N
N

N

HAL

open science

Pyrates: Design and Evaluation of a Serious Game
Aimed at Introducing Python Programming and Easing
the Transition from Blocks

Matthieu Branthome

» To cite this version:

Matthieu Branthéme. Pyrates: Design and Evaluation of a Serious Game Aimed at Introducing
Python Programming and Easing the Transition from Blocks.

Education, 2024, 24 (1), pp.1-24. 10.1145/3639061 . hal-04474068

HAL Id: hal-04474068
https://hal.science/hal-04474068
Submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

ACM Transactions on Computing

https://hal.science/hal-04474068
https://hal.archives-ouvertes.fr

Pyrates: Design and Evaluation of a Serious Game Aimed at
Introducing Python Programming and Easing the Transition
from Blocks

MATTHIEU BRANTHOME’, University of Western Brittany, France

This article reports on a design-based research study centered on the conception and the assessment of the
Pyrates application. This online serious game aims at introducing Python programming to K12 students
while easing the transition from block-based to text-based languages. After we present the various aspects
underlying the block-to-text transition as well as the related existing applications, we describe the design of
Pyrates. Firstly, we built the levels of the game in order to deal with the different fundamental concepts of
programming in a constructivist approach. Next, we were inspired by advantageous characteristics of block-
based programming editors to create the editing environment of Pyrates. In order to assess this conception,
we tested the application in eight classrooms with 240 French 14-15 years old students. Students’ activity
traces have been collected and were augmented by a qualitative online survey. By analysing this data set,
we showed that the levels’ design generally allows to apprehend the targeted concepts consistently with the
constructivist principles. Regarding the editing environment, we established that it supports the block-to-text
transition in several aspects: concept transposition (general models and illustrative examples), reduction of
errors (beginners aware syntax analyser), command catalog (programming memo for discovery and syntax
reference), and program composition (copy button which limits keyboarding). Finally, Pyrates, which has
already been played over 140,000 times, offers practitioners an environment that facilitates the transition from
blocks to text, as well as a serious game to master the fundamental concepts of Python programming, and
novel avenues to follow for tool designers.

CCS Concepts: » Social and professional topics — CS1; K-12 education; « Applied computing —
Interactive learning environments.

Additional Key Words and Phrases: block-based programming, CS1, design-based research, learning analytics,
Python, secondary education, serious game, Scratch, text-based programming.

ACM Reference Format:

Matthieu Branthome. 2024. Pyrates: Design and Evaluation of a Serious Game Aimed at Introducing Python
Programming and Easing the Transition from Blocks. ACM Trans. Comput. Educ. 24, 1, Article 12 (February 2024),
25 pages. https://doi.org/10.1145/3639061

1 INTRODUCTION

Over the years, block programming has become one of the preferential modalities for introducing
computer coding to younger children [9]. Research has demonstrated the advantages of this
approach over the traditional introduction using text-based languages [5, 35, 52]. However, in

“This article is an expanded version of a paper that was published in the proceedings of the 17th European Conference on
Technology Enhanced Learning [13]. It contains an extension of the literature review on the bock-to-text transition, new
results about: Scratch and Python students’ previous knowledge, the design of the different levels of Pyrates, and the overall
perception of the game by students.

Author’s address: Matthieu Branthome, matthieu.branthome@univ-brest.fr, University of Western Brittany, Brest, France.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the
full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

1946-6226/2024/02-ART12 $15.00

https://doi.org/10.1145/3639061

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

HTTPS://ORCID.ORG/0000-0002-9795-0760
https://doi.org/10.1145/3639061
https://orcid.org/0000-0002-9795-0760
https://doi.org/10.1145/3639061

12:2 Matthieu Branthome

higher education, textual programming is still predominantly employed for more complex computer
science training. This is even more true in the industry, where languages like Python and Java
are widely used [36]. Thus, students who started programming with blocks in their early school
years might need to eventually shift to text-based programming. How could they be supported in
this change? This is one of the open questions in the research field of computer science education
[49, 29, 28, 53].

A strategy for assisting students is to design digital tools that facilitate the transition between
these two programming modalities. These bridging applications are meant to be used transitionally
before switching permanently to full text coding. The Pyrates online application [37, 38] was
developed with this goal. It is, in the first place, a serious game [3] aiming at introducing the
Python textual language to high school students. As such, it provides learning material and a set
of assignments allowing to acquire the fundamental concepts of programming in a constructivist
approach [34]. Moreover, it is also an editing environment designed by taking inspiration from
block-based programming editors intending to benefit from their advantages.

This contribution focuses on the evaluation of both aspects of this design. Hence, based on
classroom testing, the research questions we address are:

e RQ1: Do the Pyrates’s levels enable students to learn the targeted programming concepts
consistently with the constructivist principles?

e RQ2: Do students use the features of the editing environment? How do they employ them?
How do they judge them regarding clarity and utility?

e RQ3: What is the overall perception of the game design by the students concerning the
handling, the difficulty, the playfulness, and the motivation?

The work presented in this article follows the principles of design-based research [47]. It draws
on available literature and existing solutions, aims to meet a well-defined practical goal, and is
evaluated in real-life contexts using systematic methods based on qualitative and quantitative data
collection and analysis.

The rest of this paper is structured as follows. Section 2 expands on the state-of-the-art related
to block-to-text transition and existing applications. Then, Section 3 describes the design of Pyrates
both in terms of the game’s levels and the editing environment. Next, Section 4 presents the
methodology adopted to evaluate this design and Section 5 exposes and discusses the ensuing
results. Lastly, Section 6 concludes and gives some perspectives to this work.

2 STATE-OF-THE-ART

This section is divided into two parts. First, the results of scientific works analysing the main
differences between block-based and text-based environments are summarized. Secondly, existing
applications designed to support block-to-text transition or to learn Python programming through
serious games are presented.

2.1 Block-to-text transition

Programming with a block-based language versus a text-based language is different in many ways
but also shares some similarities. These variations are mainly related to two aspects: the intrinsic
constitution of the languages and the environments used to edit programs. The following is a
presentation of these different gaps and their consequences for transitioning learners. The elements
related to the intrinsic characteristics of the languages are first exposed.

2.1.1 Programming paradigms. The progression from block to text involves a change in program-
ming paradigm. The blocks allow object-oriented programming as the scripts are carried out by
objects (characters, robots, etc.) and act by modifying their attributes (position, appearance, sounds,

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:3

etc.) [12, 28, 50]. Moreover, block languages implement event-based and parallel programming
approaches. Indeed, the executions are triggered by events (click on a zone, key pressed, message
received, etc.) and this can lead to the concurrent execution of several pieces of program [12, 50]. On
the other hand, text-based languages are generally taught in introductory courses in an imperative
procedural way that focuses on a single main function executing a sequence of instructions [50]. It
appears that these changes in programming paradigms can pose obstacles to learners because they
require cognitive adaptations [26, 54].

2.1.2 Fundamental concepts. Block-based and text-based programming implement almost the
same core programming concepts. ACM and IEEE-CS regularly established international curricular
guidelines for computer science education. In their latest release [23], they defined the “fundamental
programming concepts” as: basic syntax and semantics, variables and primitive data types, expres-
sions and assignments, simple input/output, conditional and iterative control structures, functions
and parameter passing, and the concept of recursion. Several studies [33, 51] found that Scratch
could successfully be used to introduce learners to: variables, conditional, iterative logic, function
parameters and returns, and output/input. However, the concepts of data type and recursion do not
seem to be implementable in the block modality, or only partially (see Section 2.1.4 for data type).

2.1.3 Semiotic registers. Even if the implementable concepts are nearly similar in block and text
modalities, the “semiotic registers” [19] of their commands are quite different. The block register
is made of graphical shapes of different colors containing keywords in English, drop-down lists,
text and number entry fields, whereas the instruction register is composed of textual elements
only: keywords in English, mathematical and typographical symbols [12]. Moreover, the keywords
used in the block register tend to be closer to natural languages in partially imitate their grammar
(e.g. incrementing a variable is “x=x+1" in Python and “change x by 1” in Scratch) [28, 49]. The
transition from one register to the other can be more or less immediate, and therefore depends on
the “semiotic congruence” of the representations [19]. A previous work [12] established that this
congruence is strong for variables, conditionals, and functions concepts but is weaker concerning
loops. For this reason, prior knowledge of block programming can be helpful for the concepts
of variables, conditionals and functions and rather an obstacle for the apprehension of the loop
concepts in the text modality. Additionally, research shows that the specifics of textual syntax are
particularly problematic for novices [44]. Its dense notation can be a difficulty for beginners as
it can overload their working memory. On the other hand, the block register helps learners by
showing how to apprehend commands in larger chunks [9].

2.1.4 Syntax and type errors. Block-based systems avoid syntax and type errors which are frequent
when using text-based languages. Program editing in a visual block environment consists of joining
shapes together. Furthermore, languages like Scratch are just distinguishing booleans from other
data types and are weakly typed at runtime. These two characteristics lead to preventing a majority
of errors [49, 28]. In contrast, using strongly typed text languages (even dynamically like Python)
requires the understanding of data types and the respect of languages grammar and syntax [28]. As
a consequence, in this programming modality, errors are numerous [18, 2] and error messages lack
of clear formulations [31]. For beginners, learning how to interpret them requires a lot of practice
[10].

After having detailed the aspects linked to languages’ intrinsic features, let us now compare
elements that are associated with their editing environments.

2.1.5 Command catalog. Block programming environments present the user with a browsable
“palette” listing all existing blocks organized thematically or conceptually [49]. This makes it
possible for neophytes to discover concepts or to remember those they have already learned. On

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:4 Matthieu Branthome

Table 1. Summary of the differences between block-based and text-based languages

Aspects Block-based Text-based
Paradigms Object-oriented, event-based, parallel Imperative, procedural
Fund. concepts Variable, conditional, loops, function + data type, recursion

Semiotic registers Graph. shapes, drop-down lists, fields Keywords, typograph. symbols

Errors Syntactic, semantic

Command catalog Navigable palette -

Composition Drag and drop Keyboarding

Execution Highlighting, step-by-step, var. state =~ Debugger

the contrary, programmers using text environments must have in mind all code structures and
appropriate syntaxes [9].

2.1.6 Program composition. Blocks allow to compose programs by dragging and dropping different
pieces to assemble them. The difficulty of typing and looking for symbols on the keyboard, which
are a common part of text programming, is substantially reduced by this composition procedure [49].
Actually, the simple mechanical process of inputting the program text might be a cognitive and
motor challenge for young learners. Furthermore, the necessity of using the keyboard to rectify the
inescapable typing errors increases cognitive distractions [28].

2.1.7 Execution control and visibility. Block settings make it easier to control and follow the
execution of programs. They provide highlighting of the block that is being run in an effort to
link programs to actual actions. They can offer a step-by-step mode (setting speed, stopping and
resuming execution), and display the current state of the variables. These characteristics give
novices a better understanding of how programs are executed and what they are doing [9]. Note
that some text-based environments include a debugger that can offer such features, but they are
difficult for beginners to master.

The aforementioned editing environment comparisons are conducted using simple textual code
editors. However, some instructional text-based environments, such as PyScripter [39], provide
helpful features like syntax highlighting, autocompletion, or syntax live checking which can aid in
reducing semantic errors and limiting keyboarding.

Table 1 summarizes the aforementioned differences and similarities between block and text
languages. Next, we present several existing applications related to our research questions.

2.2 Existing applications

Researchers and companies have already proposed applications aiming at learning Python via
serious games and development environments dedicated to the block-to-text transition. Here is an
overview of these solutions.

2.2.1 Python learning games. In this section, we present a set of pre-existing games. They have
been selected according to two criteria: i) the application has a pedagogical purpose; ii) characters
are controled by Python programs. Reeborg’s World [41] (see Figure 1a) is a serious game developed
by a Canadian physicist and targets programming initiation. Algoréa [1] is the platform of a national
programming contest organized in France. Code Monkey [16], Code Combat [15] (see Figure 1b),
and Coding Park [17] (see Figure 1c) are commercial applications aimed at helping young people
and teenagers to learn Python in a recreational way.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:5

World Info Reeborg'sfl Click on the world to get some additional inforn

What you need to know
Python Code libra

« The functions move(), turn_left(), and
take().

« The condition (function) object_here().

« How to use if statements.

« How to call a function with an argument.

* How to compare two strings using ==

take("star")
2| turn_left()
2| move()

Difficulty level

PPRPREPPPERE

(a) Reeborg’s world: game and conceptual indications.

PROGRAMMING LANGUAGE: Python
1

/2 for i in range(3):

/3 __|nero_novertght(1)

/4 hero_novelp()

V/5 hero.roveRight) Escape the Dungeon Sprite with the
Y] help of a speed potion.

------ :
While Loops

Oty DPiesdoccie ©Pyino
1 |# Lesson: Getting
started: Part 1
2 # Level: The Jumpy Frog

4 from actions import *
def main():
for 1in range(3):
Jump()
right(2)
down()

Jump()
left(2)
dig()

(c) Coding Park: game and conceptual indications.

Fig. 1. Three examples of Python learning serious games.

In all these applications, the concepts involved in the different levels are made clearly explicit.
For instance, Reeborg’s World offers a “world info” button which gives several information such as:
the objective of the “world”, the level of difficulty, and, in the “what you need to know” part, the
control functions to be used and the concepts to be implemented (see Figure 1a). In Code Combat,
before starting a new stage of the game, the concepts to be applied are listed after the given level
objective (see Figure 1b). At last, in Coding Park the different quests are named after the concept
that they each lead to discover (see Figure 1c).

As explained in the introductory section, we decided to propose a different learning approach
using the constructivist paradigm. Hence, our design objective is to allow students to understand
the different programming concepts by putting them at stake in different levels without making
them explicit.

In the next section, an overview of development environments specifically designed to support
the block-to-text transition is offered.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:6 Matthieu Branthome

1 # Start Code Here

e Imports 2 names = ["Jack","Mary"]
_ names v = 1 name names:
e Variables print("Hi "+name+"!")
for name ¥ in names ¥ H
Statements

Co)

Q Logic

(a) EduBlocks one-way transition environment.

@ BlockPy

m 22 Blocks m = Text H < Reset ‘ & Import datasets B Upload | ~ ‘ D History
Variables

1 names = ['Jack', 'Mary']
PEssann (i (%) create list with [(l L Jack RN b L3 Mary 288 | 5> for name in names:

"name + JRLLEA names - I print(('Hi' + name) + 'I|')

Iteration for each item

Functions
O« o o) (@ <07 |
Calculation ::] *l
Outnut
(b) BlockPy dual-modality environment.
STRYPE ® e
IV My code: iif
names < [Jack'Mary'] e else

. f for
for name in names :

- w while
\print(‘Hi'+name+'!"‘)‘ o
~ rea

(c) Strype hybrid environment.

Fig. 2. Examples of the three sorts of transitioning environments.

2.2.2 Block-to-text environments. To assist the transition from blocks to text, a number of digitally
based approaches have been investigated. In accordance with the Lin and Weintrop’s taxonomy [29],
three sorts of environments are presented: one-way transition, dual-modality, and hybrid.

One-way transition environments are composed of two views. Programs can be edited using
blocks in one view, and are then automatically translated into a target textual language in the other
view. Users may only consult the translated program and, in some case, execute it, but it cannot be
changed directly. For instance, the EduBlocks environment [20] (see Figure 2a) converts instantly
edited block-based programs into Python scripts. Patch [43] offers a comparable solution based on
Scratch blocks.

Dual-modality environments are similarly made up of two views, but the textual view allows for
direct creation and modification of programs. As a result, the block view is automatically refreshed
with the translated block script. Examples of existing implementations include PencilCode [8],
which produces Javascript and more recently Python code [4]. For Java, BlocEditor [30] provides an
analogous method. BlockPy [7] (see Figure 2b) offers another dual-modality environment made
specifically for Python.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:7

Table 2. Classification of the presented block-to-text environments

Environments Sort Type

EduBlocks [20] One-way transition Translation

Patch [43] One-way transition Translation
PencilCode [8] Dual-modality Translation
BlocEditor [30] Dual-modality Translation
BlockPy [7] Dual-modality Translation
Stride [28] Hybrid Fusion
Strype [48] Hybrid Fusion
CodeStruct [24] Hybrid Fusion

Finally, blocks and text are being combined into hybrid environments to create a single view. Here,
drag-and-drop, point-and-click, or keyboard shortcuts can be used to insert high-level structures
(such as loops and conditionals). Traditional text editing augmented with auto-completion or coding
hints is employed to introduce the expression-level code. Stride offers learners an operational block-
and-Java implementation [28]. The recently launched Strype [48] provides a Python-compliant
"frame-based" environment (see Figure 2c¢). In addition to the above described features, it allows to
manipulate already written text bundles as if they were blocks. CodeStruct [24] is another recent
hybrid environment which has the particularity to provide explanations and runnable examples
about concepts through contextual tooltip.

As shown in Table 2, going beyond this classification, there are actually two types of environments.
Those based on translation (one-way transition and dual-modality) whose value is to support the
block-to-text transition on intrinsic aspects of the languages (programming paradigm, concepts, and
semiotic registers). Indeed, the live translation of code from one semiotic register to the other may
allow students to assimilate the syntax of textual languages by observing (one-way) or editing (dual-
modality) the generated code. The other elements (paradigms and concepts) being, by construction,
constant. The second type of environments are those based on fusion of modalities (hybrid). The
benefits are, in this case, on editing environments aspects. Thus, those applications can provide
textual editing environments while still benefiting from some of the advantages of blocks (command
catalog and program composition). When designing the Pyrates” editing environment, both aspects
of the transition were addressed: the intrinsic properties and the editing mode.

Having exposed the state-of-the-art of the study, the different parts of the Pyrates’ design are
described in the next section.

3 DESIGN OF THE PYRATES APPLICATION

The Pyrates online application consists of a platformer game allowing to control a character using
a Python program. This avatar must complete various playful objectives through several successive
levels. The design of this software includes two aspects: the construction of the levels following the
constructivist model and the design of the editing environment in order to facilitate the block-to-text
transition.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:8 Matthieu Branthome

3.1 Game levels

The eight levels of this game were designed by implementing the constructivist paradigm which
is based on Piaget’s psychological hypothesis about adaptive learning [34]. The Piagetian con-
structivism theory suggests that individuals create their own new understandings, based upon
the interaction of what they already know and believe, and the phenomena or ideas with which
they come into contact. The purpose of constructivist teaching being to lead toward higher levels
of understanding and analytic capabilities [42]. In the context of learning Python in Pyrates, this
means that the programming concepts at stake in each level of the game are not explicit but are
made necessary by the game problem to be solved. This approach should permit to give strong
meaning to the concepts being worked on. In the continuity of Piaget, Brousseau [14] qualified
these kind of learning situations as “adidactical situations”. Consequently, these situations have
been conceived by being guided by two of the “adidactical conditions” described by Bessot [11]:

(1) The students must be able to consider an initial response to the posed problem in the form of
a low-effectiveness “basic procedure” based on prior knowledge.

(2) The targeted concepts must make it possible, when implemented, to move on to a “winning
procedure” that solves the problem at hand.

The targeted programming concepts have been chosen in coherence with the French mathematics
and computer science curriculum of grade 10 (i.e. variable, conditional, for and while loops). As
explained earlier, each level should lead the students to implement some of these concepts without
being explicit.

To achieve this, a recurring objective was first established for each level of the game. This goal
is to pick up a key to open a treasure chest. Next, the level maps were designed in order to make
necessary the use of the targeted concepts. The players should be able to initially engage in the
game by coding a basic procedure using the character control functions (i.e. walk, jump, etc.). Next,
they must mobilize the targeted concept if they want to succeed in opening the chest (winning
procedure). The a priori analysis methodology [6] was followed to conceive the levels. It consists
in designing a teaching situation (a game level here), setting out its characteristics (game map
and environmental constraints), and then establishing a list of the winning procedures that solve
the problem. The next step is to check whether the targeted knowledge is indeed present in the
winning procedures, and then to modify the level characteristics iteratively until they are.

Table 3. Concepts and Features of Pyrates Levels

Levels Main concepts Game’s features Editor’s features
1 For loop (repeat) Repetitive path Limited lines
2 For loop (repeat) Repetitive path Limited lines
3 Variable Information retention -
4 Conditional Random path -
5 Conditional Random path -
6 For loop (counter) Structured path Limited lines
7 For loop (counter) Structured path Limited lines
8 While loop Random repetitive path -

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:9

Figure 12, in the appendix, reproduces the game map and a winning procedure for each level.
Table 3 then summarizes the main targeted concept and the features of the game map and of the
code editor that should lead to this concept implementation.

Notice that in the context of block-to-text transition, the for loop concept was broken down
into two sub-concepts. At first, the for-repeat sub-concept which is the text transposition of the
“repeat” block which offer the simple repetition of instructions. Students were asked to use the
following syntax trick “for _ in range (n)” to indicate that they do not use the loop variable in the
loop body. The second sub-concept is for-counter which adds the management of the automatically
incremented loop variable. These loop counters are not directly available in some block languages
like Scratch.

The game’s levels design were just presented, now let’s focus on the features of the Pyrates’
development environment.

3.2 Editing environment

The design of the editing environment of the application is covered in this section. The presentation
is based on Figure 3 which depicts the application’s graphical user interface and its different areas.

This part of the application was conceived based on the research findings outlined in Section 2.1.
Hence, some characteristics of block programming environments (command catalog, program
composition, less errors, enhanced execution) were incorporated because of their advantages
evidenced in the literature.

First, a fixed sidebar was added on the left of the screen which incorporated, among other things,
a programming memo (see Figure 3b). It is a kind of synthesized documentation explaining the
basics of Python programming. The command catalog specific to block-based settings served as
a model for this element. The memo’s contents can be accessed by clicking on the different blue
buttons. They are organized following the fundamental programming concepts (basics, variable,
conditional, for and while loop). When the mouse pointer is hovered on a button, the title is changed

Startup Guide

Levels 1D : Kp65pSN
10
Goal : Pick up the key and open the chest.
Constraints : In this level your program must not
exceed 10 lines.
Control functions :
k() : move one block forward.
() : tumn to the left side.
turn to the right side.
: open the chest if it s in front of
location) and if you own the key. Teacher only (3] @

Programming Memo gpython
Application 1
Basic concepts
Game o
Variable
6|walk
Syntax 2

Conditional 7|right()

range(16): Semantics 0
For loop

While loop Notion o

Survey Other 1

Fig. 3. Different areas of Pyrates’ graphical interface: level area (a), programming memo (b), control panel (c),
console (d), code editor (e), and teacher area (f)

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:10 Matthieu Branthome

to reflect the usefulness of the concept in an effort to guide the users through their research. For
instance, “variable” turns to “Store information in memory”.

Clicking on a button causes a side panel appearance detailing the concept in sub-concepts (see
Figure 4). In this panel, sub-concepts are explained and followed by a general model and an
illustrative example. Both Python and Scratch are used to express these programs. This choice
was made because, in France, the block-based language used to introduce programming to lower
secondary students is Scratch. The Python general model and its block translation are aimed to
assist learners in the semiotic register shift. The intention is to foster the apprehension of Python
syntax in large chunks rather than element by element. To illustrate this point, in the “Simple
repeat” part of the “For loop” panel (see Figure 4a), learners should focus on the number enclosed in
brackets and treat the remaining code as a single aggregate. Futhermore, Ginat et al. [22] report that
including worked-out examples in instructional materials leads to reduction of students’ cognitive
load and to more efficiency in tackling new problems.

In the memo, each Python code snippet is associated with a copy button in order to reduce
keyboard inputs. The goal is here to encourage the practice of copying and pasting from the memo
to the code editor (see Figure 3e). This method can be seen as a form of continuity for block-based
environments’ drag-and-drop functionality.

Even though the design efforts to reduce programming errors presented above, it seems over-
optimistic to expect the complete eradication of syntactic and type errors inherent to block editing.

For loop Conditional

- Two branches conditional
Utility
Allows instructions to be executed if a condition is true and

Allows instructions to be repeated a specified number of times. R . .) N
other instructions if not (if the condition is false).

Simple repeat

Allows instructions to be repeated a specified number of times. Model

instructions

Model

range(number): (instructions
instructions

Example
Example Example

my_var = get_height()
- range(4): my_var < 7:
jump, Jump () turn()
= attack() walk()

Jump ()
o The number in brackets in range(number) indicates the . attack()
number of times the instructions are repeated.
* Repeated instructions in the loop (body) must be offset using
the tab key.
Instructions in the and branches (body) must be

Repeat with counter (starts at zero)
offset using the tab key.

(a) Side panel extract about the “for loop” concept. (b) Side panel extract about the “Conditional” concept.

Fig. 4. Two extracts of the programming memo.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:11

Becker established that understanding error messages is a huge challenge for inexperienced pro-
grammers [10]. Therefore, the editing environment has been improved with an existing research-
based syntax analyser created especially for novices [27]. This module analyses the Python code
prior to the Python interpreter. It delivers error messages in the users’ native tongues (only French
and English at the moment). According to Qian and Lehman [40], students’ fluency in English
is significantly correlated with their success in learning programming. The statements are also
formulated in a less technical, straightforward style that beginners can understand. Additionally,
these predefined messages have been slightly modified to make them consistent with the wording
of the programming memo. As a result, when a syntax error occurs, an appropriate message is
shown in the console section (see Figure 3d) and the faulty code line is highlighted in red in the
editing area. A syntax-error-free program does not mean that the code is runnable. Type or other
semantics errors may still appear during interpretation.

Lastly, a control panel (see Figure 3c) was developed to enhance the administration of executions.
Players have the ability to start and stop the code execution, and to change its speed using a slider.
This slider alters the velocity of character motions by acting on a multiplying factor. When the
game first launches, this factor is set to 1 (tortoise), and it can be increased up to 3 (hare). The
monitoring of the execution is guaranteed by the highlighting of the executed line in the code
editor area (see Figure 3e). This should help students in making links between the code and the
current character action.

The described design has been assessed using the methodology detailed in the following section.

4 METHODOLOGY

This section describes the methodology used to evaluate the different facets of the Pyrates’ design.
The experimentation relies on classroom field testing. The application was used in eight French
high school classes (10th-grade: 14-15 years old). According to the French curricula, grade 10
students have supposedly already used Scratch software in middle school (grades 6 to 9) and have
not yet been exposed to Python programming. In order to confirm this hypothesis, we asked the 240
involved students to estimate their general knowledge in Scratch (and more precisely concerning
some concepts by asking them to estimate their knowledge between two extremities, “Low”and
“high”, by moving a cursor) and if they had already used the Python programming language before

62.9% mmm Never
A few
A lot
B \Very often

—— Global
—— Variable
—— Conditional
—— For loop

e .ou %

Use of Python
language

Density

0.9%
1.8%

5

5‘0 5-3 y 6- y T
60 80 100

0 20 a0
Estimation of knowledge 34.4%
(a) Scratch prior knowledge (repartition and median). (b) Python usage before experimenta-
tion.

Fig. 5. Prior Scratch knowledge and Python usage declared by students.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:12 Matthieu Branthome

Table 4. Details of activity traces.

Activity Information

Content view Content identifier, consultation time

Content copy Content identifier

Program launch Program code, execution speed, program outcome, error (if
occurred)

Action on level Started, completed, restarted, resumed

Teacher help Help type

Speed cursor change New speed value

the experimentation. The results of this survey are shown in Figure 5. Based on these declarative
elements, we can overall consider that these students have a general knowledge of Scratch (less
for variables), and that they had no prior substantial Python programming experience. In addition,
standard French 10th-grade classes are most of the time balanced therefore it can be assumed that
gender parity is almost respected in our student sample.

The students played with Pyrates during two or three 55 minutes-sessions spaced one or two
weeks apart. The application and its functioning were shortly explained during the five first minutes,
then the students were free to play on their own for the remaining time. The teachers were asked
to step in on students’ demand, or when they had been struggling for an extended period of time.
In this situation, the teachers were asked to record the topic of the provided assistance (application,
game, syntax, semantics, notion, other) by clicking on buttons in a frame dedicated for that purpose
on the application (see Figure 3f).

During the whole experimentation, the application tracks, in a wider range, all the players’
activities: content viewing and copying, launched programs, programming errors (syntactic and
semantic), received helps from the teacher, use of the control panel, and so forth. These traces were
automatically generated following the activity of the players and then exported and stored using
the xAPI standardized format [25]. Table 4 gives the details of the collected information depending
on the students’ activity. In the last minutes of the final session, the students were asked to answer
an online survey that provides additional data. This survey’s objective was to gather respondents’
qualitative inputs. The questions focused on prior knowledge (Scratch and Python) and on the
overall perception of the application (clarity and usefulness of the contents, handling, difficulty,
motivation, and enjoyment). This data collection protocol respects the ethical rules in force insofar
as it is compliant with the European GDPR. The data set of this study is then composed of 224
survey replies (due to technical difficulties, some students were unable to respond) and 69,701
activity traces.

Lastly, the data processing was conducted using Python scripts. In particular, we automatically
detect the concepts implemented in students’ programs using their abstract syntax tree (AST
package). The Pandas library was also used to manipulate and analyse data, as well as Matplotlib
and Seaborn to create the graphs presented in this article.

The following section provides the results obtained from this data collection and analysis.

5 RESULTS AND DISCUSSION

The results exposed and discussed below are focused on two aspects of the design. First, the
evaluation of the design of the game’s levels (RQ1) and secondly, the assessment of the incorporation

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:13

of block-like features in the editing environment (RQ2). Then, the student’s overall evaluation of
game design (RQ3) is presented.

5.1 Levels evaluation

This section answers RQ1 i.e. whether the levels of the game allow students to apprehend the
different targeted programming concepts consistently with the constructivist principles. This is
understood as providing the opportunity to try out basic procedures before being able to win
the levels by implementing the targeted concepts. The following analyses are based on student
activity traces about executed programs. Indeed, the programming concepts implemented in these
programs were automatically detected using abstract syntax trees. Figure 6 shows the frequency of
the implemented concepts on all of the executed programs for each level. This means for example
that 21% of the executed non-winning programs in level 1 contain a for-re loop (see Figure 6a).
We first explore whether the level design allowed students to consider an initial response to
engage with the problem at hand. Figure 6a represents the frequency of appearance of concepts
in the programs leading to non-winning procedures for each level. Note that these non-winning
programs have been fully executed, so they are syntactically correct and free of game errors (trying
to walk in a wrong place, fall into spikes, etc.). However, they do not allow to finish the level,
meaning to pick up the key and open the treasure chest. This figure shows that students implement
basic procedures without concepts (i.e. using only control functions) in all levels and especially
when a new concept is involved (lev.1, lev.3, lev.4, lev.6, and lev.8). Trial, termed "intermediate
procedures”, can be observed to implement the targeted concept but which require some semantic
adjustments to complete the level. For example, a student may have implemented a for loop at

_. 100 === No concept mmm For loop repeat (for-re)
§ mmm Variable (var) mmm For loop counter (for-co)
3 80 76 A mem Conditional (con) === While loop (whi)
c
3 61
T 601 56
2 50 28 51
" 4035 1 3940 40
£ 401 38 2 34
9 27 27 29
21

£ 2] 19 2019 17 16 B 17
v 8 8 5

2 1 1 4

04
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

(for-re) (for-re) (varfor-re) (con,for-re) (con,for-re) (for-co) (for-co) (whi)
Levels and concepts involved

(a) Concepts implemented in executed non-winning procedures.

100 100 99 100 100 100 100 100 100

~ 1001 9393 94|

8 86

~ 83

3 804

<

]

& 60

g

- 44

n

8 40 4 33]

@

v

S 204

o

0 T T T

Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(for-re) (for-re) (var,for-re) (con,for-re) (con,for-re) (for-co) (for-co) (whi)

Levels and concepts involved

(b) Concepts implemented in executed winning procedures.

Fig. 6. Concepts implemented in executed procedures by level.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:14 Matthieu Branthome

level 1, but not have achieved the level, because he has yet to adjust the number of iterations of the
“walk” control function. To summarize, it can be stated that players are able to engage in the levels
through basic procedures composed of control functions only.

Next, to answers the second part of RQ1, does the implementation of the involved concepts make
it possible to complete the level and is it the only way to do so? In other words, is the targeted
concept in a level a necessary and sufficient condition to establish a winning procedure? Figure 6b
represents the frequency of appearance of the programming concepts in the programs leading
to winning procedures for each level. When for loops (for-re and for-co) and variables (var) are
targeted in a level, the figure indicates that they are almost systematically implemented in the
winning procedures. This validates level designs for these concepts.

In contrast, as shown in Figure 6b, test-based concepts (con and whi) are sufficient to complete a
level but are not necessary (i.e. they are not always present in the winning procedures). A small
part of the students (7-8% for the conditional and 17% for the while loop) manage to succeed these
levels without implementing these concepts. A randomized game map was intended to make the
use of these concepts mandatory (see Table 3). However, some students used a modus operandi
consisting in a run-stop execution loop until they obtain a random configuration favorable to their
non-conditional program. This strategy, which can be coined as “conceptual bypassing”, makes
it possible to succeed in these levels without implementing the programming concepts at stake.
This procedure has very little chance of success because of the large number of different level
random maps. These students who remain at any costs in the playful domain are unwilling or
unable to enter into conceptual learning by exploring the environment seeking a concept that might
allow them to complete the level. In addition, other students manage to replace the while concept
(whi) by the conjunction of a for loop (for-re) and a conditional structure (con). To summarize this
point, it can be argued that the targeted concepts allow to finish all levels, but that they are not
always necessary. From this point of view, the design of levels’ maps is very effective in making
the variables and for loops concepts mandatory. On the other hands, it is not sufficient to force the
use of the concepts based on tests (conditional and while loop), since a small part of the students
was able to avoid them.

This section can be summed up by saying that the answer to RQ1 is rather positive. Respecting
Bessot’s adidactical conditions, the design of the levels overall allows to learn the targeted concepts
in accordance with the constructivist approach. The next section is about the evaluation of the
editing environment.

5.2 Editing environment evaluation

The goal of this section is to answer to RQ2, that is the study of the appropriation of the transition
features by the students. For this purpose, the following traces are considered: consultations of the
memo, copy-paste from the memo to the code editor, errors detected by the syntax analyser and
by the interpreter, syntactic and semantic aids given by the teachers during their interventions,
manipulations of the speed cursor, and chosen speed during the programs’ execution.

To begin, let us look at the usage of the programming memo. Figure 7a shows that this memo is
frequently consulted by students. It can be noticed that, like the catalog of block-based environments,
it supports the discovery of concepts. Indeed, each time a new concept is involved in a level (lev.1,
lev.3, lev.4, lev.6, and lev.8), a great variety can be found in the consulted concepts. This seems
to reveal a search process. On the other hand, when the concepts have already been used (lev 2,
lev 5, and lev 7), the consultation appears to be more focused on the targeted concepts. It can be
hypothesized that, in this situation, the learners need to retrieve the syntax of the concept they
want to implement. This process is quite similar to the recall capability of the block catalog.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game

-
~
v

12:15

163

mmm Variable (var)

mmm For loop counter (for-co)

w
g 1501 143 == Conditional (con) == While loop (whi)
": 125 4 == For loop repeat (for-re)
]
8 100
] 76 82 79
2 75+
o Jom > 49
g‘ 50 - 47 . 47
28
£ 254 21 195 23820 152510 23 o 20520 16 2022 21,
7 6108 96
‘>l ol I 3 3 4 I . 4
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(for-re) (for-re) (var,for-re) (con,for-re) (con,for-re) (for-co) (for-co) (whi)
Levels and concepts involved

(a) Python memo consultation time by students.
+ 1.754
H 1.6 16 == Variable (var) mmm For loop counter (for-co)
T 1.501 m=m Conditional (con) m== While loop (whi)
1
7} === For loop repeat (for-re)
5 1254 1.3 p rep!
2 11 1.1
& 1.00 1
2 0.8 0.9
E 0751 0.7 5E 0.7 0.7
H 0.5
© 0.50 s oM oa
g 0.3380.30.3 02 0.3 03 :
g 0.25 01 0.2 0.10.2 0.2 = 0.1 0.1 (0.2
< 0.00 -

Level 8
(whi)

Level 7
(for-co)

Level 6
(for-co)

Level 4 Level 5
(con,for-re) (con,for-re)
Levels and concepts involved

Level 3
(var,for-re)

Level 2
(for-re)

Level 1
(for-re)

(b) Copy and paste of the Python memo by students.

Fig. 7. Consultations and copy-pastes of the Python memo by level.

Next, according to Figure 7b, students are frequently using the copy-paste tool to implement
a concept. Hence, whenever a concept is targeted in a level, there is, on average, a high rate of
copy-paste associated with it (from 1.6 to 0.4). Note that, for a same concept, the average number
of copy-paste decreases from one level to another. It can be advanced that more and more students
succeed in memorizing the syntax after several uses. This copy-paste practice is kind of equivalent
to the drag-and-drop of blocks, and can limit keyboard input and, to some extent, help establish
code structures.

17.5 4
£ 16.5 mmm Syntactic error | € 0.44 mmm Syntactic help
% 15.0 4 mmm Semantic error % 0.4 mmm Semantic help
§ §
v 12.5 A .
2 8034 0.20.29 - [80.29
= 10.0 4 =
3 87 3
E 75 Eo2{ &
H 6.3 6.4 3
% >0 % 01 U oadi
E 2.5 E’ = B 0.00.0:
< < 0.0 0.03 '
0.0 - 0.0 -

Lev.1 Lev.2 Lev.3 Llev.4 Lev.5

Lev.6 Lev.7 Lev.8

Lev.1 Lev.2 Llev.3 Lev.4 Llev.5 Lev.6 Lev.7 Lev.8

(a) Errors detected by the syntax analyser and the
Python interpreter.

(b) Help received by students from the teacher.

Fig. 8. Errors detected by the application and teacher helps received by students.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:16 Matthieu Branthome

Considering errors analysis, Figure 8a shows that syntactic errors (issued from the syntax
analyser) are numerous and in a much higher proportion than semantics ones (issued from the
interpreter). This is consistent with Altadmri and Brown’s results, which suggest that students first
have trouble with syntax before they start struggling with type and semantic problems [2]. Looking
at the assistance given by the teachers (see Figure 8b), it is interesting to note the low frequency of
the syntax interventions regarding the number of errors. Actually, there is one intervention for
every 30 to 40 syntactic errors in the first four levels. The students are therefore presumably able to
adjust their syntax-erroneous code thanks to feedback from the environment and without asking
the teacher. This fact is undoubtedly related to the enhanced messages provided by the employed
syntactic analyser. Nevertheless, it is important to keep in mind that, in a general way, the syntax
errors are less challenging to solve than semantic errors [2].

The traces generated by the application give quantitative insights regarding the use of the
memo and the occurrences of the error messages. To go further, these analyses can be qualitatively
augmented with the survey results. The students had to evaluate several aspects of the application
by setting cursors between two extremes (“Not clear” - “Very clear”, “Not useful” - “Very useful”),
which had the effect of generating a score between 0 and 100. The survey included questions related
to the Python memo and the error messages. Figure 9 presents the scores distribution (density) and
median for the these questions.

In addition to being extensively consulted by students, the memo’s explanations are considered as
clear by the majority of them (see Figure 9a). Despite of this, a group of students can be distinguished
around a score of 30 for whom these contents are more confusing. The comparisons with Scratch
are judged as useful or even very useful by the large majority of the students (see Figure 9b). Finally,
the error messages, which have been shown to foster students’ autonomy, are also deemed to be
clear by most of the respondents (see Figure 9c).

Let us now evaluate the use of the program control features. Figure 10a presents the average
number of actions on programs per student. Here, a program is considered as correct if it does
not contain any syntactic or semantic errors (this does not mean that it allows to win the level).
Otherwise, it is identified as erroneous. It can be observed that there is a very large number of
programs run on average per student. Many of them are erroneous, suggesting that students
are adopting a trial-and-error programming approach to reach syntax correctness. Numerous
correct programs are also launched, which shows that students progress through the game levels in
incremental intermediary steps to the final opening-chest goal. This trial-and-error and incremental
programming method could be explained by the programming practice inherited from the blocks.
Indeed, researchers discovered that learners acquired some particular programming behaviors

> > >
- - -
= = =
< < <
[} [[
=] (=] (=]
170
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Clarity level Utility level Clarity level

(a) Clarity of explanations in the (b) Utility of Scratch-Python com- (c) Clarity of error messages.
memo. parisons.

Fig. 9. Results extract from the student survey (score distribution and median).

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:17

when they learn to program with blocks. They tend to develop several habits, including a totally
bottom-up programming approach and a tendency towards extremely fine-grained programming
[32]. The use of the stop button to interrupt the execution of a program is rare. However, it is
possible to distinguish two types of behaviors depending on the way the levels maps are generated.
For a first set of levels with fixed non-random maps (Lev.1, Lev.2, Lev.6, and Lev.7), students perform
on average between fifteen and twenty launches and almost no stops. In levels containing randomly
generated maps which change at each run (Lev.3, Lev.4, Lev.5, and Lev.8), students tend to do more
launches and to stop some of them. Actually, for these randomly generated levels, some students
adopt a transient operating mode consisting of a series of launch-stop actions until they obtain
a random map configuration suited to their program. This process has already been described in
Section 5.1.

Finally, let us pay attention to the speed change cursor. It is on average rarely used and decreas-
ingly over time (see Figure 10b). Figure 10c shows the distribution (density) of launched programs’
execution speeds for each level. From level 2 onwards, the programs are almost all launched at
the maximum speed (multiplying factor of 3). The trial-and-error and incremental programming
approach earlier described requires this high execution speed. Three students reported in the
open-ended field of the survey that “the character does not move fast enough”. Nevertheless, a
marginal practice can be noted in more advanced levels (level 4 and level 5). It consists of returning

- 301 mmm Erroneous programs launched 27.8 25.5
2 mmm Correct programs launched :
g 20| ™=m Launched programs stopped 205 19.9
c 17.2
@ 13.3
o
g 104 11.2 08 06 11.4
] 7.1 7.1
2 4.7 4.7 5.1 5.5
< 3.0 19 2.9 22
o 0.6 0.7 . 0.5 0.5
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(a) Average number of actions on programs per student.
2.19
@ 2.0
E
3 1.5
c
% 1.0
g 0.73 0.71 0.68
3 0.32 0.34 0.25
0.05
0.0 . [| :
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8
(b) Average number of execution speed changes per student.
> > > > > > > >
£ = = = = = = =
[} n 7] [} 7] 7] w 7]
< c c < c < < c
] @]]]]] @
=] =] =] a =] =] =] [=]
1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 Level 7 Level 8

(c) Distribution of programs execution speed by level.

Fig. 10. Data concerning the execution control by level.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:18 Matthieu Branthome

—— Handling

Difficulty
—— Motivation
—— Playfulness

Density

r 6.(7.8 7.5 ’ T
0 20 40 60 80 100

Evaluation

Fig. 11. Player evaluation of different aspects of overall game design (distribution and median).

to slower execution speeds. Observations during the experiments indicate that some students need
to follow more easily the executed lines in a step-by-step action mode.

5.3 Overall game design evaluation

This section deals with the RQ3 question and the general design of the game. As shown in Fig. 11,
the application is considered as rather easy to use (handling median is 68), which can be explained
by the presence of a start-up guide (green button in the graphical interface) as well as by the quick
introduction made by the researcher at the beginning of the experiments.

Second, the game is overall considered as difficult by the students (median 39). Indeed, few of
them had the opportunity to complete all eight levels of the game and only 60% of the 240 students
reached at least level 5.

Surprisingly, students’ motivation remained high (median 67) in spite of the difficulty they felt.
Few students felt discouraged at the end of the experiment. We replicated here the research results
on the benefits of gamification on learner motivation [55].

Finally, the overall experience was rated as entertaining (playfulness median is 75), with a group
of students placing the cursor at the maximum (100). This expected outcome is also among the
demonstrated benefits of serious games [46].

6 CONCLUSION AND PERSPECTIVES
To conclude this paper, its main results are summarized as follows. The levels of the Pyrates serious
game were conceived using a constructivist philosophy with the objective of teaching the funda-
mental concepts of programming in Python. Moreover, Pyrates includes an editing environment
designed by taking inspiration from block-based programming editors intending to benefit from
their advantages.

Both these aspects of the conception were evaluated by analysing students’ activity and answers
to an online survey. First, it is possible to argue that the levels are overall respecting Bessot’s
adidactical conditions:

e players have the ability to engage in levels through basic procedures consisting of control
functions only;

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:19

o the design of the levels’ maps is very effective in leading to the implementation of variable
and for loop concepts, but is not sufficient to systematically require the use of test-based
concepts (conditional and while loop).

As a result, it can be stated that, generally speaking, the levels’ design allows the players to
implement the targeted concepts in a constructivist way.

About the layout of the editing environment, some design choices have the following positive
consequences:

o the programming memo is very frequently consulted by the students, it is the support of the
discovery and the recall of the concepts;

o the included comparisons with Scratch are considered as useful by a large majority of students,
they should help the apprehension of Python structures in larger chunks;

e copy and paste from the programming memo is widely practiced, this has the effect of limiting
keyboarding;

o the feedback provided by the syntax analyser via “clear” error messages makes it possible to
correct the programs with very little teacher involvement.

The control panel should allow the students to better understand the execution of the programs.
However, it does not produce the expected results:

e the program launch button is frequently used and the speed control slider is very early set to
the maximum speed in order to adopt a trial-and-error programming approach which does
not foster reflection;

e the button allowing to stop the executions is scarcely used, and when it is, this is mostly to
try to succeed in the random-based levels using “conceptual bypassing”.

Finally, by analysing survey answers, we found that overall, the handling of the application is
considered as good and that the students declare themselves as motivated and entertained even
though the game is perceived as difficult.

In order to highlight the strengths of this work, Table 5 compares Pyrates with the other games
and environments referenced in the state of the art section. One of the main advantages of Pyrates is
to offer in a single platform both a serious game for teaching Python and a development environment
facilitating the block-to-text transition. More precisely, the designed serious game offers a non-
explicit pedagogical approach following constructivist principles that should allow students to
discover the fundamentals concepts of Python programming by giving them a strong meaning.
Moreover, the environment supports the transition from blocks to text in both its intrinsic and
editing tool aspects. With regard to intrinsic aspects, the transposition of concepts is supported
by general models and illustrative examples, and error handling is facilitated by the integrated
syntax analyser. Regarding the editing environment aspects: the addition of the programming

Table 5. Comparison of Pyrates with other works

Other works Comparison to Pyrates

Python serious games Explicit approach / Constructivist approach
[41, 1, 16, 15, 17]

Block-text translation environments Live translation / Translated models and
[20, 7] examples

Block-text hybrid environments Mix of features / Programming memo, copy
[24, 48] button, syntax analyser, and control panel

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

12:20 Matthieu Branthome

memo, which acts as a command catalog, facilitates concepts discovery, program composition is
assisted by copy-and-paste, and, to a lesser extent, the control panel enhances execution control
and visibility.

Beyond these results, our contributions have implications for computing education. Firstly, it
provides practitioners and learners with an environment supporting several dimensions of the
block-to-text transition, as well as learning materials and assignments that allow them to master
the fundamental concepts of Python programming in a constructivist approach. In its first two
years online, Pyrates has recorded more than 140,000 played games in France and about 2,500
internationally. Secondly, the outcomes of this work can inform designers of learning technology.
The characteristics of the designed situations (the level maps in particular) leverage the students’ use
of the targeted programming concepts (in a constructivist approach), and the Pyrates environment
combines in a novel way different means of supporting the block-to-text shift, which may suggest
avenues to design for this transition.

These results must be considered in light of the limitations of the methodology. Because the
students were in a naturalistic context, it was difficult to maintain totally similar experimental
conditions between different groups, particularly regarding the teacher’s activity and the scheduling
of the sessions. In addition, reasoning only on averages allows to identify trends, but masks the
disparities of levels and practices between the students observed in classrooms. Lastly, students’
actual learning while playing with Pyrates was not measured.

Finally, let us mention some perspectives to extend this work. Edwards [21] argues that beginners
in computer science are more successful at learning if they move from a trial-and-error approach
to a “reflection-in-action” practice. Therefore, it would be advantageous to modify the execution
control possibilities in the application in such a way as to force students to do less actions and more
reflection. One way could be to limit the number of executions via score penalties. Furthermore,
the maps of the levels that are targeting test-based concepts could be modified to make conceptual
bypassing strategies more costly in order to limit them. This could be done by increasing the
number of possible paths and by hiding the location of random objects for as long as possible to
increase the execution time of each trial. Then, students’ programs could be analysed to identify
the most common errors, which could be taken into account when designing the game’s levels.
Finally, we could evaluate student learning by proposing a pre-test in Scratch followed by a post-test
evaluating the same concepts in Python based on a language-independent standard CS1 knowledge
assessment framework [45].

ACKNOWLEDGMENTS

This research was funded by Region Bretagne and Université de Bretagne Occidentale. We acknowl-
edge students and teachers who participated in the game evaluation sessions. We thank Ghislaine
Gueudet, Cédric Fluckiger and Sébastien Lallé for their advice and careful proofreading.

REFERENCES

[1] Algorea 2023. Algoréa home page. Retrieved Jun 30, 2023 from https://www.algorea.org

[2] Amjad Altadmri and Neil C.C. Brown. 2015. 37 Million Compilations: Investigating Novice Programming Mistakes
in Large-Scale Student Data. In Proceedings of the 46th ACM Technical Symposium on Computer Science Education
(Kansas City, Missouri, USA) (SIGCSE ’15). Association for Computing Machinery, New York, NY, USA, 522-527.
https://doi.org/10.1145/2676723.2677258

[3] Julian Alvarez. 2007. Du jeu vidéo au serious game : approches culturelle, pragmatique et formelle. Ph.D. Dissertation.
Université de Toulouse. https://hal.archives-ouvertes.fr/tel-01240683

[4] Emma Andrews, David Bau, and Jeremiah Blanchard. 2021. From Droplet to Lilypad: Present and Future of Dual-
Modality Environments. In 2021 IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC). 1-2.
https://doi.org/10.1109/vl/hcc51201.2021.9576355

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

https://www.algorea.org
https://doi.org/10.1145/2676723.2677258
https://hal.archives-ouvertes.fr/tel-01240683
https://doi.org/10.1109/vl/hcc51201.2021.9576355

Design and Evaluation of the Pyrates Serious Game 12:21

[5] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari. 2015. From Scratch to “Real” Programming. ACM

—_
(=)}
—

—
~
—

[10

[11

[12

[13

[19

[20

[21

[22

[23

[24

[25

[26

[27

[28

=

[]

]

—

—

]

—

=

—

]

[t —

Transactions on Computing Education 14, 4, Article 25 (feb 2015), 15 pages. https://doi.org/10.1145/2677087

Michele Artigue. 1988. Ingénierie didactique. Recherches en didactique des mathématiques 9, 3 (1988), 281-308.

A. Bart, J. Tibau, E. Tilevich, C. A. Shaffer, and D. Kafura. 2017. BlockPy: An Open Access Data-Science Environment
for Introductory Programmers. Computer 50, 05 (may 2017), 18-26. https://doi.org/10.1109/mc.2017.132

David Bau, D. Anthony Bau, Mathew Dawson, and C. Sydney Pickens. 2015. Pencil Code: Block Code for a Text World.
In Proceedings of the 14th International Conference on Interaction Design and Children (Boston, Massachusetts) (IDC ’15).
Association for Computing Machinery, New York, NY, USA, 445-448. https://doi.org/10.1145/2771839.2771875
David Bau, Jeff Gray, Caitlin Kelleher, Josh Sheldon, and Franklyn Turbak. 2017. Learnable Programming: Blocks and
Beyond. Commun. ACM 60, 6 (may 2017), 72-80. https://doi.org/10.1145/3015455

Brett A. Becker. 2016. An Effective Approach to Enhancing Compiler Error Messages. In Proceedings of the 47th
ACM Technical Symposium on Computing Science Education (Memphis, Tennessee, USA) (SIGCSE ’16). Association for
Computing Machinery, New York, NY, USA, 126-131. https://doi.org/10.1145/2839509.2844584

Annie Bessot. 2003. Une introduction a la théorie des situation didactiques. Les cahiers du laboratoire Leibniz 91 (2003),
1-28.

Matthieu Branthome. 2021. Apprentissage de la programmation informatique a la transition collége-lycée. STICEF
(Sciences et Technologies de I'Information et de la Communication pour I'Education et la Formation) 28, 3 (2021), 1-35.
https://doi.org/10.23709/sticef.28.3.1

Matthieu Branthoéme. 2022. Pyrates: A Serious Game Designed to Support the Transition from Block-Based to
Text-Based Programming. In Educating for a New Future: Making Sense of Technology-Enhanced Learning Adoption,
Isabel Hilliger, Pedro J. Mufioz-Merino, Tinne De Laet, Alejandro Ortega-Arranz, and Tracie Farrell (Eds.). Springer
International Publishing, Cham, 31-44. https://doi.org/0.1007/978-3-031-16290-9_3

Guy Brousseau. 1998. Théorie des situations didactiques. La Pensée sauvage, Grenoble.

Codecombat 2023. Code Combat home page. Retrieved Jun 30, 2023 from https://codecombat.com

Codemonkey 2023. CodeMonkey home page. Retrieved Jun 30, 2023 from https://www.codemonkey.com
Codingpark 2023. CodingPark home page. Retrieved Jun 30, 2023 from https://codingpark.io

Paul Denny, Andrew Luxton-Reilly, Ewan Tempero, and Jacob Hendrickx. 2011. Understanding the Syntax Barrier
for Novices. In Proceedings of the 16th Annual Joint Conference on Innovation and Technology in Computer Science
Education (Darmstadt, Germany) (ITiCSE ’11). Association for Computing Machinery, New York, NY, USA, 208-212.
https://doi.org/10.1145/1999747.1999807

Raymond Duval. 2006. A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational
Studies in Mathematics 61, 1 (01 Feb 2006), 103-131. https://doi.org/10.1007/s10649-006-0400-z

edublocks 2023. Edublocks home page. Retrieved Jun 30, 2023 from https://app.edublocks.org/

Stephen H. Edwards. 2004. Using Software Testing to Move Students from Trial-and-Error to Reflection-in-Action. In
Proceedings of the 35th SIGCSE Technical Symposium on Computer Science Education (Norfolk, Virginia, USA) (SIGCSE
’04). Association for Computing Machinery, New York, NY, USA, 26-30. https://doi.org/10.1145/971300.971312
David Ginat, Eyal Shifroni, and Eti Menashe. 2011. Transfer, Cognitive Load, and Program Design Difficulties. In
Informatics in Schools. Contributing to 21st Century Education, Ivan Kala$ and Roland T. Mittermeir (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 165-176. https://doi.org/10.1007/978-3-642-24722-4_15

Joint Task Force on Computing Curricula, ACM and IEEE CS. 2013. Computer Science Curricula 2013: Curriculum
Guidelines for Undergraduate Degree Programs in Computer Science. Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/2534860

Majeed Kazemitabaar, Viktar Chyhir, David Weintrop, and Tovi Grossman. 2022. CodeStruct: Design and Evaluation
of an Intermediary Programming Environment for Novices to Transition from Scratch to Python. In Interaction
Design and Children (Braga, Portugal) (IDC "22). Association for Computing Machinery, New York, NY, USA, 261-273.
https://doi.org/10.1145/3501712.3529733

Jonathan M. Kevan and Paul R. Ryan. 2016. Experience API: Flexible, Decentralized and Activity-Centric Data Collection.
Technology, Knowledge and Learning 21, 1 (01 Apr 2016), 143-149. https://doi.org/10.1007/s10758-015-9260-x

B. Khazaei and M. Jackson. 2002. Is there any difference in novice comprehension of a small program written in the
event-driven and object-oriented styles?. In Proceedings IEEE 2002 Symposia on Human Centric Computing Languages
and Environments. 19-26. https://doi.org/10.1109/HCC.2002.1046336

Tobias Kohn. 2017. Teaching Python Programming to Novices: Addressing Misconceptions and Creating a Development
Environment. Ph. D. Dissertation. ETH Zurich, Zirich. https://doi.org/10.3929/ethz-a-010871088

Michael Kélling, Neil C. C. Brown, and Amjad Altadmri. 2015. Frame-Based Editing: Easing the Transition from
Blocks to Text-Based Programming. In Proceedings of the Workshop in Primary and Secondary Computing Education
(London, United Kingdom) (WiPSCE ’15). Association for Computing Machinery, New York, NY, USA, 29-38. https:
//doi.org/10.1145/2818314.2818331

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

https://doi.org/10.1145/2677087
https://doi.org/10.1109/mc.2017.132
https://doi.org/10.1145/2771839.2771875
https://doi.org/10.1145/3015455
https://doi.org/10.1145/2839509.2844584
https://doi.org/10.23709/sticef.28.3.1
https://doi.org/0.1007/978-3-031-16290-9_3
https://codecombat.com
https://www.codemonkey.com
https://codingpark.io
https://doi.org/10.1145/1999747.1999807
https://doi.org/10.1007/s10649-006-0400-z
https://app.edublocks.org/
https://doi.org/10.1145/971300.971312
https://doi.org/10.1007/978-3-642-24722-4_15
https://doi.org/10.1145/2534860
https://doi.org/10.1145/3501712.3529733
https://doi.org/10.1007/s10758-015-9260-x
https://doi.org/10.1109/HCC.2002.1046336
https://doi.org/10.3929/ethz-a-010871088
https://doi.org/10.1145/2818314.2818331
https://doi.org/10.1145/2818314.2818331

12:22

[29]

[30]

[31

—

[32

—

[47]

[48]

[49]

[50]

[51]

Matthieu Branthome

Yuhan Lin and David Weintrop. 2021. The landscape of Block-based programming: Characteristics of block-based
environments and how they support the transition to text-based programming. Journal of Computer Languages 67
(2021), 1-18. https://doi.org/10.1016/j.cola.2021.101075

Yoshiaki Matsuzawa, Takashi Ohata, Manabu Sugiura, and Sanshiro Sakai. 2015. Language Migration in Non-CS
Introductory Programming through Mutual Language Translation Environment. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education (Kansas City, Missouri, USA) (SIGCSE ’15). Association for
Computing Machinery, New York, NY, USA, 185-190. https://doi.org/10.1145/2676723.2677230

Davin McCall and Michael K6lling. 2014. Meaningful categorisation of novice programmer errors. In 2014 IEEE Frontiers
in Education Conference (FIE) Proceedings. 1-8. https://doi.org/10.1109/FIE.2014.7044420

Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari. 2011. Habits of Programming in Scratch. In Proceedings
of the 16th Annual Joint Conference on Innovation and Technology in Computer Science Education (Darmstadt, Germany)
(ITiCSE °11). Association for Computing Machinery, New York, NY, USA, 168-172. https://doi.org/10.1145/1999747.
1999796

Orni Meerbaum-Salant, Michal Armoni, and Mordechai (Moti) Ben-Ari. 2010. Learning Computer Science Concepts
with Scratch. In Proceedings of the Sixth International Workshop on Computing Education Research (Aarhus, Denmark)
(ICER ’10). Association for Computing Machinery, New York, NY, USA, 69-76. https://doi.org/10.1145/1839594.1839607
Jean Piaget. 1975. L’équilibration des structures cognitives. Presse Universitaire de France, Paris.

Thomas W. Price and Tiffany Barnes. 2015. Comparing Textual and Block Interfaces in a Novice Programming
Environment. In Proceedings of the Eleventh Annual International Conference on International Computing Education
Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery, New York, NY, USA, 91-99.
https://doi.org/10.1145/2787622.2787712

Pypl 2023. PYPL - PopularitY of Programming Language. Retrieved Jun 30, 2023 from https://pypl.github.io/PYPL.html
PyratesHP 2023. Pyrates home page. Retrieved Jun 30, 2023 from https://py-rates.org

PyratesPG 2023. Pyrates pedagogical guide. Retrieved Jun 30, 2023 from https://py-rates.org/guide/EN/

Pyscripter 2023. Pyscripter Github page. Retrieved Jun 30, 2023 from https://github.com/pyscripter/pyscripter
Yizhou Qian and James D Lehman. 2016. Correlates of success in introductory programming: A study with middle
school students. Journal of Education and Learning 5, 2 (2016), 73-83. https://doi.org/10.5539/jel.v5n2p73

Reeborg 2023. Reeborg’s World home page. Retrieved Jun 30, 2023 from https://reeborg.ca

Virginia Richardson. 2005. Constructivist teaching and teacher education: Theory and practice. In Constructivist
teacher education: Building a World of New Understandings. Falmer Press, 3-14.

William Robinson. 2016. From Scratch to Patch: Easing the Blocks-Text Transition. In Proceedings of the 11th Workshop in
Primary and Secondary Computing Education (Munster, Germany) (WiPSCE ’16). Association for Computing Machinery,
New York, NY, USA, 96-99. https://doi.org/10.1145/2978249.2978265

Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into Programming Language Syntax. ACM
Trans. Comput. Educ. 13, 4, Article 19 (nov 2013), 40 pages. https://doi.org/10.1145/2534973

Allison Elliott Tew and Mark Guzdial. 2011. The FCS1: A Language Independent Assessment of CS1 Knowledge. In
Proceedings of the 42nd ACM Technical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE ’11).
Association for Computing Machinery, New York, NY, USA, 111-116. https://doi.org/10.1145/1953163.1953200
Adilson Vahldick, Antonio José Mendes, and Maria José Marcelino. 2014. A review of games designed to improve
introductory computer programming competencies. In 2014 IEEE Frontiers in Education Conference (FIE) Proceedings.
1-7. https://doi.org/10.1109/FIE.2014.7044114

Feng Wang and Michael J. Hannafin. 2005. Design-based research and technology-enhanced learning environments.
Educational Technology Research and Development 53, 4 (2005), 5-23. https://doi.org/10.1007/BF02504682

Pierre Weill-Tessier, Charalampos Kyfonidis, Neil Brown, and Michael K6lling. 2022. Strype: Bridging from Blocks
to Python, with Micro:Bit Support. In Proceedings of the 27th ACM Conference on on Innovation and Technology in
Computer Science Education Vol. 2 (Dublin, Ireland) (ITiCSE 22). Association for Computing Machinery, New York, NY,
USA, 585-586. https://doi.org/10.1145/3502717.3532155

David Weintrop. 2019. Block-Based Programming in Computer Science Education. Commun. ACM 62, 8 (jul 2019),
22-25. https://doi.org/10.1145/3341221

David Weintrop, Alexandria K. Hansen, Danielle B. Harlow, and Diana Franklin. 2018. Starting from Scratch: Outcomes
of Early Computer Science Learning Experiences and Implications for What Comes Next. In Proceedings of the 2018
ACM Conference on International Computing Education Research (Espoo, Finland) (ICER ’18). Association for Computing
Machinery, New York, NY, USA, 142-150. https://doi.org/10.1145/3230977.3230988

David Weintrop and Uri Wilensky. 2015. Using Commutative Assessments to Compare Conceptual Understanding in
Blocks-Based and Text-Based Programs. In Proceedings of the Eleventh Annual International Conference on International
Computing Education Research (Omaha, Nebraska, USA) (ICER ’15). Association for Computing Machinery, New York,
NY, USA, 101-110. https://doi.org/10.1145/2787622.2787721

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

https://doi.org/10.1016/j.cola.2021.101075
https://doi.org/10.1145/2676723.2677230
https://doi.org/10.1109/FIE.2014.7044420
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1145/1999747.1999796
https://doi.org/10.1145/1839594.1839607
https://doi.org/10.1145/2787622.2787712
https://pypl.github.io/PYPL.html
https://py-rates.org
https://py-rates.org/guide/EN/
https://github.com/pyscripter/pyscripter
https://doi.org/10.5539/jel.v5n2p73
https://reeborg.ca
https://doi.org/10.1145/2978249.2978265
https://doi.org/10.1145/2534973
https://doi.org/10.1145/1953163.1953200
https://doi.org/10.1109/FIE.2014.7044114
https://doi.org/10.1007/BF02504682
https://doi.org/10.1145/3502717.3532155
https://doi.org/10.1145/3341221
https://doi.org/10.1145/3230977.3230988
https://doi.org/10.1145/2787622.2787721

Design and Evaluation of the Pyrates Serious Game 12:23

[52] David Weintrop and Uri Wilensky. 2017. Comparing Block-Based and Text-Based Programming in High School
Computer Science Classrooms. ACM Transactions on Computing Education 18, 1, Article 3 (oct 2017), 25 pages.
https://doi.org/10.1145/3089799

[53] David Weintrop and Uri Wilensky. 2019. Transitioning from introductory block-based and text-based environments to
professional programming languages in high school computer science classrooms. Computers & Education 142 (2019),
1-17. https://doi.org/10.1016/j.compedu.2019.103646

[54] Garry White and Marcos Sivitanides. 2005. Cognitive Differences Between Procedural Programming and Object
Oriented Programming. Information Technology and Management 6, 4 (01 Oct 2005), 333-350. https://doi.org/10.1007/
$10799-005-3899-2

[55] Zehui Zhan, Luyao He, Yao Tong, Xinya Liang, Shihao Guo, and Xixin Lan. 2022. The effectiveness of gamification
in programming education: Evidence from a meta-analysis. Computers and Education: Artificial Intelligence 3 (2022),
100096. https://doi.org/10.1016/j.caeai.2022.100096

A THE DIFFERENT LEVELS OF PYRATES APPLICATION

range(6):

Jump ()

(c) Level 3: the height of each box stacks is random, the messages in the bottles indicate
their height.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

https://doi.org/10.1145/3089799
https://doi.org/10.1016/j.compedu.2019.103646
https://doi.org/10.1007/s10799-005-3899-2
https://doi.org/10.1007/s10799-005-3899-2
https://doi.org/10.1016/j.caeai.2022.100096

12:24 Matthieu Branthome

aYaIay araNINY araIay

(d) Level 4: the location of the chest and the key are random, the messages in the bottles
indicate the path to follow.

1 | walk()
2 | jump_high()

Jump()

jump_high()

walk()

range(2,9):

(g) Level 7: different sets of coconuts appear on both sides, the otherpirate must never
be reached.

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

Design and Evaluation of the Pyrates Serious Game 12:25

(h) Level 8: the strength of the barrel, the number of pots and the location of the chest
are random.

Fig. 12. The different levels of Pyrates application: maps and winning procedures.

Received 28 June 2023; revised 31 October 2023; accepted 30 November 2023

ACM Trans. Comput. Educ., Vol. 24, No. 1, Article 12. Publication date: February 2024.

	Abstract
	1 Introduction
	2 State-of-the-art
	2.1 Block-to-text transition
	2.2 Existing applications

	3 Design of the Pyrates application
	3.1 Game levels
	3.2 Editing environment

	4 Methodology
	5 Results and discussion
	5.1 Levels evaluation
	5.2 Editing environment evaluation
	5.3 Overall game design evaluation

	6 Conclusion and perspectives
	Acknowledgments
	References
	A The different levels of Pyrates application

