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Abstract: Fractal geometry is a valuable formalism for synthesizing and analyzing irregular curves to simulate non-
smooth geometry or roughness. Understanding and controlling these geometries remains challenging because
of the complexity of their shapes. This study focuses on the curvature of fractal curves defined from an Iter-
ated Function System (a set of contractive operators). We introduce the Differential Characteristic Function
(DCF), a new tool for characterizing and analyzing their differential behavior. We associate a family of DCF
to the fixed point of each operator. For each dyadic point of the curve, there exist left and right families of DCF
inducing left and right ranges of curvatures: the pseudo-curvatures. A set of illustrations shows the influence
of these pseudo-curvatures on the geometry of fractal curves. We propose a first approach for applying our
results to roughness generation and control.

1 INTRODUCTION

Rough curves and surfaces have gained prominence
in fields like quality control, computer-aided design,
and computer graphics. They are utilized for di-
verse applications such as generating coherent ter-
rains (Fournier et al., 1982; Warszawski et al., 2019),
creating textures (Wang et al., 2021), or simulating
their effects to replicate the light-matter interactions
(Stam, 2001; Walter et al., 2007; Chermain et al.,
2021) without adding geometric complexity.

There are different ways to produce roughness. In
mathematics, roughness denotes irregularity in non-
differentiable context. Quantifying such irregularity
is established using mathematical constructs, like the
Lipschitz coefficient and the Hölder coefficient in its
various forms, pointwise, local, or global. Rough
curves were first introduced by Bolzano (Bolzano,
1851; Thim, 2003), Weierstrass (Hardy, 1916) and
Takagi (Allaart and Kawamura, 2012; Allaart and
Kawamura, 2010). They follow an iterative construc-
tion, creating new details with decreasing amplitude
related to the increasing frequency. This construc-
tion process results in a self-similar property related
to fractal geometry (Mandelbrot, 1977), and fractal
dimensions (Nayak et al., 2019). Another approach
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to producing rough phenomena is to use statistical
models. For example, the pioneer Perlin noise (Per-
lin, 1985) can produce rough-looking constructs with
a high enough octave. However, many of these proce-
dural noise models lack global control.

Designing and controlling the geometry of rough
curves and surfaces is challenging. This paper aims to
enrich the understanding of differential properties of
fractal curves by studying curvature to provide tools
for later designing and controlling rough curves and
surfaces. Roughness is characterized by irregulari-
ties (differential behavior), often associated with self-
similarity. Consequently, fractals offer an appropriate
framework for studying phenomena related to rough-
ness and irregularity. Deterministic is also essen-
tial for accurate controls and continuous dependency
between parameters and resulting geometry. Conse-
quently, we focus on fractal deterministic curves.

We review some related work in section 2. We
focus on deterministic fractal curves defined by Iter-
ated Function Systems (IFS) (Hutchinson, 1981) and
projected IFS, as explained in section 3. Section 4
introduces the differential characteristic function, a
new tool to analyze the differential behavior of fractal
curves. Section 5 shows how the differential char-
acteristic functions can be used to obtain known re-
sults about the tangent of a fractal curve. In section 6,
we analyze the curvature at each fixed point from its
associated family of differential characteristic func-
tions, and we define the pseudo curvature of a fractal



curve. Finally section 7 discusses applying our results
to roughness design and generation.

2 RELATED WORK

The automatic generation (for our purpose, geome-
tries) implies having specifications, generally ex-
pressed in terms of expected properties or characteris-
tic values. Of course, these specifications have to de-
pend on the generator parameters. The nature of this
dependency and its accessibility are central to having
an intuitive control or facilitating the specification de-
scription.

Numerous studies deal with this question using
spectral analysis to generate noises (fractal-based,
colored noises, convolution noise) (Perlin, 1985;
Cook and DeRose, 2005; Lagae et al., 2009; Gilet
et al., 2014; Pavie, 2016; Cavalier et al., 2019; Hu
and Tonder, 1992; Wang et al., 2021; Pérez-Ràfols
and Almqvist, 2019). However, most need spec-
tral control, which is only apparent with minimum
knowledge. Other studies focus on the differential
properties of random rough curves. In tribology, the
contact area between two rough surfaces is analyzed
from the curvature. Nowicki (Nowicki, 1985) lists
and discusses numerous parameters for evaluating,
analyzing, and modeling surface roughness. Some
were concerned about differential properties like peak
shapes, slope means, number of inflection points, and
RMS of the profile slope, radius of asperity, and cur-
vature radius. However, he only provides standard
definitions for smooth curves without considering the
numerical trouble caused by the irregularity of rough
curves. Moalic et al. (Moalic et al., 1987) outline
errors arising in the computation of slopes and cur-
vatures statistical characteristics (mean, variance) for
actual sampled surface. The tested methods by or-
der of decreasing error are the finite difference meth-
ods (Whitehouse, 1982), the autospectrum approach,
and the Fourier transform computation. However, all
these methods evaluate the characteristics on aver-
age. Bigerelle et al. (Bigerelle et al., 2013) propose
a method to calculate the curvature at any point of
a random rough curve by considering the statistical
self-similarity (fractal) property.

To eliminate the uncertainty of the randomness,
some authors focus on deterministic curves. Daoudi
et al. (Daoudi et al., 1998) construct nowhere dif-
ferentiable continuous functions from prescribed lo-
cal Hölder regularity at each point. However, the
Hölder irregularity is a complex notion. Bensoudane
and Podokorytov (Bensoudane et al., 2009; Podkory-
tov, 2013) focus on curves built with IFS and show

that it is possible to define left and right tangents even
if the curve is nowhere differentiable. In some config-
urations, tangents are not defined, but the differential
behavior is described by defining pseudo-tangents.
These studies have shown accuracy brought by deter-
ministic models. Pseudo-tangents are an interesting
geometric tool for controlling roughness, but they are
insufficient to manage the complexity of such curves.
A second-order differential characteristic is expected.

3 BACKGROUND

An Iterated Function System (IFS) is a finite set of
contractive operators {Ti}I−1

i=0 that act on a complete
metric space (X,d). For a given IFS, there exists
a unique non-empty compact set A of (X,d) satis-
fying the self-similarity property: A =

⋃I−1
i=0 Ti(A).

Note that each operator Ti maps A onto a part of it-
self. A is called the attractor of the IFS. We com-
pute it using the Hutchinson operator T, defined by
T(K) =

⋃I−1
i=0 Ti(K), with K ∈ H(X), the set of all

non-empty compact subsets of X. The attractor A can
be obtained as the limit of an iterative process, given
by A = limi→+∞Ti(A).

Zair and Tosan (Zair and Tosan, 1996) and
Schaefer (Schaefer et al., 2005) introduced the pro-
jected IFS model to create free-form fractal shapes
that can be deformed by changing the positions
of a set of N control points P = {P0, . . . ,PN−1}.
The attractor is defined in the barycentric space
BIN =

{
α ∈ RN |∑N−1

j=0 α j = 1,α = (α0, ...,αN−1)
T
}

(Figure 1 left). Each point of A ⊂ BIN is inter-
preted as a set of weights w.r.t. the control points.
The attractor is then projected onto the modeling
space according to a set of control points P: PA ={

p ∈ X, p = ∑
N−1
j=0 α jPj : α ∈ A

}
(see Figure 1 right).

This construction is similar to Bézier curves defi-
nition, where the Bernstein polynomial functions are
defined in BIN and then projected according to the
set of control points: C(t) = ∑

N−1
j=0 B j(t)Pj. Note that

Bézier (resp. NURBS) curves can be modeled using
projected IFS (Zair and Tosan, 1996) (resp. C-IFS
(Morlet et al., 2019)).

For the rest of the paper, all operators are con-
tractive affine operators acting on BIN . We consider
the barycentric space BIN as an hyperplane of the
affine space RN , with the coordinate system of ori-
gin O = (0, . . . ,0) and basis vectors (e0, . . . ,eN−1)
where the jth component of the N-dimensional vector
(ei) j = δi j, where δi j designates the Kronecker delta.
The associated vector space of BIN is the set of vec-



Figure 1: Left: Takagi attractor A built in the barycentric
space BI3, where {e0,e1,e2} are the canonical basis vec-
tors. Right: projection of the attractor A of the left figure
according to the set of control points {P0,P1,P2}.

tors BIN =
{

v ∈ RN |∑N−1
j=0 v j = 0

}
. Consider an IFS

{Ti}I−1
i=0 , for each operator Ti : BIN → BIN , there ex-

ists a linear operator Ti : BIN → BIN such that:

Ti(x+v) = Ti(x)+Ti(v) (1)

for any x ∈ BIN and any v ∈ BIN . Each operator Ti
must be internal (a point of BIN is mapped onto BIN).
As a consequence, their matrix form, expressed in the
coordinate system (O,e0, . . . ,eN−1), are N ×N matri-
ces with column’s sum equals 1 (Ti have the same
matrix form as Ti). Because of the constraint on the
sum of each column, such matrices have 1 as eigen-
value. To be contractive, the remaining eigenvalues
must have their modulus lesser than 1. For an opera-
tor Ti, we adopt the following notation for its eigen-
values and eigenvectors: (λ0

i = 1,λ1
i , . . . ,λ

N−1
i ) and

(v0
i ,v

1
i , . . . ,v

N−1
i ), respectively, where eigenvalues are

arranged in decreasing modulus (upper index). The
first eigenvector v0

i (not in bold), associated to λ0
i = 1,

corresponds to the fixed point, denoted by ci. The
sum of its components equals 1, meaning it is a point
of BIN . The other eigenvectors have the sum of their
coordinates equal to zero, indicating that these eigen-
vectors are vectors. For example, we can consider the
matrices of de Casteljau, which are used in the calcu-
lation of Bézier curves:

T0 =

 1 1/2 1/4
0 1/2 1/2
0 0 1/4

 , T1 =

 1/4 0 0
1/2 1/2 0
1/4 1/2 1


The attractor of the associated IFS is the Bernstein
polynomial function of degree 2 lying in BI3.

With projected IFS, controlling the topology of
such objects is challenging. An extension, named
Boundary Controlled Iterated Function System (BC-
IFS) (Sokolov et al., 2015; Gentil et al., 2021), pro-
vides a control of the attractor topology with in-
cidence and adjacency constraints. Ensuring the
C(0) continuity for curves is equivalent to applying
the well-known constraints for Fractal Interpolation
Functions (FIF) (Barnsley, 2014). We consider an IFS
composed of two operators T0 and T1 that builds an
attractor in BI3 (as in Figure 2). The attractor is then

projected onto the modeling space using three con-
trol points {P0,P1,P2} defined in R2. The operator
T0 maps all the curve to the red part of the curve,
and T1 maps it into the green part, so to guarantee
that the two parts are connected, we impose the ad-
jacency constraint for C(0): T0c1 = T1c0, where the
fixed points c0 and c1 are the left and right endpoints
of the curve respectively (see Figure 2).

Figure 2: Adjacency constraint for C(0) continuity: T0c1 =
T1c0 is imposed for the IFS composed of T0 and T1 to guar-
antee the connectivity of the fractal curve at the joining
point, the curve is then projected into the modeling space
with control points {P0,P1,P2}.

We define dyadic points, on which we compute
the pseudo-curvature as following: p ∈ A is a dyadic
point if there exists a finite sequence of indices
σ0,σ1, . . . ,σl (where σi ∈ {0, . . . , I − 1} and σl−1 ̸=
σl) s.t. p = Tσ0Tσ1 . . .Tσl−1cσl .

4 CHARACTERIZATION OF
ITERATIVE BEHAVIORS

The main idea of this paper is to consider an attrac-
tor as a set of sequences. We know that each Ti has a
fixed point ci belonging to the attractor. By applying
Ti iteratively on the fixed point ck of another operator
Tk, we define a sequence of points converging to ci,
each element of the sequence belonging to the attrac-
tor.

This section introduces the differential character-
istic function (DCF) to formalize and simplify these
sequences’ behavior.

4.1 Elementary Iterative Behavior of
One Operator

Consider an internal contractive operator T (of an IFS
defining a curve) acting on BI3, (λ0 = 1,λ1,λ2) its
eigenvalues, (v0 = c,v1,v2) its eigenvectors and q0 a
point of BI3.

We define the sequence {qn}n∈N by: qn = Tnq0.
Each term of this resulting sequence can be expressed



in the coordinate system {c,v1,v2}:

q0 = c+ x1v1 + x2v2, where x1,x2 ∈ R (2)

Tnq0 = Tnc+Tn(x1v1 + x2v2) (3)

Tnq0 = c+ x1(λ
1)nv1 + x2(λ

2)nv2 (4)

To gain insight into the differential properties of the
curve, we need to analyze the different behaviors of
the sequence {qn}n∈N w.r.t. the eigensystem of T . To
see clearly these behaviors, we project the sequence
of points Tnq0 onto the modeling space in a way to
have an orthogonal system {Pc,Pv1,Pv2} such that
||Pv1|| = ||Pv2|| and then ||Pλ1v1|| and ||Pλ2v2|| re-
flect the value of the eigenvalues (as shown in the fig-
ures below). The different cases are defined from the
eigenvalues:

• Case 1: if λ1 > λ2 > 0, the contraction in the di-
rection of v2 is greater than that in the direction
of v1, the sequence converges to the point Pc tan-
gentially to the eigenvector v1. Figure 3 left illus-
trates the different configurations according to the
location of the starting point in the four quadrants
defined from the eigenvectors.

• Case 2: if |λ1|> |λ2|, λ1 < 0 and λ2 < 0, the com-
ponents x1(λ

1)n and x2(λ
2)n of qn alternates be-

tween positive and negative values as a function
of n, and therefore the sequence of points passes
alternately from the starting quadrant to the oppo-
site one (Figure 3 right).

Figure 3: Left: Applying T (with eigenvalues λ1 > λ2) on
four different starting points (Pq0,Pq′0,Pq′′0 ,Pq′′′0 ). Each se-
quence converges to Pc tangentially to Pv1. Right: λ1 < 0
and λ2 < 0: the sequence of points {PTnq0}n∈N alternates
between the starting quadrant to the opposite one until con-
verging towards the point Pc.

• Case 3: if |λ1| > λ2 > 0 and λ1 < 0, the compo-
nent x1(λ

1)n of qn alternates between positive and
negative values as a function of n, and therefore
the sequence of points passes alternately from one
of the half-planes delimited by the line c+ tv2 to
the other half-plane (Figure 4 left).

• Case 4: if λ1 > |λ2| and λ2 < 0, the component
x2(λ

2)n of qn alternates between positive and neg-
ative values as a function of n, and therefore the
sequence of points passes alternately from one of

the half-planes delimited by the line c+ tv1 to the
other half-plane. But the sequence already con-
verges to c tangentially to v1 (Figure 4 right).

Figure 4: In both figures, the sequences of points
{PTnq0}n∈N converge to the point Pc. They alternate be-
tween the positive and negative half-planes delimited by the
second eigenvector Pλ2v2 (for the left figure, where λ1 < 0)
or by the first one Pλ1v1 (for the right figure, where λ2 < 0).

• Case 5: λ1 = λ2 > 0, the contractions in the direc-
tions of v1 and v2 are equal, and the sequence of
points converges on a straight line to the point Pc.

• Case 6: if λ1 = λ2 are complex eigenvalues, the
operator is characterized by a rotation, and the se-
quence of points converges on a spiral to the point
Pc.

4.2 The Differential Characteristic
Function

In order to analyze the differential properties at the
fixed point c of a contractive operator T , we aim to
find an analytical function that interpolates the points
of the sequence obtained by applying T on a starting
point q0. This expression will allow a formal charac-
terization of the differential behavior at the limit point
of the sequence.

We first focus on the simplest case with T acting
on BI3 and where both λ1 and λ2 are positive (i.e. 1 >
λ1 > λ2 > 0). We will present the other configurations
later.

Definition: Consider an operator T acting on BI3

with eigenvalues (λ0 = 1 > λ1 > λ2 > 0) and associ-
ated eigenvectors (v0 = c,v1,v2). We suppose v1 and
v2 independent. Let q be a point of BI3\{c+ tv2}t∈R
(i.e. q does not belong to the line passing through c
in the direction of v2), and consider its expression in
the coordinates system (c,v1,v2): q= c+x1v1+x2v2.
We suppose that v1 and v2 are chosen such that x1 > 0
and x2 > 0. The differential characteristic function
(DCF) is defined by:

DT,q(t) = c+ tv1 +βtαv2 , t ∈ R+ (5)

where β = x2
(x1)α and α = log(λ2)

log(λ1)
.

Property: DT,q0 interpolates the points of the se-
quence {qn}n∈N = {Tnq0}n∈N (see Figure 5 left).



Proof. q0 = c+ x1v1 + x2v2, where x1,x2 ∈ R+∗

qn = Tnq0 = c+ x1(λ
1)nv1 + x2(λ

2)nv2

= c+X1v1 +X2v2

We have to prove that qn have their coordinates
(X1,X2) in the form (t,βtα). Set t = X1 = x1(λ

1)n

then: βtα = β(x1(λ
1)n)α = x2

(x1)α (x1)
α((λ1)n)α. Be-

cause α = log(λ2)
log(λ1)

, λ2 = (λ1)α, x2(λ
2)n = βtα and

X2 = βtα.

Property: The graph of DT,q(t), denoted by
Graph(DT,q), is invariant under T .

Proof. Consider a DCF DT,q(t) = c + tv1 + βtαv2.
Let m be a point of Graph(DT,q), m = c + tmv1 +

βtα
mv2. Then T m = c + λ1tmv1 + λ2βtα

mv2 and
as λ2 = (λ1)α, T m = c + λ1tmv1 + β(λ1tm)αv2 ∈
Graph(DT,q)

Remark: If s ̸∈ Graph(DT,q), then βs ̸= β, and
DT,s is different from DT,q (see Figure 5 right).

Figure 5: Various DCFs DT,q(t) = c+ tv1+βtαv2 with dif-
ferent starting points (q0, m or s). In the right figure, DT,q0

(in red) interpolates both green and red sequences of points
{PTnq0}n∈N and {PTnm}n∈N (with m ∈ Graph(DT,q0)).
In blue, DT,s (s ̸∈ Graph(DT,q0)) interpolates the blue se-
quence of points.

In the definition of the DCF , we previously im-
posed conditions on λ1 and λ2. We discuss here the
general configuration. For the specific cases where
x1 or x2 are null, DT,q0 is defined as follows: if
x1 = 0 then DT,q0(t) = c + tv2 and if x2 = 0 then
DT,q0(t) = c+ tv1. If both x1 and x2 are null DT,q0 is
not defined (q0 = c the fixed point of T ). If λ1 and/or
λ2 are strictly negative, we define a double DCF , one
interpolating the sequence of points {PTnq0}n∈N with
even values of n, and one for odd values:

• Case 1: λ1 and λ2 are strictly negative (see Fig 6):

– D1
T,q0

(t) = c+ tv1 +βtαv2 for even values of n.

– D2
T,q0

(t) = c− tv1 −βtαv2 for odd values of n.

• Case 2: λ1 strictly negative (see Fig 7 left):

– D1
T,q0

(t) = c+ tv1 +βtαv2 for even values of n.

– D2
T,q0

(t) = c− tv1 +βtαv2 for odd values of n.

Figure 6: λ1 < 0 and λ2 < 0 ⇒ double DCF , the first one in
blue interpolating the points of the sequence {PTnq0}n∈N
for even indices, and the second one in green for odd in-
dices.

• Case 3: λ2 strictly negative (see Fig 7 right):

– D1
T,q0

(t) = c+ tv1 +βtαv2 for even values of n.

– D2
T,q0

(t) = c+ tv1 −βtαv2 for odd values of n.

Figure 7: For both figures, two DCFs are shown with dif-
ferent colours. The blue one interpolates the points of the
sequence {PTnq0}n∈N with even indices, the green one for
odd indices. λ1 < 0 for the left figure and λ2 < 0 for the
right one.

• Case 4: λ1 strictly negative and |λ1|= λ2 > 0:

– D1
T,q0

(t) = c+ tv1 +βtv2 for even values of n.

– D2
T,q0

(t) = c− tv1 +βtv2 for odd values of n.

Now, consider a fractal curve defined in a barycentric
space BIN , from a set of I operators {Ti}I−1

i=0 . For a
given operator Ti and from each point q0 of the curve,
we can define a sequence of points {qn}n∈N belong-
ing to the curve and consequently a simple or double
DCF . Figure 8 shows a fractal curve in BI4 defined
from an IFS composed of two operators T0 and T1,
and projected into the modeling space using four con-
trol points. This curve has many points having dif-
ferent values of β. Applying T0 iteratively to these
points results in many sequences of points converging
to the left endpoint c0, such as the two sequences dis-
played in blue and black in the figure with their cor-
responding DCFs. Let us denote the set of all DCFs
representing all sequences converging to ci by:

FDCF(i) = {DTi,q0 ,q0 ∈ A} (6)

In the following section, we will analyze FDCF(i) to
characterize the differential behavior in the neighbor-
hood of ci. Then, we will propagate these results to
dyadic points thanks to the self-similarity property.



Figure 8: In blue and black, the two different sequences
obtained by applying T0 iteratively to Pq0 and Pq′0 are con-
verging to the limit point Pc0.

5 PSEUDO-TANGENT
PROPERTIES OF FRACTAL
CURVES USING DCF

In this section, we show how we obtain known results
given by Bensoudane et al. (Bensoudane, 2009).

Let us consider a fractal curve defined in the
barycentric space BIN , from a set of I operators
{Ti}I−1

i=0 . The differential behavior of a sequence of
points can be directly determined from the derivative
of DTi,q0 . According to the different configurations:

• D′
Ti,q0

(t) = ±v1
i ± βαtα−1v2

i , when x1 ̸= 0 and
x2 ̸= 0,

• D′
Ti,q0

(t) =±v1
i , when x2 = 0,

• or D′
Ti,q0

(t) =±v2
i , when x1 = 0.

The tangent at t = 0 is:
• If α > 1, D′

Ti,q0
(0) = ±v1

i (if x1 ̸= 0) or
D′

Ti,q0
(0) =±v2

i (if x1 = 0).
The derivative depends only on which quadrant q0
belongs.

• If α = 1, D′
Ti,q0

(0) =±v1
i ±βv2

i .
The derivative depends on the position of q0.

This means that if all curve points satisfy the same
conditions in terms of x1 and x2, all iterative se-
quences will converge to the fixed point with the same
tangent.

Note that the tangent lies in the barycentric space.
The tangent of the projected curve according to the
set of control points is PD′

Ti,q0
(0) (the projection con-

serves the collinearity). To have a unique behavior
for all DCF of a FDCF(i), we need to impose com-
mon constraints on all the points of the curve. These
constraints are expressed in terms of sign(x1) and/or
sign(x2). To present this analysis without ambigu-
ity, we consider the tangent itself and the direction of
the finite difference at t: ∆h[C](t) = C(t +h)−C(t),
where C([0,1]) = A denotes the parameterised fractal
curve (with C(0) = c0 and C(1) = c1). In the follow-
ing cases, we show different configurations with asso-
ciated example curves. Each curve is generated by an

IFS composed of two operators in BI3 and then is pro-
jected into R2 by a set of three control points (black
squares). We focus on T0 and we only display DT0,c1
(in green). For each figure, x1 and x2 represents the
coordinates of c1 in (c0,v1

0,v
2
0). The constraints on

x1 and x2 must be satisfied for all q belonging to the
curve:

• Case 1: λ1
0 > 0 and λ2

0 > 0, x1 > 0 and x2 > 0 ⇒
the tangent at Pc0 is Pv1

0 (Figure 9 left).

• Case 2: λ1
0 < 0 and λ2

0 < 0 ⇒ the tangent at
Pc0 oscillates indefinitely between Pv1

0 and −Pv1
0

(Figure 9 right).

Figure 9: Left: the tangent at Pc0 is Pv1
0. Right: at

Pc0, ∆h[C](0) oscillates indefinitely between Pv1
0 and −Pv1

0,
while h tends to zero.

• Case 3: λ1
0 > 0 and λ2

0 < 0, x1 > 0 ⇒ the tangent
at Pc0 is Pv1

0 (Figure 10 left).

• Case 4: λ1
0 < 0 and λ2

0 > 0, x2 > 0 ⇒ the tangent at
Pc0 oscillates indefinitely between Pv1

0 and −Pv1
0

(Figure 10 right).

Figure 10: Left: the tangent at Pc0 is Pv1
0. Right: at

Pc0, ∆h[ f ](0) oscillates indefinitely between Pv1
0 and −Pv1

0,
while h tends to zero.

• Case 5: |λ1
0|= λ2

0 > 0, x1 > 0 ⇒ the tangent is not
defined at Pc0, it oscillates indefinitely between
two extrema (Figure 11).

This analysis can be carried out on both ending
points of the curve. Then, by the self-similarity prop-
erty, each behavior is transported to the right and left
sides of each dyadic point. All possible combinations
can be obtained. In case where an eigenvalue is com-
plex, it reflects a rotation component in the operator,
introduces a spiral around the fixed points.



Figure 11: In c0, ∆h[ f ](0) oscillates indefinitely between
two extrema depending on the geometry of the curve, while
h tends to zero.

6 PSEUDO-CURVATURE OF
FRACTAL CURVES

In the previous section, we showed that even if frac-
tal curves are generally nowhere differentiable, it is
possible, with some conditions, to define right and
left tangents. In this section, we focus on the curva-
ture to assess the impact of the second derivative on
the curve. The curvature presents the first advantage
of being independent of the parametrization, which is
not apparent to manage for fractal curves. Our idea is
to study the curvature of a fractal through the second
derivative of the FDCF .

6.1 Curvature Analysis of a DCF

First, we focus on the curvature at the left and right
endpoints of the curve. For a given parametric curve
f (t), the curvature κ(t) is:

κ(t) =
∥ f ′(t)× f ′′(t)∥

∥ f ′(t)∥3 (7)

Consider an operator T (of an IFS defining a curve)
acting on BI3, (v0 = c,v1,v2) its eigenvectors and q0
a point of BI3. For the simplicity of calculations, we
project the sequence of points {Tnq0}n∈N onto the
modeling space in a way to have an orthogonal system
{Pc,Pv1,Pv2} such that ||Pv1||= ||Pv2|| (the general
case will be given later). From a given point q0 be-
longing to the curve, we can determine the curvature
of PDT,q0 :

κ(t) =

∥∥∥PD′
T,q0

(t)×PD′′
T,q0

(t)
∥∥∥∥∥∥PD′

T,q0
(t)

∥∥∥3 (8)

Note that we compute the curvature directly in the
modeling space (i.e. from the projected curves)
because the cross-product has no meaning in the
barycentric space. We have:

PD′
T,q0

(t) = Pv1 +βαtα−1Pv2 (9)

PD′′
T,q0

(t) = βα(α−1)tα−2Pv2 (10)

Pv1 and Pv2 are chosen orthonormal, then:

κ(t) =

∣∣βα(α−1)tα−2
∣∣

(1+(βαtα−1)2)3/2 (11)

Using the tangent existence constraint: 0 < |λ2| <
λ1 < 1 we can deduce the domain of α:

1 <
log(|λ2|)
log(λ1)

= α <+∞ (12)

We can distinguish three different cases for the value
κ(t) at t = 0, depending on the value of α:

• Case 1: if 1 < α < 2 ⇒ limt→0 κ(t) = +∞, Figure
12 left shows in blue the curve PDT,q0 and Fig-
ure 12 right the corresponding curvature. When t
tends to zero, the curvature tends to +∞.

Figure 12: Left: the curve PDT,q0 having 1 < α < 2. Right:
the curvature values of the curve displayed on the left figure.

• Case 2: if α = 2 (λ2 = λ2
1) ⇒ κ(0) = |2β| ̸= 0.

Figure 13 left shows in blue the curve PDT,q0
and Figure 13 right the corresponding curvature.
When t tends to zero, the curvature tends to a fi-
nite non-zero value depending on β. This case
induces a correspondence between the second
derivative PD′′

T,q0
and the second eigenvector Pv2

at the fixed point Pc of T (PD′′
T,q0

(0) collinear to
Pv2).

• Case 3: if α > 2, as the curve in red (Figure 13
left) approaches the fixed point Pc, limt→0 κ(t) =
0 (Figure 13 right).

Figure 13: Left: in red, the curve PDT,q0 where α > 2. In
blue, the curve PDT,q0 where α = 2. Right: the correspond-
ing curvature values for the red and blue curves displayed
on the left figure.

Thanks to DT,q0 , we can characterize the differ-
ential behavior of the sequence {qn}n∈N at the fixed



point of an operator. In the first and third cases, the
curvature is either zero or infinite and does not depend
on the value of β. While in the case where α = 2, the
curvature is finite, non-zero and depends on the initial
point q0 (see Figure 14).

Figure 14: Two starting points (on the right) having distinct
β ⇒ two distinct DCFs (curves in red and green) having
two different curvatures represented by their red and green
osculating circles at the limit point.

6.2 Curvature of a DCF in BI3 and BIN

In the previous section, when we have considered
an operator T acting on BI3, we have made the as-
sumption that {Pc,Pv1,Pv2} is an orthogonal system.
Later, we adapt the previous results to the general case
in BI3 and after in BIn, for an IFS {T0,T1}.

Let us consider {i, j} the canonical orthonormal
basis of R2. We denote the decomposition of each
projected eigenvector of an operator Ti by: Pvk

i =
aki+bkj for k ∈ {1,2}.

Then for each PDTi,q(t):

κ(t)= |(a1b2−b1a2)βiαi(αi−1)|tαi−2

|a2
1+b2

1+2(a1a2+b1b2)βiαit
αi−1+(a2

2+b2
2)(βiαit

αi−1)2|
3
2

(13)

From this formula and because 1 < αi =
log(|λ2

i |)
log(λ1

i )
<

+∞, we have the same cases as the previous simple
section:

• Case 1: 1 < αi < 2: αi −2 < 0 then limt→0 κ(t) =
+∞.

• Case 2: αi = 2 then κ(0) is finite and non-zero.

The curvature at ci : κ(0) =
|2βi(a1b2 −b1a2)|

(a2
1 +b2

1)
3
2

depends on βi. This case induces a correspon-
dence between the second derivative D′′

Ti,q0
and

the second eigenvector v2
i at ci (D′′

Ti,q0
(0) collinear

to v2
i ).

• Case 3: αi > 2: limt→0 κ(t) = 0.
In general, a DCF lies in an N-dimensional

barycentric space BIN . Operators Ti are repre-
sented by N × N matrices, with at most N eigen-
values and N eigenvectors. The eigenvalues have

the following condition: λ0
i = 1 > λ1

i > |λ2
i | > · · · >

|λN−1
i |> 0. Consider a starting point q0 = ci+x1v1

i +

· · ·+xN−1vN−1
i ∈ A where x1, . . . ,xN−1 ∈R, the DCF

which interpolates the obtained sequence of points
{qn}n∈N(in BIN) becomes:

DTi ,q0=ci+tv1
i +βi,2tαi,2 v2

i +···+βi,N−1tαi,N−1 vN−1
i (14)

where αi,z =
log(|λz

i |)
log(λ1

i )
, and βi,z =

xz

x
αi,z
z−1

for 2≤ z≤N−1,

and its curvature is more complex, but when t tends
to zero, most of the terms vanish, and we obtain the
same cases as for BI3.

6.3 Pseudo-curvature and FDCF

As defined in section 5, we associate to each fixed
point ci a FDCF(i). This family is defined from all
the points belonging to the curve and having differ-
ent values of β. As we show in sections 6.1 and 6.2,
we identify three identical cases, depending only on
αi,2. For cases where 1 < αi,2 < 2 and αi,2 > 2, the
curvature doesn’t depend on βi,2, meaning all DCF
of FDCF(i) have the same curvature which is infi-
nite and 0 respectively. Then we state that the pseudo
curvature of the fractal curve at ci is the common cur-
vature of FDCF(i).

For the remaining case, where αi,2 = 2, the curva-
ture is in the form:

κi(0) =
|2βi,2 × cst1|

cst2
, (15)

where cst1 and cst2 denote two real constants. If all
points q0 belonging to the fractal curve except the
point ci (A\{ci}) satisfy x1 > 0 and x2 > 0 (implying
λ1

i > 0 and λ2
i > 0), the set {βi,2, s.t. q0 ∈ A} have

a lower and an upper bound, βi,in f and βi,sup respec-
tively. The curve is embedded in the area defined by
all the graphs of FDCF(i) as the Figure 15 shows.
FDCF(i) induces a range of curvatures bounded by

κi,in f =
|2βi,in f ×cst1|

cst2
and κi,sup =

|2βi,sup×cst1|
cst2

. In this
case, the behavior of the curve is too complex to
be approximated by a unique circle. We define the
pseudo curvature of the fractal curve at ci by the in-
terval [κi,in f ,κi,sup], implying a continuous set of os-
culating circles (see Figure 17).

We can observe different situations according to
the signs of λ1

i and λ2
i . For example, in Figure 16,

1 > λ1
0 > |λ2

0|> 0 and λ2
0 < 0. As explained in section

3.2, considering the computation of the curvature at
ci, we have a double DCF for each sequence of points
converging to ci. This involves a range of curvature
for both sides of ci w.r.t. v1

i , with the same value of
κsup. As the curve passes through the line ci + tv1

i ,
there exist points s.t. x2 = 0 and defining a DCF with



Figure 15: In blue, the projected DCFs of FDCF(0) cover
the fractal curve.

a null curvature. The pseudo-curvature is the range of
curvature defined from FDCF(i) as a set of curvatures
ranging in [0,κi,sup] for both sides of the line ci + tv1

i .

Figure 16: In green, we show the range of the right pseudo-
curvature at the left endpoint c0, where 0 ≤ κ ≤ 0.659 and
λ2

0 =−(λ1
0)

2 =−0.36.

When λ1
i < 0 and λ2

i > 0, we can do the analy-
sis symmetrically to the previous one. As the curve
passes through the line ci + tv2

i , there exist points s.t.
x1 = 0 and defining a DCF with the value of curva-
ture equals 0. For both sides of the line ci + tv2

i , as
the point of the curve approaches the line, the cur-
vature of the corresponding DCF tends to infinity.
But it although exists κi,in f as the curve is compact.
The pseudo-curvature is the range of curvature de-
fined from FDCF(i) as a set of curvatures ranging
in [κi,in f ,+∞[ for both sides of the line ci + tv1

i and 0
on ci + tv1

i (see Figure 19). For dyadic points, the
pseudo-curvature can be obtained straightforwardly
from the self-similarity property and previous results
from the endpoints of the curve. For example, to
determine the pseudo-curvature at the joining point
(T0c1 = T1c0), we just have to apply the operator T0
on FDCF(1) and T1 on FDCF(0) to obtain the left
and the right pseudo-curvature, which is for the left
pseudo-curvature:

κL(t) =

∥∥∥PT0D′
T1,q0

(t)×PT0D′′
T1,q0

(t)
∥∥∥∥∥∥PT0D′

T1,q0
(t)

∥∥∥3 . (16)

For the right side of the joining point, κR(t) is de-
duced from equation 16 by interchanging T0 and T1.
It is equivalent to computing the pseudo-curvature of

a new projection according to the control point P′ =
PT1. For any dyadic point p = Tσ0Tσ1 . . .Tσl−1cσl we
have:

κL(t) =

∥∥∥PT T0D′
T1,q0

(t)×PT T0D′′
T1,q0

(t)
∥∥∥∥∥∥PT T0D′

T1,q0
(t)

∥∥∥3 , (17)

where T = Tσ0Tσ1 . . .Tσl−2 . For the right side of
the dyadic point p, κR(t) is deduced from equation
17 by interchanging T0 and T1. Note that if σl =
0, we have σl−1 = 1 because of the definition of a
dyadic point. Consequently Tσ0Tσ1 . . .Tσl−2T1c0 =
Tσ0Tσ1 . . .Tσl−2T0c1 = p. We have the symmetric
property if σl = 1.

Figure 17 shows in orange the resulting range
of osculating circles representing the right pseudo-
curvature at the joining point (see Figure 18 for its left
pseudo-curvature). Also, Figure 19 shows the range
of osculating circles at the joining point for the case
where λ1

i < 0 and λ2
i > 0 (Figure 19).

Figure 17: First, FDCF(0) of the curve in Figure 15 induces
a range of osculating circles (illustrated in green) at the left
endpoint c0, where κ0,in f = 1.492, κ0,sup = 0.982. Second,
the range of osculating circles for the right pseudo-curvature
at the joining point is illustrated in orange, where 2.008 ≤
κ ≤ 2.932. For this curve: λ2

0 = (λ1
0)

2 = 0.3025 (1 > λ1
0 >

λ2
0 > 0).

Figure 18: In pink, we show the range of the left pseudo-
curvature (of the curve displayed in Figure 15) at c1:
0.589 ≤ κ ≤ 0.733 and at the joining point = T0c1: 2.785 ≤
κ≤ 3.460. For this curve:λ2

1 = (λ1
1)

2 = 0.49 (1> λ1
1 > λ2

1 >
0).

Figures 20 to 22 show some examples of fractal
curves defined from the same set of control points.
For information, we display their associated osculat-
ing circles, distribution of normals (on the top right
corner in black), and we mention their fractal dimen-
sion.

First, we consider the case where α = 2. Figures



Figure 19: In green, osculating circles representing the
range of the right curvatures at the left endpoint c0 : 5.555<
κ < +∞, for both sides of Pc0 + tPv2

0, and κ = 0 on
Pc0 + tPv2

0. In pink, the left range of osculating circles at
the right endpoint c1 ( 0.478 ≤ κ ≤ 0.525). In orange and
blue, the right and left ranges of osculating circles at the
joining point (9.492 < κ < +∞ and 0.115 ≤ κ ≤ 0.126 re-
spectively). For this curve: λ1

0 =−0.35 and λ2
0 = (λ1

0)
2.

20 and 21 show two symmetric curves having differ-
ent right and left tangents at the joining point (red
and green lines in the figures), but since each curve
is symmetric, i.e. the operators have the same eigen-
values and eigenvectors, then we have equal ranges of
the left and right curvatures (κL and κR).

In the specific case where T0 and T1 represent the
de Casteljau matrices, we obtain a Bézier curve, with
a unique DCF which is the Bernstein polynomial ba-
sis functions.

Secondly, when α > 2, κL = κR = 0, meaning
the osculating circle is a straight line. Figure 22 left
shows a fractal curve for which at, any point, the
curve seems to jump suddenly in the direction of the
tangent, which corresponds to the osculating “circle”
(see the endpoints and the joining point). Finally,
when 1<α< 2, κL = κR =+∞, meaning the osculat-
ing circle is reduced to a point. Figure 22 right shows
a fractal curve for which, at any point, the curve seems
to turn sharply in a different direction from the tan-
gent.

Figure 20: At the joining point, we display the right and left
sets of osculating circles with: 2.375 ≤ κR = κL ≤ 2.958.
For this curve: the fractal dimension is 1.021. αi,2 = 2 and
λ2

i = (λ1
i )

2 = 0.36.

From the previous Figures (17 to 22), we can
observe a dependency between the amplitude of
the pseudo-curvature range and the curve’s appar-
ent roughness, as the values of the fractal dimension
show.

Figure 21: At the joining point, we display the right and left
sets of osculating circles with: 2.808 ≤ κR = κL ≤ 4.098.
For this curve: the fractal dimension is 1.095, αi,2 = 2 and
λ2

i = (λ1
i )

2 = 0.4225.

Figure 22: For these two figures, we focus on the joining
point. Left: αi,2 = 3 ⇒ κL = κR = 0, the fractal dimension
is 1.052, λ2

i = 0.343 and λ1
i = 0.7. Right: 1 < α = 1.5 <

2 ⇒ κL = κR = +∞, the fractal dimension is 1.007, λ2
0 =

0.3536, λ1
0 = 0.5, λ2

1 = 0.4079 and λ1
1 = 0.55.

7 DISCUSSION

The DCF has two main interests. First, it highlights
the dynamical behavior of the IFS; we mean how an
operator matches a point of the curve onto another one
along the iteration process, up to the limit fixed point.
The DCF helps to understand and characterize the dif-
ferential properties of the curve, as we have shown for
the pseudo-tangent and curvature, which significantly
impacts the roughness. Second, the DCF is defined
from the IFS operators’ eigensystems. Consequently,
we can fix the eigenvalues and eigenvectors to obtain
desired differential properties. Denoting D the diag-
onal matrices of expected eigenvalues and V , the col-
umn matrix of the chosen independent eigenvectors,
we can compute the matrix M of the corresponding
operator by M = V DV−1. The eigenvalue λ1 and its
associated eigenvector define the tangent at the fixed
point. Then, we can choose the value of α by setting
λ2 =±λ1

α (α = log(|λ2|)
log(λ1)

) to specify the type of curva-
ture (α < 2 ⇒ κ = ∞, α > 2 ⇒ κ = 0, α = 2 ⇒ range
of curvatures).

Specifying tangents and curvatures at endpoints
(fixed points) is insufficient to control the rough-
ness accurately. The joining point of the two self-
similar curve parts plays a crucial role. Its right and
left pseudo-tangents depend continuously on the end-
points pseudo-tangents. By adjusting their relative
orientations, we can define a more or less sharp peak
(or valley), which will be copied along the curve by
self-similarity (see Figure 23 left). In (Podkorytov,
2013), Podkorytov shows how to impose G(1) conti-
nuity on curves defined by C-IFS. Using this approach



and choosing appropriate eigenvalues and eigenvec-
tors, we can define different left and right curvatures
at the joining point. The resulting curve is G(1) with
a specific ”second-order” roughness (see Figure 23
right).

In this paper, we give priority to didactic simple
examples. However, complex curves and surfaces
can be produced by increasing the degrees of freedom
(d.o.f) using more than two operators and more con-
trol points. The deterministic self-similarity aspect
is not visible with just a few more d.o.f, producing
random-like curves and surfaces (see Figures 24 and
25 right). Our results remain for any configurations,
and we have to proceed to a deep study to understand
the relation between pseudo-curvature and roughness.

Figure 23: Left: a family of curves sharing their sec-
ond eigenvectors (in red) with different orientations of the
pseudo-tangents at endpoints (in blue). The variation of the
valley sharpness, induced by the pseudo-tangent variation,
impacts the roughness. Right: a G(1) continuity curve with
a ”second-order” roughness.

8 CONCLUSION

In this study, we propose a method to address the sec-
ond derivative behavior of fractal curves by introduc-
ing a notion of pseudo-curvature. By fractal curves,
we mean self-similar curves described with iterated
function systems (IFS). These curves are completely
defined from the set of operators of the IFS and result
from a deterministic iterative process. We introduce
the differential characteristic function (DCF) as a
central tool to analyze the differential behavior of the
iterative computations. We define a family of DCFs
which abstracts the complexity of the iterative process
around each fixed point. Finally, from this family of
DCFs, we obtain a range of curvatures defining the
pseudo-curvature of the fractal curve. We study the
different configurations of possible pseudo-curvatures
according to operators’ eigenvalues and eigenvectors.
These results, stated for fixed points, are propagated
to dyadic points thanks to the self-similarity prop-
erty. We provide examples of various differential situ-
ations of fractal curves. The illustrations show, quali-

tatively, the relevance of this pseudo-curvature, as the
range of osculating circles closely matches the curve.
Note that all results are illustrated with planar fractal
curves, but computations are conducted without such
an assumption. All results remain valid for a non co-
planar set of control points defined in R3, inducing
a non planar curve. Independently of the differential
property, the DCF is a useful tool to leverage geomet-
ric intuition to facilitate the analysis of self-similar
fractals.

These results should be straightforwardly ex-
tended to tensor product surfaces. Their bidirectional
structuration generally induces combinations of uni-
directional configurations. However, we must fo-
cus carefully on non-tensor surfaces, which are more
complex constructions that generate surfaces with
random appearances (see Figure 25). For example,
complex eigenvalues avoided for curves will produce
interesting vortex effects for surfaces.

We also have to study the relation between the
roughness and the differentiable characteristics in
detail. Roughness is characterized by oscillation
frequency (depending on the operator contraction)
and oscillation amplitude (depending on the pseudo-
tangent and curvature range). We need to formalize
these relations to provide an intuitive and accurate
control of roughness.

Figure 24: Example of two curves designed with 3 opera-
tors and 7 control points.

Figure 25: Left: tensor product surface created from a frac-
tal curves. Right: a more complex non-tensor product frac-
tal surface, built from 4 operators and 8 control points.
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