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Abstract—For the design of advanced microwave and antenna
components, efficient and accurate electromagnetic methods are
required. In this work, we present a technique to fast sim-
ulate mirror- and glide-symmetric periodic structures. More
concretely, a novel Green’s function is proposed which allows
to reduce the computational domain to one half of the unit
cell. Full dispersion diagrams are computed for metallic glide-
and mirror-symmetric structures with three stages of mesh
refinement. The results converge with the meshing and agree
well with conventional eigenmode analyses.

Index Terms—Glide symmetry, integral equations, dispersion
diagram, periodic structures, metamaterials.

I. INTRODUCTION

Recently, a renewed interest in higher symmetries, and
especially glide symmeries, has raised in the microwave
community [1], [2]. One of the most interesting features of
glide symmetries is their capacity to increase the bandwidth
of operation. A periodic structure is considered to be glide-
symmetric if it is invariant with respect to a translation by half
a period and mirroring [3], [4]. In glide-symmetric structures,
the first stopband is closed thus reducing dispersion and
increasing the operational bandwidth of the structure. This
property has been successfully applied to in lenses [5], [6]. In
addition, glide symmetries are able to increase the bandwidth
of the stopband in metallic holey structures. This property has
been applied for the design of filters [7], and to reduce leakage
in interconnections [8], [9].

To the authors’ knowledge, the available commercial solvers
are unable to calculate attenuation in the stopband or in-
clude metallic losses in the computation. To remedy this, an
ad hoc method called multi-modal transfer matrix method
(MMTMM) [10] was recently proposed. This is a hybrid
method where the coupling between different port modes
placed at the edges of the unit cell is obtained by a full wave
solver. Then, the dispersion diagram can be computed through
a post-processing procedure. The approach can be used to
obtain attenuation in stopbands and complex modes of lossy
unit cells. Alternatively, mode matching has been proposed
in [11]. In this technique, fields are expanded into modes
which couple in such a way that boundary conditions are
satisfied at the discontinuities. This technique is numerically
very efficient, especially if the modes of the structure can be

found analytically, but it is more difficult to implement when
the structure geometry is complex.

In this paper, we present an alternative modelling approach
based on solving the electric field integral equation with
method of moments. We extend the work presented in [12],
[13] by introducing a novel Green’s function which allows
us to only compute interactions in half of the unit cell
by exploiting the symmetry of the structure. The proposed
approach can compute dispersion diagrams and attenuation of
rectangular and hexagonal unit cells and can be extended to
include lossy metals.

II. METHOD OF MOMENTS FORMULATION

The surfaces in the structure are described with a perfect
electric conductor. Thus, the relationship between scattered
field and incident field is:

−Ei
tan(r) = Es

tan = −jωA−∇Φ, (1)

where the scattered field is further split into vector and scalar
potentials. These can be computed by integration over the
scatterer S:

A =

∫
S

J(r′)G(r, r′) dS′ (2)

Φ = − 1

jωε

∫
S

∇′ · J(r′)G(r, r′) dS′, (3)

where ε is the permittivity, ω is the angular frequency, J(r′) is
the surface current density which is unknown and G(r, r′) is
a Green’s function. The unprimed and primed vectors r and r′

are the observation and the source points. As the structure is
infinitely periodic, the computational domain can be restricted
to a single unit cell if a periodic Green’s function is defined.
For fully metallic structures, the free-space periodic Green’s
function (FSPGF) [14] is used to allow for efficient simulation
of a single unit cell. The FSPGF is a doubly infinite sum of
free-space Green’s function where the sources radiate with
different phases depending on transverse wave vector kt00.
For closed structures we can interpret kt00 as the wave vector
of the mode in the bounded structure. The FSPGF is then
given by:

G(r, r′) =

∞∑
m=−∞

∞∑
n=−∞

Gmn, (4)



where

Gmn = e−jkt00·ρmn
e−jkRmn

4πRmn
. (5)

Here, ρmn = ms1+ns2 is the distance vector from the origin
to the point at m,n in the lattice, s1 and s2 are the lattice
periodicities, and Rmn =

√
(z − z′)2 + |ρ− ρ′ − ρmn|2 is

the distance from the source point at m,n to the observation
point. As an extension of (4), we introduce a Green’s function
designed to more efficiently model structures with either
mirror or glide symmetry. In both cases, the wave propagates
between two parallel plates which are symmetric with respect
to a mirror in z and in the case of glide symmetry a translation
of

ρg = 0.5s1 + 0.5s2 (6)

in x and y is added. The Green’s function is constructed
by adding together two FSPGF, a real Green’s function and
an image Green’s function, into a higher-symmetric periodic
Green’s function (HSPGF):

G(r, r′) =

∞∑
m=−∞

∞∑
n=−∞

Gmn ± e−jkt00·ρgGmn,t, (7)

where Gmn is taken from (5), ρg = 0 for the mirror symmetry,
and Gmn,t is obtained by replacing

Rmn → Rmn,t =
√
(z + z′)2 + |ρ− ρ′ − ρmn − ρg|2 (8)

into (5). Depending on whether the fields are mirrored by
perfect electric conductor or perfect magnetic conductor, the
values in (7) are subtracted or summed. Similarly to the
FSPGF, the equation presented in (7) suffers from extremely
slow convergence. By splitting the sum into spatial and spec-
tral parts [15], [16], we can achieve a Gaussian convergence
by setting the value of the splitting parameter to

E =

√
π

A
, (9)

where A is the area of the unit cell. However, when the size
of the unit cell is comparable to the wavelength, the value of
the splitting parameter must be adjusted to ensure numerical
stability at the cost of slower convergence [17]. The Ewald’s
method, along with the procedure for proper selection of the
splitting parameter E, is done separately for both series of
Gmn and Gmn,t.

In order to obtain a system of equations we employ a
procedure known as method of moments [18]. The surface
S is first discretized with a triangular mesh and the current in
the expressions for potentials (2) and (3) is expanded into

J(r) =

N∑
n=1

InΛn(r), (10)

where Λn(r) are RWG basis functions [19] and In are the
coefficients of the surface current density to be obtained. Note
that when the mirroring operation is done, it is necessary
to change the sign of the z component of Λn. Furthermore,
additional triangles are placed at the edge of the unit cell to

ensure current continuity [12], [13]. Then, the Galerkin testing
procedure is used to obtain a system of equations:

ZI = V, (11)

where Z is the impedance matrix, I is a vector of current
coefficients In, and V is a zero vector as no external excitation
is needed for modes in the structure to exist. The elements in
the impedance matrix Z are computed by

Zmn = jωLmn +
1

jω
Smn, (12)

where

Lmn = µ

∫
S

dSΛn(r) ·
∫
S

dS′Λn(r
′)G(r, r′) (13)

and

Smn =
1

ε

∫
S

dS∇ ·Λn(r)

∫
S

dS′∇′ ·Λn(r
′)G(r, r′). (14)

Equations (13) and (14) require a careful treatment of the
integrals, as they are singular when m = n. In this work, we
use a singularity cancellation scheme for singular and near-
singular elements to ensure an accurate computation [20].

The obtained system of equations can be solved by finding
the value of parameter kt00 such that the determinant of the
matrix Z is exactly zero:

det(Z(kt00)) = 0. (15)

In practice, this condition is never exactly obtained due to
finite precision of the elements in Z. Thus, we must find all
values of kt00 for which the determinant of the matrix is at a
local minimum. As the determinant is very small, it is usually
not representable in a 64-bit floating point number. Instead,
the logarithm of the determinant is computed and minimized.

III. SIMULATION RESULTS

For testing, we choose to analyze a rectangular hole struc-
ture, as shown in Fig. 1 and represented in the insets of
Fig. 2 for the mirror-symmetric case and in Fig. 3 for the
glide-symmetric case. However, since HSPGF is used, only
the bottom half of the structure is meshed at varius stages
of refinement, as shown in Fig. 1. The geometric parameters
of the unit cell are indicated in Tab. I. This geometry was
chosen as an initial test as it can be perfectly described with
flat mesh elements. Since the unit cells are both symmetric in
x and y axes and additionally with respect to a 90◦ rotation,
the irreducible Brillouin zone is Γ-X-M-Γ. Thus, the full
dispersion diagram can be obtained by varying the phase shifts
φx,y over the unit cells

φx = kt00 · x̂px , φy = kt00 · ŷpy (16)

based on which region of the irreducible Brillouin zone we
want to compute:

• Γ-X: φx ∈ (0, π), φy = 0
• X-M: φx = π, φy ∈ (0, π)
• M-Γ: φx ∈ (π, 0), φy = φx



The results for mirror- and glide-symmetric structures are
plotted in Fig. 2 and in Fig. 3. In both cases, the results agree
well with the CST Studio Suite®’s eigenvalue solver (CST ES)
and converge with mesh refinement. Furthermore, the accuracy
of the simulation can be observed to experience only mild
degradation, even when sizes of the largest triangles in the
mesh are comparable to a fifth of wavelength.

Fig. 1. Refining of the mesh. The largest triangle lengths at 60 GHz are
λ/3.5 (left), λ/7 (top right), λ/14 (bottom right), with λ the wavelength.

TABLE I
GEOMETRIC PARAMETERS FOR THE UNIT AND THE VALUES USED FOR THE

SIMULATIONS IN FIGS. 2 AND 3.

Property Parameter Value [mm]
period (in x and y) p 4

hole width w 3
hole depth h 1.8

gap g 0.5

Γ X

M

Fig. 2. Dispersion diagram for the mirror-symmetric structure. The dimen-
sions are indicated in Tab. I. The irreducible Brillouin zone and the unit cell
are depicted in the insets.

IV. CONCLUSION AND FUTURE WORK

We have presented a modelling procedure for accurate com-
putation of dispersion diagrams of mirror-and glide-symmetric

Γ X

M

Fig. 3. Dispersion diagram for the glide-symmetric structure. The dimensions
are indicated in Tab. I. The irreducible Brillouin zone and the unit cell are
depicted in the insets.

structures. The mesh is shown to be converging and the results
have a good agreement with the reference. The developed
technique can be used to study non-canonical shapes of unit
cells, for hexagonal unit cells and to obtain attenuation in the
stopband.

In the future, we plan to further test and verify the code
for hexagonal unit cells and attenuation in the stopband.
Furthermore, we wish to further accelerate the method by
parallelization of filling the impedance matrix elements and ef-
ficiently interpolating the Green’s function as proposed in [21].
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