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Abstract: Water distribution infrastructures are increasingly incorporating IoT in the form of sens- 12 

ing and computing power to improve control over the system and achieve greater adaptability to 13 

the water demand. This evolution, from physical towards cyber physical systems, comes with an 14 

attack perimeter extended from physical infrastructure to the cyberspace. Being able to detect this 15 

novel kind of attacks is gaining traction in the scientific community. Machine learning detection 16 

algorithms, which are showing encouraging results in cybersecurity applications, are leveraging the 17 

increasing amount of datasets published in the water distribution community for better attack de- 18 

tection. These datasets also begin to reflect this novel cyberphysical aspect in two ways, first by 19 

conducting cyberattacks against the testbed infrastructures during the data acquisition, and second, 20 

by including network traffic data along with the physical data captured during the experimenta- 21 

tions. However, current machine learning models do not fully take into account this cyberphysical 22 

component, being only trained either on the physical or on the network data. This paper addresses 23 

this problem by providing a multi-layer approach to applying machine learning to cyberphysical 24 

systems, by combining physical and network traffic data and assessing its effects on attack detection 25 

performances of machine learning algorithms as well as its cross impact with data enriched with 26 

graph metrics.  27 

 28 

Keywords: Cyber-physical systems, security, Machine learning 29 

 30 

1. Introduction 31 

The role of water distribution infrastructures to provide access to water is crucial to 32 

society, as it is both a vital need and amongst the most used resource in the industry. This 33 

importance places these infrastructures as part of the critical system family, which implies 34 

the highest level of resilience, security and reliability. To meet these requirements, a mod- 35 

ernization effort is being conducted on water distribution infrastructures in the vein of 36 

industry 4.0 that allows for better monitoring, adaptability and control over the system. 37 

This transformation effectively places water distribution infrastructures in the category of 38 

the Cyber-Physical Systems (CPS), in that they are composed of a physical layer dedicated 39 

to the handling of water, and a cyber layer that supports the communication of the com- 40 

ponents of the physical layer. However, this increase in connectedness is expanding the 41 

attack perimeter of water distribution infrastructures significantly and exposes it to the 42 

threat of cyber-attacks [1]. These new threats motivate the need for more accurate detec- 43 

tion models, for which Machine Learning (ML) algorithms gained attention for their 44 
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promising results. Still, the current use of ML algorithms for attack detection has yet to be 1 

adapted to the specific architecture of a CPS by integrating the physical and cyber layers 2 

[2]. Recent work from the literature introduces a combination method based on model 3 

aggregation [3]. However, while showing promising results, its reliance on numerous 4 

models in parallel imply a custom fit for the CPS architecture as well as high computa- 5 

tional costs. 6 

This paper describes a general approach for combining physical and network data of 7 

a CPS, allowing ML algorithms to be trained on data that capture the interactions between 8 

the multiple layers of the systems.  9 

 10 

The remainder of the paper presents the combination approach and the experimental 11 

setup in section 2, the results are reported in section 3 and discussion and conclusion are 12 

given in section 4. 13 

2. Materials and Methods 14 

2.1. Data Combination Process 15 

The combination process requires both the physical data and the network traffic data 16 

to have the time of acquisition, and to have been acquired during the same timeframe. As 17 

observed in CPS open datasets in the water distribution field, the physical data’s acquisi- 18 

tion frequency is lower than that of the network data, usually with an acquisition each 19 

second versus acquisition at the millisecond scale for network data. To allow for a conjoint 20 

use of these data, a synchronization process is required consisting of concatenating the 21 

most recent anterior physical data to each network data entry. The complete combination 22 

pipeline for static data is shown in Figure 1. The first step for both data types accounts for 23 

cases when the data are separated into multiple files. This step results in all network data 24 

as one file, and all physical data as another file, from which we remove lines with only 25 

missing values. The next step creates a common time column with an identical granularity 26 

for both files, corresponding to the physical data’s time granularity. This allows for a left 27 

join of the physical data on to the network data, based on this common time column just 28 

created. This column is then removed, and the eventual network data that do not have 29 

physical data corresponding to their acquisition time are treated via filling with the most 30 

recent anterior physical data. 31 

 32 

33 
Figure 1: Complete pipeline of the combination process 34 

2.2. Experimental Setup 35 

To assess the performance of the proposed combination, we benchmark the proposed 36 

process on the Hardware-In-The Loop (HITL) dataset [4]. This experiment consists of 37 

training 4 different machine learning algorithms, namely Decision Tree, Random Forest, 38 

XGBoost and Multi-Layer Perceptron (MLP) respectively on physical data, network data, 39 

network data enriched with graph metrics, and on the data obtained by applying 40 
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proposed combination. The graph metrics are computed on two graphs generated from 1 

network data, with edges representing communication between nodes consisting of 2 

MAC_Source and  MAC_Destination for the first graph, and consisting of the unique 3 

combinations of MAC_Source + Source_Port and MAC_Destination + Destination_Port 4 

for the second. These graphs are constructed over time windows of one and five minutes 5 

and used to compute the following metrics: number of edges, number of nodes, average 6 

degree and density. 7 

The hardware used to run the experiment is a laptop with 32Gb of RAM, 13th Gen 8 

Intel® Core™ i7-13700H 20 cores CPU, NVIDIA RTX A500 GPU. The operating system is 9 

Ubuntu 22.04.3 LTS. Evaluations are run using Python 3.11.4 and the libraries pandas 10 

(2.0.2), numpy (1.25.1), scikit-learn (1.2.2), xgboost (1.7.6) and keras (2.13.1). As the avail- 11 

able RAM is limited, network data are reduced in size by keeping only one instance of 12 

each unique packet at each second and adding the count of duplicates in a new column. 13 

 14 

3. Results 15 

The detection performance of the models shows a benefit associated with the use of 16 

the proposed data combination for all models except Random Forest. 17 

  18 

Figure 1: Balanced Accuracy performance of models for all data configurations 19 

The detection performance, using balanced accuracy metric for each model on the 20 

different data configurations, is shown in Figure 1. The best results are obtained with 21 

XGBoost algorithm on the combined data with 99.84% balanced accuracy. Table 1 shows 22 

that the addition of graph metrics to network data greatly improved detection perfor- 23 

mances of Physical Fault and MITM respectively from 0% to 77% and from 1% to 88% of 24 

True Positive Rate, however, it led to a decrease of 8.70% TPR in the detection of the Scan 25 

label on combined data. A possible explanation is that the addition of graph data adds 26 

less qualitative information for the detection of this specific label than the network data 27 

alone do provide, thus diluting the useful information and resulting in a harder detection 28 

task. The overall improvement of detection performances also reflects on the False Posi- 29 

tive Rate as shown in Table 2, which is especially relevant in attack detection where false 30 

alarms have costs in terms of time and resources spent on irrelevant investigation in ad- 31 

dition to the impact on the personnel through the effect of alarm fatigue [5]. 32 

 33 

Data Model TPR Normal TPR DoS TPR MITM TPR Physical 

Fault 

TPR Scan 

Physical XGB 99.21% 96.88% 88.56% 95.48% 0.00% 

Network XGB 99.90% 97.50% 1.41% 0.01% 100.00% 

Network+Graph XGB 98.04% 99.51% 88.69% 77.43% 87.50% 

Combined XGB 99.91% 99.94% 99.74% 99.62% 100.00% 

Combined+Graph XGB 99.96% 99.96% 99.77% 99.67% 91.30% 
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Table 1: True Positive Rates of XGBoost      1 

 2 

Data Model FPR DoS FPR MITM FPR Physical Fault FPR Scan 

Physical XGB 0.031% 0.505% 0.164% 0.000% 

Network XGB 0.066% 0.043% 0.000% 0.000% 

Network+Graph XGB 0.011% 0.755% 0.984% 0.000% 

Combined XGB 0.003% 0.036% 0.036% 0.000% 

Combined+Graph XGB 0.002% 0.016% 0.020% 0.000% 

Table 2: Per attack False Positive Rate of XGBoost 3 

4. Discussion and conclusion 4 

The proposed approach for data combination improves the performances of machine 5 

learning models on attack detection task in CPS by having the training data capture the 6 

interactions between the physical and network subsystems. The addition of graph metrics 7 

to network data has a positive effect on performance compared to using network data 8 

without graph metrics, however, adding graph metrics to combined data lowered the de- 9 

tection performance. A possible explanation for this lowered detection performance is that 10 

graph metrics contain less qualitative information than the combined data itself, which 11 

makes the high-quality information more diluted in the data and thus harder for the mod- 12 

els to learn. This work proves a promising approach for integrating the network and phys- 13 

ical parts of a CPS for machine learning based detection. 14 
 15 
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