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Geometric preconditioner for indirect shooting and
application to hybrid vehicle

Olivier Cots∗ Rémy Dutto†∗‡§ Sophie Jan‡ Serge Laporte‡

July 9, 2024

Abstract

In this article, we are interested in the hybrid electric vehicle torque split and gear shift
problem, which can be formulated as a classical Lagrange optimal control problem with fixed
initial condition. The Pontryagin maximum principle gives necessary optimality conditions
adjoining to the state a covector called costate. Thus, the optimal state trajectory has to be
found among the projections of the lifted trajectories, called Pontryagin extremals, given by
the maximum principle. The indirect simple shooting method aims to compute Pontryagin
extremals reducing the resolution to the research of the initial costate. Classically, a Newton-
like solver is used to compute zeros of the so-called shooting equations. The main drawback of
this method is its sensitivity to the initial guess. Indeed, a good one needs to be given to make
the Newton solver converge, which is not an easy task in practice. We propose a preconditioning
method of the shooting function based on a geometrical interpretation of the costate, in relation
with the reachable set of the extended system and the underlying symplectic structure. We
numerically show that this method reduces the number of iterations of our solver. Remarkably,
in our experiments, it is better to use the preconditioner than a clever initial guess for the
Newton solver.

Keyworks. Pontryagin maximum principle, Indirect shooting, Geometric preconditioner, Mathieu
transformation, Costate interpretation, Hybrid electric vehicle.

1 Introduction
In this article, we consider the Hybrid Electric Vehicle (HEV) torque split and gear shift problem,
where the goal is to determine the optimal torque split between the Internal Combustion Engine
(ICE) and the Electric Motor (EM) which minimizes the fuel consumption, the initial and final
State Of Charge (SOC) of the battery being fixed. This kind of applications is well studied in
the literature, see [6, 8] for instance. The model we consider comes from the Vitesco Technologies
company, it is nonlinear and contains tabulated data used to model complex functions as torque
losses for instance. In this paper we do not explicit this model that we rather consider as a black-box.
We refer to [4] for its more detailed but not complete presentation. This model requires data as the
requested torque at each time: for the experiments, we consider the Worldwide harmonized Light
vehicles Test Cycle (WLTC), which is one of the most used cycle for fuel consumption and pollutant
emission evaluations. Motivated by a new method based on a bilevel decomposition of the optimal
control problem and presented in [4], we consider only the first 100 seconds of the cycle.
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This problem can be formulated as a classical Lagrange optimal control problem with simple
limit conditions. The Pontryagin maximum principle gives necessary optimality conditions lifting
the optimal trajectory to the cotangent space and leads (under some hypotheses) to the resolution
of a two-points boundary value problem (TPBVP). The most classical method to solve a boundary
value problem is the indirect simple shooting, whose goal is to find a zero of the simple shooting
function, the variable of the shooting function being the initial costate of the lifted trajectory. This
resolution can be done with a Newton-like solver. We present in Figure 1 a state-control trajectory
obtained by shooting for the problem we consider.
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Figure 1: Optimal control (Gear and ICE torque) and state trajectory (SOC), with the initial and
final state of charge fixed at 50%.

A drawback of the indirect simple shooting method is that a good initial guess needs to be provided
to make the solver converge. This is not trivial in practice. To overcome this sensitivity issue, some
methods have been developed such as indirect multiple shooting for instance (see [2]).

In this article, we propose a new method to reduce the sensitivity and so to improve the con-
vergence of the Newton-like solver. This method is applied to the HEV torque split and gear shift
problem to evaluate its efficiency. These are the two main contributions of this paper. More pre-
cisely, the method is a geometric preconditioner of the shooting function, and it is constructed using
the Mathieu transformation applied to a change of variable of the extended state. This change of
variable is constructed based on a geometrical interpretation of the costate and corresponds in our
case to the affine transformation of an ellipse to a circle.

The article is organized as follows. The optimal control problem is formulated in Section 2. The
maximum principle and the indirect simple shooting are recalled in Section 3. The construction of
the proposed geometrical preconditioner of the shooting function is presented in Section 4, and the
results are shown in Section 5. Section 6 concludes the article.
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2 Optimal control problem
We consider the HEV torque split and gear shift problem described in details in [4]. This problem
can be written into the following Lagrange optimal control problem:

(OCP)



min
x,u

∫ tf

t0

f0
(
t, x(t), u(t)

)
dt,

s.t. ẋ(t) = f
(
t, x(t), u(t)

)
t ∈ [t0, tf ] a.e.,

u(t) ∈ U(t), t ∈ [t0, tf ],

x(t0) = x0, x(tf ) = xf ,

where the goal is to find the optimal state-control pair1 (x, u) ∈ AC([t0, tf ],R) × L∞([t0, tf ],R2).
The state x is the State Of Charge SOC, and the control u = (Gear, TqICE) is the Gear and ICE
torque pair. The two functions f0 and f , which respectively correspond to the instantaneous fuel
consumption of the ICE and the SOC deviation, are supposed to be of class C 1. The control domain
U(t) ⊂ R2 is a non-empty set for all t ∈ [t0, tf ] and corresponds to the physic limitations (discrete
gear, ICE and EM rotation speed. . . ). The initial x0 and final xf states are fixed, as well as the
initial t0 and final tf times. This optimal control problem is non-autonomous (due to the time
dependency of the functions f0 and f) because the requested wheel torque and rotation speed are
obtained with the cycle (and some information of our HEV).

To transform the problem from Lagrange to Mayer form, we define the extended state x̃ = (x0, x)
where x0 corresponds to the cost trajectory:

˙̃x(t) = f̃
(
t, x̃(t), u(t)

)
, with f̃(t, x̃, u) =

(
f0(t, x, u), f(t, x, u)

)
the extended system. The initial extended state is set to x̃0 = (0, x0). In order to recover the cost x0

and the state x from an extended state x̃ = (x0, x), we define the canonical x-space projection and
x0-space projection respectively by

πx(x̃) = x and πx0(x̃) = x0.

The final state condition becomes πx

(
x̃(tf )

)
− xf = 0. From now on, we drop the ˜ on variables

to simplify the notations, keeping in mind that x(t) ∈ R2 stands for
(
x0(t), x(t)

)
∈ R2 and f for

(f0, f).
For any control law u, we define the mapping u 7→ x(u) as the solution at time tf of the Cauchy

problem
ẋ(t) = f(t, x(t), u(t)

)
, t ∈ [t0, tf ] a.e., x(t0) = x0.

This permits us to define the admissible control set U as the set of commands u ∈ L∞([t0, tf ],R2)
such that for all t ∈ [t0, tf ], u(t) ∈ U(t), and such that x(u) is well-defined. The reachable set is
then given by

A = x(U).

Figure 2 shows the reachable set A associated to (OCP). It is a non-empty closed convex set
and we assume that xf ∈ πx(A). In this frame, there exists a solution for Problem (OCP) and a
necessary optimality condition for a pair (x, u) is that x(tf ) ∈ ∂A, the boundary of A.

1AC([t0, tf ],Rn) and L∞([t0, tf ],Rn) correspond respectively to the set of absolutely continuous functions and the
set of essentially bounded functions, defined on [t0, tf ] and valued in Rn.
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Figure 2: Reachable set A at time tf , with x0 = (0, 0.5). The three black points correspond to corner
points. The red (resp. green) line corresponds to ∂A when the cost is maximal (resp. minimal).

3 Necessary optimality conditions

3.1 Pontryagin Maximum Principle
According to the Pontryagin Maximum Principle (see [3, 9]), if the pair (x, u) is a solution of (OCP),
then there exists a nontrivial costate trajectory p ∈ AC([t0, tf ],R2), πp0

(
p(t0)

)
≤ 0, such that the

pair (x, p) with the control u, for almost every t ∈ [t0, tf ], follow the pseudo-Hamiltonian dynamics:

ẋ(t) = ∇ph
(
t, x(t), p(t), u(t)

)
,

ṗ(t) = −∇xh
(
t, x(t), p(t), u(t)

)
,

(1)

and satisfy the maximization condition:

h
(
t, x(t), p(t), u(t)

)
= max

w∈U(t)
h
(
t, x(t), p(t), w

)
, (2)

where h(t, x, p, u) =
(
p
∣∣ f(t, x, u)) and where for all vector p̃ = (p0, p) ∈ R2, πp0(p̃) = p0 represents

the p0-space projection and πp(p̃) = p represents the p-space projection. We remark that the costate
associated to the cost is constant since f does not depend on the cost. Hence, we can define
πp0(p) = πp0(p(t0)) for such a costate.

An extremal is defined as a couple (z, u), with z = (x, p), such that the state x ∈ AC([t0, tf ],R2),
the costate p ∈ AC([t0, tf ],R2) is not trivial and πp0(p) ≤ 0, the command u ∈ L∞([t0, tf ],R2)
satisfies the constraint u(t) ∈ U(t) and such that (x, p, u) satisfies (1) and (2). A BC-extremal is an
extremal that satisfies the boundary conditions x(t0) = x0 and πx

(
x(tf )

)
= xf . Finally, an extremal

is said to be normal if πp0(p) < 0 and abnormal if πp0(p) = 0.
For the sake of simplicity, we consider that for any extremal (z̄, ū) the maximized pseudo-

Hamiltonian provides a true Hamiltonian Ht(z) = maxw∈U(t) h(t, x, p, w) well-defined and smooth
(which means at least C 1), for almost all t ∈ [t0, tf ] and for all z in a neighborhood of z̄(t). Under
this assumption, the point (z, u) is an extremal of (OCP) if and only if p ̸= 0, πp0(p) ≤ 0 and for
almost every t ∈ [t0, tf ]

ż(t) =
#»

H
(
t, z(t)

)
,

where H(t, z) = Ht(z) and
#»

H(t, z) =
(
∇pH(t, z),−∇xH(t, z)

)
is the Hamiltonian vector field.
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3.2 Numerical methods
Under the previous assumption, that is in the Hamiltonian frame, the necessary optimality conditions
given by the maximum principle lead to the resolution of the following two-points boundary value
problem:

(TPBVP)

{
ż(t) =

#»

H
(
t, z(t)

)
, t ∈ [t0, tf ] a.e.,

x(t0) = x0, πx(x(tf )) = xf .

The classical numerical method to solve (TPBVP) is the indirect shooting method. The goal is to
find a point where the shooting function S : R− × R→ R defined by

S(p) = πx

(
exp #»

H(x0, p)
)
,

is equal to xf , where we define πx(x, p) = πx(x) and where exp #»
H(z0) corresponds to the solution at

time tf of the following Cauchy problem:

ż(t) =
#»

H
(
t, z(t)

)
, t ∈ [t0, tf ] a.e. z(t0) = z0.

Let us remark that the extremals are homogeneous in p: it can easily be shown that for all k > 0,
if (x, p, u) is a BC-extremal of (OCP) then (x, kp, u) is also a BC-extremal of (OCP). Numerically,
it is better to get rid of this homogeneity. There exist two main normalizations for this purpose:

• in the first normalization, the extremals associated to a solution of (OCP) are supposed to be
normal (p0 < 0). Under this assumption, we can fix πp0(p) = −1. The associated shooting
function Sp : R→ R is thus defined by Sp(p) = S(−1, p).

• the second choice is to fix ||p||2 = 1. In this case, if we denote by α the angle of p, the associated
shooting function Sα : [−π, 0]→ R is therefore defined by Sα(α) = S

(
sin(α), cos(α)

)
.

The two corresponding shooting functions are shown in Figure 3.
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Figure 3: Shooting functions Sp and Sα. More precisely, in the upper figure, the green (with the
bottom black) curve corresponds to the shooting function Sp and the red (with the upper black) one
to the shooting function S(1, p) (for which the goal would be to maximize the fuel consumption).
In the same way, in the bottom figure, the shooting function corresponds to the restriction to the
interval [−π, 0].

For both normalizations, a zero of S(·) − xf may be found using a classical Newton-like solver,
which needs a good initial guess. Therefore, the bounds of the interesting part (the green one) of
these shooting functions need to be determined. From Figure 3, we can notice that the range of
interesting values (the green part) for Sα is extremely small.
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4 Geometrical preconditioner of the shooting function
Paraphrasing Y. Saad, see [10, Chapter 9], preconditioning is simply a means of transforming the
original system (not linear in our case) into one that is likely to be easier to solve with an iterative
solver. Preconditioning aims to improve both efficiency and robustness of iterative techniques.
The first contribution of this article is thus to present a preconditioner that allows to reduce the
sensitivity of the shooting function and permits to reduce the number of iterations of the Newton-like
solver. This preconditioner is based on a geometric interpretation of the costate and the Mathieu
transformation.

4.1 Geometric interpretation of the costate
The proof of the maximum principle is constructive, see [1] for instance. It is based upon the so-
called needle variations introduced by Boltyanskii which generate a cone Kx, that can be seen as a
local convex approximation of the set A at the point x. The extremals are then constructed by a
backward integration of the Hamiltonian flow from (x, p), where p is taken in the non-empty polar
cone K◦

x of Kx. By construction, the cone Kx is included in the Bouligand tangent cone to A at x
denoted T (A, x). Consequently, the normal cone to A at x, which is by definition the polar cone of
T (A, x), is included in the cone K◦

x, that is N(A, x) ⊂ K◦
x. Hence, by construction, to any non-zero

covector of N(A, x(tf )) is associated a BC-extremal. Let remark that since A is a non-empty close
convex set, the normal cone N(A, x(tf )) is not reduced to {0}.

In Figure 4, the orientations of the final costates p(tf ) are represented by the blue cones, anchored
at the black, red and green points.

Figure 4: Similar to Figure 2. The blue
cones correspond to the computed fi-
nal costates orientations. Numerically,
they happen to be the normal cones
N(A, x(tf )) for different final states.
Notice that the axes do not share the
same scale and this explains why orthog-
onality is not obvious at first sight.
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Figure 5: Final state (left) and cost
(right) in a polar representation. The
angle corresponds to α and the radius
to the value of the state (left) and cost
(right).

It is easier now to understand the shape of the shooting function Sα(·). Indeed, the normal cones
associated to the corner points (in black) represent 99.84% of the angles while the interesting angles
(associated to the green part) correspond only to 0.066%. In Figure 5 we give a neat representation
of the relations between the angle of the covector and respectively the state and the cost at tf .
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4.2 Symplectic manifold and Mathieu transformation
Let see R2 = M as a smooth manifold. The cotangent bundle T ∗M ≃ R2 × R2 and the canonical
symplectic form ω make a symplectic manifold (T ∗M,ω). A Hamiltonian H is a smooth function
defined on T ∗M . If we denote by (x, p) the canonical Darboux coordinates on T ∗M , the closed non-
degenerate differential 2-form ω is obtained from the Liouville 1-form λ = p dx by ω = −dλ = dx∧dp.
In other words, for all u, v ∈ Tz(T

∗M) ≃ R2 × R2, we have

ω(u, v) =
(
u
∣∣ Jv), where J =

(
0 IR2

−IR2 0

)
is the classical symplectic matrix. The Hamiltonian vector field

#»

H is defined by ω(
#»

H, ·) = dH, which
leads to the Hamiltonian dynamics

#»

H = J∇H.
We are now interested in transformations that preserve the symplectic form, and hence also the

Hamiltonian dynamics. These transformations are called symplectomorphisms and correspond to
the set of diffeomorphisms Φ: T ∗M → T ∗M such that Φ∗ω = ω. In particular, a diffeomorphism
ϕ : M →M is lifted into a symplectomorphism by the so-called Mathieu transformation

Φ(x, p) =
(
ϕ(x), J−⊤

ϕ (x) p
)
, (3)

where Jϕ(x) is the Jacobian matrix of ϕ at x and J−⊤
ϕ (x) denotes the transpose of its inverse. For

more details about symplectic manifolds and the Mathieu transformation, we refer to [1] or [7].

4.3 Preconditioner construction
Let us consider a diffeomorphism ϕ : R2 → R2. The associated symplectomorphism Φ defined by (3)
transforms z = (x, p) into w = (y, q):

z =

(
x
p

)
Φ−−−−→←−−−−

Φ−1

(
y
q

)
= w.

The relations between these variables is thus:

y = ϕ(x), q = J−⊤
ϕ (x) p,

x = ϕ−1(y), p = J⊤
ϕ (x) q.

The main idea is to create the shooting function S̄ : R2 → R that takes the new system of coordinates
q as input and returns the state in the original one: S̄(q) = S

(
J⊤
ϕ (x)q

)
. In the same way as presented

in Section 3.2, the homogeneity is removed by considering the two following shooting functions
Sq : R→ R and Sβ : [−π, 0]× R defined by Sq(q) = S̄(−1, q) and Sβ(β) = S̄ (sin(β), cos(β)) .

It remains now to define the diffeomorphism ϕ. For that purpose, we propose to construct an
ellipse E that best fits ∂A and a diffeomorphism ϕ that transforms this ellipse into the unit circle.
This transformation is affine and can therefore be written as ϕ(x) = Ax+b. We denote by B = ϕ(A)
the reachable set in the new coordinate system. The proposed transformation is shown in Figure 6.

Since ϕ is an affine transformation, the associated costate transformation is linear (and does not
depend on x) p = A⊤q. Moreover, thanks to the preservation of the Hamiltonian dynamics by the
Mathieu transformation, the geometric interpretation of the costate described in Section 4.1 remains
true in the new coordinates.

The shooting function, the reachable set and its polar representation in the new coordinate
system are presented in Figures 7, 8 and 9, to be compared to Figures 3, 4 and 5 respectively. As we
can see on Figures 8 and 9, the normal cones at the corner points are smaller in the new coordinates.
They represent only 15.89% (compare to 99.84% for the original coordinate system) of the angles
while the interesting angles (associated to the green part) now represent 42.34% after transformation
(compare to 0.066%). Hence, the part of the interesting input set of the shooting function Sβ is
much bigger than the one for Sα. This is visible on Figure 7.
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Figure 6: Transformation of the boundary ∂A of the reachable set in the original coordinate sys-
tem (6a) into ∂B in the new one (6b). The fitted ellipse E (dashed blue line on the upper plot) is
transformed into the unit circle (dashed blue line on the lower plot).
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Figure 7: Shooting functions Sq and Sβ . To be compared to Figure 3.

5 Results
The second contribution of this article is to compare the convergence of the solver with and without
preconditioning on the considered HEV torque split and gear shift problem, for different initial states
x0 and final targets xf . The convergence of Sp and Sβ are compared in two different cases.

In the first case, we suppose that we have no relevant information on what could be a good
initial guess, and hence it is arbitrarily fixed to p = 500 for Sp and to β = −π/2 for Sβ for all the
experiments.

The second case is based on [4]. We assume that we have a differentiable approximation
C(x0, xf ) of the value function V (x0, xf ). This value function corresponds to the optimal cost
for Problem (OCP) with the initial x0 and final xf state of charge. A method to create such an
approximation of the value function is described in [5]. In this context, it has been shown that
pinit(x0, xf ) = ∇x0

C(x0, xf ) is a good initial guess for Sp, and reduces the number of iterations of
the solver.
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Figure 8: Reachable set in the new co-
ordinate system, where y = (y0, y1). To
be compared to Figure 4. Notice that
the axes now share the same scale.
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Figure 9: Polar representation in the
new coordinate system. To be compared
to Figure 5. The black dashed lines cor-
respond to the bounds of the normal
cones anchored at the corner points.

The initial costate
(
−1, pinit(x0, xf )

)
is then transported into the q-space and converted in an angle

βinit by

βinit(x0, xf ) = atan2

(
A−⊤

(
−1

∇x0
C(x0, xf )

))
. (4)

Figure 10 shows the evolution of the average error with respect to the number of iterations of
the solver. The remarkable fact is that the convergence for the function Sβ without the good initial
guess (plain orange curve) is faster than the one for the function Sp with the good initial guess
(dashed blue curve). Obviously, the best result is clearly obtained when both preconditioner and
good initial guess are used (dashed orange curve).
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Figure 10: Evolution of the error |S(·)− xf | with respect to the number of iterations of the solver.
The blue curves correspond to the shooting function S = Sp and the orange one to S = Sβ . The
plain lines correspond to a fixed initialization (p = 500 and β = −π/2), and the dashed ones to the
improved initialization (p = pinit(x0, xf ) and β = βinit(x0, xf )). The dotted black line corresponds
to the industrial tolerance (10−3).
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6 Conclusion
In this paper, we propose a new preconditioning method of the shooting function associated to
the HEV’s torque split and gear shift optimal control problem. This method is based on two
main considerations: the geometric interpretation of the costate and the Mathieu transformation.
We propose a simple affine application, that transforms an ellipse to the unit circle, and we show
that the associated preconditioned shooting function Sβ converges faster than the classical one Sp.
Moreover, the best result is obtained when a good initial guess (Equation 4) is provided to Sβ : a
solution is obtained in only two iterations in average.

In a future work, it could be interesting to search for other transformations, possibly non-linear,
to reduce even more the number of iterations of the solver. As mentioned previously, the considered
cycle is the WLTC on the first 100 seconds. This transformation may be extended to other cycles.
It could also be really interesting to study this transformation on general optimal control problems
(maybe in higher dimension), and identify which of their properties make it possible to use (or not)
this preconditioner.
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