risk-free rate, which is the expected min-
imum return on a zero risk investment, and σp the
standard error of p’s expected return. A negative

(a) n = 10 (b) n = 15

(c) n = 20 (d) n = 30

(e) n = 50 (f) n = 100

Fig. 9: Ranks and Pair Wise Wilcoxon test com-
parison on 6 functions SOCO2011. Solid-Grey:
Statistically unsignificative (α > 0.05). Gridded-
Green: Better. Dotted-Red: Worse

Sharpe ratio figures out a lower performance than
a risk-free investment. A ratio within [0, 1] defines
a positive expected return where the risk taken is
too high. When Sp > 1, then the expected return
of the portfolio is positive under a reasonable risk.

So Sharpe ratio optimization is a high dimensional
and scalable problem, where some dimensions
have to be set at 0 (no investment for a given
asset). The dataset contains stocks from the New
York Stock Exchange and Nasdaq Stock Market
(SP500) from January 7, 2000, to December 29,
2017 [43]. The base Sharpe ratio for comparison

19

(a) n = 10 (b) n = 15

(c) n = 20 (d) n = 30

(e) n = 50 (f) n = 100

Fig. 10: Ranks and Pair Wise Wilcoxon test
comparison on 10 functions SOCO2011. Solid-
Grey: Statistically unsignificative (α > 0.05).
Gridded-Green: Better. Dotted-Red: Worse

is given by the Expected Frontier algorithm, often
used for this problem. Here n = 356 and Rf = 2%

Results in Table 5 show that FDA-based algo-
rithms can find the same optimum as the Efficient
Frontier algorithm. Even FDAD and FDADBs
were able to optimize this problem, whereas they
were poorly ranked by the CEC2020 experiments.
Other fractal-based decomposition algorithms are
significantly less efficient. We can state that in
very high dimension, here n = 356, a local
optimizer appears to be needed.

Table 5: Portfolio optimization of
SP500

Algorithm Best Sharpe ratio

FDA 6.14E+00

DIRECT 2.45E+00

DIRECTL 2.64E+00

DIRECTR 3.78E+00

SOO 2.89E+00

DIRECTBs 3.94E+00

FDABs 6.14E+00

FDADBs 6.14E+00

FDAC 6.14E+00

FDAD 6.14E+00

SOOBs 2.90E+00

Efficient Frontiera 6.14E+00

aThe problem is converted into a convex
one within the Mean-Variance framework.

10 Conclusions and
perspectives

In this paper, we propose a unified and flexible
algorithmic framework for fractal-based decom-
position algorithms. This algorithmic framework
allows modeling decomposition-based algorithms
according to five search components: geomet-
rical fractal, tree search, scoring, exploration,
and exploitation. A Python package named Zel-
lij has been developed and is available on
GitHub4. Thanks to this framework, we can model
various decomposition-based algorithms such as
DIRECT, SOO, FRACTOP, FDA and much
more. Furthermore, the modular programming
standard used in Zellij, allows to prototype new
algorithms quickly.

Relevant computational results have been
obtained comparing popular and extended deter-
ministic algorithms according to the search
components and their parameters. Their sensi-
tivities to the dimension of the problem and the
benchmark instances have also been analyzed.
The proposed framework opens a door for devel-
oping and analyzing various search components.
We need larger and well-defined benchmarks with
more functions so that we can have a sufficiently

4https://github.com/ThomasFirmin/zellij

20

large sample to compute significant statistical
analysis.

Future works will focus on the extension of the
fractal-based decomposition algorithmic frame-
work for combinatorial and mixed optimization
problems, containing various types of variables
(e.g. discrete, continuous, categorical). We will
also investigate other geometrical fractal objects
such as Voronöı fractals and Latin hypercubes,
which implies stochasticity. We will have the
opportunity to experiment the algorithms for
noisy functions and multi-objective optimization
problems.

From a long-term perspective, we will tackle the
massive parallelization of fractal-based decom-
position algorithms on large scale heterogeneous
architectures including multi-cores and accelera-
tors such as GPU, towards Exascale architectures.

Because our algorithmic framework is made of
five distinct and independent components, one
could imagine an autonomous search for the best
combinations of them. Thus, we could figure
out autonomous fractal decomposition-based algo-
rithms dedicated to specific problems. In terms
of application perspective, some computational
experiments are under development on solving
high-impact optimization problems such as hyper-
parameter optimization and automated design of
deep neural networks.

Acknowledgment

Experiments presented in this paper were car-
ried out using the Grid’5000 testbed, supported
by a scientific interest group hosted by Inria
and including CNRS, RENATER and several
Universities as well as other organizations (see
https://www.grid5000.fr).

This work has been supported by the Univer-
sity of Lille, the ANR-20-THIA-0014 program
AI PhDLille and the ANR PEPR Numpex.

Data availability statement

The datasets generated during the current study,
containing raw data, summaries, and statistics
of all experiments, are available free of charge
at https://doi.org/10.57745/0JEUEK. The code
used for experiments is available on GitHub

at https://github.com/ThomasFirmin/fdb zellij
exp.

References

[1] Bansal, J.C.: In: Bansal, J.C., Singh,
P.K., Pal, N.R. (eds.) Particle Swarm
Optimization, pp. 11–23. Springer,
Cham (2019). https://doi.org/10.1007/
978-3-319-91341-4 2 . https://doi.org/10.
1007/978-3-319-91341-4 2

[2] Garnett, R.: Bayesian Optimization. Cam-
bridge University Press, Cambridge (2023).
https://doi.org/10.1017/9781108348973

[3] Jones, D.R., Perttunen, C.D., Stuckman,
B.E.: Lipschitzian optimization without the
Lipschitz constant. Journal of Optimization
Theory and Applications 79(1), 157–181
(1993) https://doi.org/10.1007/BF00941892
. Accessed 2022-01-27

[4] Jones, D.R., Martins, J.R.R.A.: The
DIRECT algorithm: 25 years Later.
Journal of Global Optimization 79(3),
521–566 (2021) https://doi.org/10.1007/
s10898-020-00952-6 . Accessed 2022-03-01

[5] Demirhan, M., Özdamar, L., Helvacıoğlu, L.,
Birbil, I.: FRACTOP: A Geometric Parti-
tioning Metaheuristic for Global Optimiza-
tion. Journal of Global Optimization 14(4),
415–436 (1999) https://doi.org/10.1023/A:
1008384329041 . Accessed 2022-03-01

[6] Nakib, A., Ouchraa, S., Shvai, N., Souquet,
L., Talbi, E.-G.: Deterministic metaheuristic
based on fractal decomposition for large-
scale optimization. Applied Soft Computing
61, 468–485 (2017) https://doi.org/10.1016/
j.asoc.2017.07.042 . Accessed 2022-03-01

[7] Mandelbrot, B.B., Wheeler, J.A.: The frac-
tal geometry of nature. American Journal of
Physics 51(3), 286–287 (1983) https://doi.
org/10.1119/1.13295

[8] Dechter, R., Pearl, J.: Generalized best-first
search strategies and the optimality of a*. J.
ACM 32(3), 505–536 (1985) https://doi.org/
10.1145/3828.3830

21

https://doi.org/10.57745/0JEUEK
https://github.com/ThomasFirmin/fdb_zellij_exp
https://github.com/ThomasFirmin/fdb_zellij_exp
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1007/978-3-319-91341-4_2
https://doi.org/10.1017/9781108348973
https://doi.org/10.1007/BF00941892
https://doi.org/10.1007/s10898-020-00952-6
https://doi.org/10.1007/s10898-020-00952-6
https://doi.org/10.1023/A:1008384329041
https://doi.org/10.1023/A:1008384329041
https://doi.org/10.1016/j.asoc.2017.07.042
https://doi.org/10.1016/j.asoc.2017.07.042
https://doi.org/10.1119/1.13295
https://doi.org/10.1119/1.13295
https://doi.org/10.1145/3828.3830
https://doi.org/10.1145/3828.3830

[9] Frohner, N., Gmys, J., Melab, N., Raidl,
G.R., Talbi, E.-g.: Parallel Beam Search
for Combinatorial Optimization (Extended
Abstract). Proceedings of the Interna-
tional Symposium on Combinatorial Search
15(1), 273–275 (2022) https://doi.org/10.
1609/socs.v15i1.21783 . Accessed 2023-01-31

[10] Valenzano, R., Xie, F.: On the completeness
of best-first search variants that use random
exploration. Proceedings of the AAAI Con-
ference on Artificial Intelligence 30(1) (2016)
https://doi.org/10.1609/aaai.v30i1.10081

[11] Morales-Castañeda, B., Zald́ıvar, D., Cuevas,
E., Fausto, F., Rodŕıguez, A.: A better bal-
ance in metaheuristic algorithms: Does it
exist? Swarm and Evolutionary Computation
54, 100671 (2020) https://doi.org/10.1016/j.
swevo.2020.100671

[12] Munos, R.: Optimistic Optimization of a
Deterministic Function without the Knowl-
edge of its Smoothness, 9 https://doi.org/10.
5555/2986459.2986547

[13] Drmota, M., Tichy, R.F.: Sequences, Dis-
crepancies and Applications. Springer, Berlin
Heidelberg (1997). https://doi.org/10.1007/
bfb0093404

[14] Talbi, E.-G.: Metaheuristics. Wiley, Hobo-
ken (2009). https://doi.org/10.1002/
9780470496916

[15] Khodabandelou, G., Nakib, A.: H -polytope
decomposition-based algorithm for continu-
ous optimization. Information Sciences 558,
50–75 (2021) https://doi.org/10.1016/j.ins.
2020.12.090 . Accessed 2022-03-01

[16] Paulavičius, R., Žilinskas, J.: Simplicial Lip-
schitz optimization without the Lipschitz
constant. Journal of Global Optimization
59(1), 23–40 (2014) https://doi.org/10.1007/
s10898-013-0089-3 . Accessed 2022-07-22

[17] Barber, C.B., Dobkin, D.P., Huhdanpaa,
H.: The quickhull algorithm for convex
hulls. ACM Trans. Math. Softw. 22(4), 469–
483 (1996) https://doi.org/10.1145/235815.
235821

[18] Fortune, S.: A sweepline algorithm for
Voronoi diagrams, 22 https://doi.org/10.
1007/BF01840357

[19] Watson, D.F.: Computing the n-dimensional
Delaunay tessellation with application
to Voronoi polytopes*. The Com-
puter Journal 24(2), 167–172 (1981)
https://doi.org/10.1093/comjnl/24.2.167
https://academic.oup.com/comjnl/article-
pdf/24/2/167/967258/240167.pdf

[20] Liu, H., Xu, S., Wang, X., Wu, J., Song, Y.: A
global optimization algorithm for simulation-
based problems via the extended DIRECT
scheme. Engineering Optimization 47(11),
1441–1458 (2015) https://doi.org/10.1080/
0305215X.2014.971777 . Accessed 2022-01-27

[21] Rushdi, A.A., Swiler, L.P., Phipps,
E.T., D’Elia, M., Ebeida, M.S.: VPS:
VORONOI PIECEWISE SURROGATE
MODELS FOR HIGH-DIMENSIONAL
DATA FITTING. International Journal
for Uncertainty Quantification 7(1), 1–
21 (2017) https://doi.org/10.1615/Int.J.
UncertaintyQuantification.2016018697 .
Accessed 2022-01-27

[22] Mitchell, S.A., Ebeida, M.S., Awad, M.A.,
Park, C., Patney, A., Rushdi, A.A., Swiler,
L.P., Manocha, D., Wei, L.-Y.: Spoke-Darts
for High-Dimensional Blue-Noise Sampling.
ACM Transactions on Graphics 37(2), 1–
20 (2018) https://doi.org/10.1145/3194657 .
Accessed 2022-01-28

[23] Villagran, A., Huerta, G., Vannucci,
M., Jackson, C.S., Nosedal, A.: Non-
parametric Sampling Approximation via
Voronoi Tessellations. Communications
in Statistics - Simulation and Com-
putation 45(2), 717–736 (2016) https:
//doi.org/10.1080/03610918.2013.870798 .
Accessed 2022-01-28

[24] Khachiyan, L., Boros, E., Borys, K., Elbas-
sioni, K., Gurvich, V.: Generating All
Vertices of a Polyhedron Is Hard. Dis-
crete & Computational Geometry 39(1-
3), 174–190 (2008) https://doi.org/10.1007/
s00454-008-9050-5 . Accessed 2022-03-01

22

https://doi.org/10.1609/socs.v15i1.21783
https://doi.org/10.1609/socs.v15i1.21783
https://doi.org/10.1609/aaai.v30i1.10081
https://doi.org/10.1016/j.swevo.2020.100671
https://doi.org/10.1016/j.swevo.2020.100671
https://doi.org/10.5555/2986459.2986547
https://doi.org/10.5555/2986459.2986547
https://doi.org/10.1007/bfb0093404
https://doi.org/10.1007/bfb0093404
https://doi.org/10.1002/9780470496916
https://doi.org/10.1002/9780470496916
https://doi.org/10.1016/j.ins.2020.12.090
https://doi.org/10.1016/j.ins.2020.12.090
https://doi.org/10.1007/s10898-013-0089-3
https://doi.org/10.1007/s10898-013-0089-3
https://doi.org/10.1145/235815.235821
https://doi.org/10.1145/235815.235821
https://doi.org/10.1007/BF01840357
https://doi.org/10.1007/BF01840357
https://doi.org/10.1093/comjnl/24.2.167
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/24/2/167/967258/240167.pdf
https://arxiv.org/abs/https://academic.oup.com/comjnl/article-pdf/24/2/167/967258/240167.pdf
https://doi.org/10.1080/0305215X.2014.971777
https://doi.org/10.1080/0305215X.2014.971777
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018697
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2016018697
https://doi.org/10.1145/3194657
https://doi.org/10.1080/03610918.2013.870798
https://doi.org/10.1080/03610918.2013.870798
https://doi.org/10.1007/s00454-008-9050-5
https://doi.org/10.1007/s00454-008-9050-5

[25] Paulavičius, R., Chiter, L., Žilinskas, J.:
Global optimization based on bisection of
rectangles, function values at diagonals, and
a set of lipschitz constants. Journal of Global
Optimization 71(1), 5–20 (2016) https://doi.
org/10.1007/s10898-016-0485-6

[26] Gablonsky, J.M., Kelley, C.T.: A Locally-
Biased form of the DIRECT Algorithm, 12
https://doi.org/10.1023/A:1017930332101

[27] Finkel, D.E., Kelley, C.T.: An Adaptive
Restart Implementation of DIRECT, 16

[28] Even, S.: Graph Algorithms, 2nd edn.
Cambridge University Press, Cam-
bridge (2011). https://doi.org/10.1017/
CBO9781139015165

[29] Imai, T., Kishimoto, A.: A novel technique for
avoiding plateaus of greedy best-first search
in satisficing planning., vol. 2 (2011). https:
//doi.org/10.1609/socs.v2i1.18208

[30] Morrison, D., Sauppe, J., Zhang, W., Jacob-
son, S., Sewell, E.: Cyclic best first search:
Using contours to guide branch-and-bound
algorithms. Naval Research Logistics Quar-
terly 64(1), 64–82 (2017) https://doi.org/10.
1002/nav.21732

[31] Voelker, A., Gosmann, J., Stewart, T.: Effi-
ciently sampling vectors and coordinates
from the n-sphere and n-ball (2017) https:
//doi.org/10.13140/RG.2.2.15829.01767/1

[32] Muller, M.E.: A note on a method for gen-
erating points uniformly on n-dimensional
spheres. Commun. ACM 2(4), 19–20 (1959)
https://doi.org/10.1145/377939.377946

[33] Harman, R., Lacko, V.: On decompositional
algorithms for uniform sampling from n-
spheres and n-balls. Journal of Multivariate
Analysis 101(10), 2297–2304 (2010) https:
//doi.org/10.1016/j.jmva.2010.06.002

[34] Ge, C., Ma, F.: A fast and practi-
cal method to estimate volumes of con-
vex polytopes. In: Wang, J., Yap, C.
(eds.) Frontiers in Algorithmics, pp. 52–65.
Springer, Cham (2015). https://doi.org/10.

1007/978-3-319-19647-3 6

[35] Corte, M.V., Montiel, L.V.: Novel matrix
hit and run for sampling polytopes and
its GPU implementation. Computational
Statistics (2023) https://doi.org/10.1007/
s00180-023-01411-y

[36] Chen, Y., Dwivedi, R., Wainwright, M.J.,
Yu, B.: Fast mcmc sampling algorithms
on polytopes. J. Mach. Learn. Res. 19(1),
2146–2231 (2018) https://doi.org/10.5555/
3291125.3309617

[37] Shubert, B.O.: A Sequential Method Seeking
the Global Maximum of a Function. SIAM
Journal on Numerical Analysis 9(3), 379–
388 (1972) https://doi.org/10.1137/0709036 .
Accessed 2022-09-29

[38] Mockus, J.: On the Pareto Optimality in
the Context of Lipschitzian Optimization.
Informatica 22(4), 521–536 (2011) https:
//doi.org/10.15388/Informatica.2011.340 .
Accessed 2022-11-25

[39] Liuzzi, G., Lucidi, S., Piccialli, V.: A
DIRECT-based approach exploiting local
minimizations for the solution of large-
scale global optimization problems. Com-
putational Optimization and Applications
45(2), 353–375 (2010) https://doi.org/10.
1007/s10589-008-9217-2 . Accessed 2023-09-
19

[40] Valko, M., Carpentier, A., Munos, R.:
Stochastic Simultaneous Optimistic Opti-
mization, 9 https://doi.org/10.5555/
3042817.3042896

[41] Rios, L.M., Sahinidis, N.V.: Derivative-
free optimization: a review of algorithms
and comparison of software implementa-
tions. Journal of Global Optimization 56(3),
1247–1293 (2013) https://doi.org/10.1007/
s10898-012-9951-y . Accessed 2022-10-24

[42] Liang, J., Suganthan, P., Qu, B., Gong,
D., Yue, C.: Problem Definitions and Eval-
uation Criteria for the CEC 2020 Spe-
cial Session on Multimodal Multiobjective
Optimization. https://doi.org/10.13140/RG.

23

https://doi.org/10.1007/s10898-016-0485-6
https://doi.org/10.1007/s10898-016-0485-6
https://doi.org/10.1023/A:1017930332101
https://doi.org/10.1017/CBO9781139015165
https://doi.org/10.1017/CBO9781139015165
https://doi.org/10.1609/socs.v2i1.18208
https://doi.org/10.1609/socs.v2i1.18208
https://doi.org/10.1002/nav.21732
https://doi.org/10.1002/nav.21732
https://doi.org/10.13140/RG.2.2.15829.01767/1
https://doi.org/10.13140/RG.2.2.15829.01767/1
https://doi.org/10.1145/377939.377946
https://doi.org/10.1016/j.jmva.2010.06.002
https://doi.org/10.1016/j.jmva.2010.06.002
https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.1007/978-3-319-19647-3_6
https://doi.org/10.1007/s00180-023-01411-y
https://doi.org/10.1007/s00180-023-01411-y
https://doi.org/10.5555/3291125.3309617
https://doi.org/10.5555/3291125.3309617
https://doi.org/10.1137/0709036
https://doi.org/10.15388/Informatica.2011.340
https://doi.org/10.15388/Informatica.2011.340
https://doi.org/10.1007/s10589-008-9217-2
https://doi.org/10.1007/s10589-008-9217-2
https://doi.org/10.5555/3042817.3042896
https://doi.org/10.5555/3042817.3042896
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.1007/s10898-012-9951-y
https://doi.org/10.13140/RG.2.2.31746.02247

2.2.31746.02247

[43] Man-Fai Leung: Datasets for Portfolio Opti-
mization. Mendeley (2022). https://doi.org/
10.17632/G5579MMC9K.2 . https://data.
mendeley.com/datasets/g5579mmc9k/2

24

https://doi.org/10.13140/RG.2.2.31746.02247
https://doi.org/10.17632/G5579MMC9K.2
https://doi.org/10.17632/G5579MMC9K.2
https://data.mendeley.com/datasets/g5579mmc9k/2
https://data.mendeley.com/datasets/g5579mmc9k/2

	Introduction
	Zellij: A fractal-based decomposition algorithmic framework
	Geometrical fractal object
	Tree search
	Scoring fractals
	Exploration and exploitation strategies
	Extension of popular decomposition-based algorithms
	FRACTOP, FDA and PolyFRAC: Fractal-based optimization algorithms
	Direct: Dividing Rectangles
	SOO: Simultaneous Optimistic Optimization

	Experimental setup
	Algorithms selection
	Benchmark selection

	Results analysis and discussion
	Sensitivity of dimensionality
	Sensitivity of tree search
	Sensitivity of scoring
	Sensitivity of instances
	Real-world problem: Sharpe ratio maximization

	Conclusions and perspectives

