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Abstract—The Soil Moisture and Ocean Salinity (SMOS)
satellite [3] produces images of L-band brightness temperature
using interferometry. The brightness temperatures that gave
rise to a set of observed visibilities are inferred by solving an
inverse problem based on the Van Cittert-Zernike theorem. The
images are generated from visibilities one correlation period
at a time, even though a given patch of Earth’s surface may
be visible to the satellite for 100 consecutive periods. The
recovered brightness temperature images are noisy and, due to
the antenna array’s undersampling of the u-v frequency plane,
aliased. A simultaneous inversion of multiple snapshots (call
it “satellite-rotation synthesis” or a “global inversion”) could
take advantage of these multiple looks to improve resolution,
field of view, and noise level, but appeared prohibitively
expensive computationally and ill-posed: due to directional
emissivity, many brightness temperatures must be recovered
for each pixel. However, this directional emissivity can be
sparsely modeled; accordingly, for satellites like SMOS, the
observation model becomes shift-invariant across an orbital
segment when expressed in geodetic coordinates relative to
the trace. The observation model performs a convolution on
the image of parameters (uniform in geodetic coordinates)
governing observed brightness as a function of satellite position,
and we can use the “Fourier transform trick” introduced in
[6], to enable a global inversion.

For a future L-band mission, such as the proposed L-Band
Interferometer for Fluxes and Interfaces in the Environment
(LIIFE) [7], [11], we present a realistic global inversion of
the observation model across the orbital trace, which simulta-
neously unfolds and denoises the aliased snapshots. By using
sparse spline models of the brightness temperature parameters,
we can ensure this inversion is accurate and stable, even
with a realistic simulation that accounts for the difficulty
of modeling the Van Cittert-Zernike theorem (expressed in
satellite-centered direction-cosine coordinates) using geodetic
coordinates.

Aliasing is a fact of life for satellite missions, whose bud-
getary and engineering constraints limit sensor deployment.
In interferometric microwave radiometry, aliasing takes the
form of a characteristic folding pattern in the recovered
image. The folded zone of SMOS images, situated in the
extremities, is determined by the regular spacing of antennas
on the MIRAS instrument. This folding complicates the
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formulation of snapshot fusion or joint inversions, for the
brightness temperatures recovered outside the alias-free field
of view (i.e., outside the hexagonal shape on the left of
Fig. 1) are superpositions of brightness temperatures at
several pixels. These corrupted images are hard to fuse.

In remote-sensing applications, inversions are typically
accomplished by left-multiplying the visibilities vector by
a (regularized or constrained) pseudo-inverse of the matrix,
often called the G matrix in the SMOS literature, that
expresses, for each visibility, the discretized Van Cittert-
Zernike integral over the direction cosines at which the
brightness temperature image is recovered. This makes
efficient algorithms for performing multisnapshot inversions
difficult to construct: the number of rows of the G matrix
(visibilities) and columns (brightness temperature pixels1)
both scale linearly with the number of snapshots. Simulta-
neously inverting two snapshots takes eight times as long.

In [6], we introduced a “Fourier transform trick” that
enables efficient multisnapshot inversion. By taking the
discrete Fourier transform of each visibility along the
snapshot index, we can invert an image of brightness
temperature parameters orbital frequency by orbital fre-
quency. While single-snapshot imaging involves inverting a
Nvisibilities ×Npixels G matrix and a traditional multisnapshot
inversion O(Nsnapshots · Nvisibilities) × O(Nsnapshots · Npixels),
here we have Nsnapshots matrices to invert, each of size
Nvisibilities ×O(

√
Npixels). These skinnier, better-conditioned

matrices denoise and unfold the images across the orbit.
This article incorporates splines in the computation of

the observation model integrals, so that the global inversion
may be performed with realistic acquisition geometry and
satellite elevation. We use a parametric representation of
brightness temperatures, validated using level 1C SMOS
data in Section II, to account for directional emissivity.
Section III explains the global inversion technique and

1In a single-snapshot inversion, the pixels are specified in direction-
cosine coordinates, and then mapped to an equal-area grid. For a multi-
snapshot inversion, this is not possible, as the across-track direction cosine
ξ of a pixel also varies as the satellite moves along-track. To get around
this, the image we recover is uniform in geodetic coordinates, but we use
splines to evaluate the Van Cittert-Zernike integral.



Fig. 1: SMOS mission level 1C data. Left: a typical bright-
ness temperature image (H polarization). The hexagonal
alias-free portion of the image in direction cosines is
mapped to an equal-area grid. Right: different (folding-
free) measurements of brightness temperature (in H and V
polarization) of a single land pixel. Both images from the file
SM_OPER_MIR_SCLF1C_20210808T105109_20210808T114423_724_001_1.DBL

demonstrates it on realistic scenarios involving SMOS and
proposed LIIFE arrays.

I. SMOS BRIGHTNESS TEMPERATURES
The SMOS instrument produces images of sky bright-

ness in the L-band using its onboard passive instrument
Microwave Imaging Radiometer for Aperture Synthesis
(MIRAS) [3], which consists of a two-dimensional, Y-
shaped antenna array. The instrument-plane vector spacing
in wavelengths (uk,l, vk,l) between each antenna pair (k, l)
is called a baseline. From each direction of arrival (ξ, η) of
a planar wave from a far-field source, this baseline deter-
mines the relative lag from the source to any antenna pair
whose relative spacing is the baseline. By the Van Cittert-
Zernike theorem, cross-correlations Vk,l between antenna
feeds, called visibilities, are Fourier samples of the intensity
of the source [5], given here as brightness temperature:

Vk,l =

∫∫
ξ2+η2≤1

T (ξ, η)Ak(ξ, η)Al(ξ, η)e
−2πi(uk,lξ+vk,lη)

dS(ξ, η), (1)

where the solid-angle differential is given by dS(ξ, η) =
dξdη√

1−ξ2−η2
. Here we made the simplifying assumption that

the fringe-washing function is roughly unity and spatial
decorrelation effects negligible, though this need not be the
case. If we extend the domain of T so that it assumes 0
K at non-directions (i.e., pairs of ξ-η coordinates for which
ξ2 + η2 > 1), (1) can be seen as a 2D Fourier transform.

Antennas spaced regularly along a Y frame induce (with
redundancy) a hexagonal grid of baselines—not (only) be-
cause their convex hull is hexagonal, but because they lie
on a hexagonal Bravais lattice (see Fig. 2). After taking
its convex hull and rearranging, this hexagonal shape on a
hexagonal lattice can be seen as a parallelogram (see Fig. 3),
for which a DFT can be defined [4], [10] using a reciprocal
parallelogram on a hexagonal lattice in the ξ-η direction-
cosine plane. As a compromise between hardware cost and
radiometric performance and alias-free field of view (which
determines swath width and thus revisit time), antennas are
spaced at 0.875 wavelengths—beyond the Nyquist rate of
1√
3

, so that folding artifacts contaminate the periphery of
the image. To minimize the impact of this distortion, the
satellite flies with a 32◦ tilt with respect to nadir.2

2This tilt increases the contribution of the Sun, Moon, and sky
background to the visibilities, necessitating corrections to the visibilities
that remove these effects in order to ensure the invariance the global
inversion approach requires.

Fig. 2: Left: antenna locations (in wavelengths of the center
frequency) of the antennas on SMOS frame. Right: induced
baselines, falling on hexagonal lattice points.

Fig. 3: After rearrangement, the hexagonal convex hull
of the SMOS baselines in the u-v plane (left) forms a
parallelogram on a hexagonal lattice (center). Its DFT dual
grid (right), in the ξ-η plane, extends beyond the unit circle.

During each correlator integrator time, visibilities are
computed by correlating the feeds of each antenna pair.
A brightness temperature image is reconstructed using a
pseudo-inverse of the matrix G that discretizes the Van
Cittert-Zernike-theorem-based observation model (1), map-
ping vectorized temperature images T to the vector V of vis-
ibilities measured during a correlation period. This pseudo-
inverse G† can be the Moore-Penrose pseudoinverse, which
is the solution of minimum Euclidean norm among all
solutions to the norm-approximation problem

T̂ = argmin
T∈RNpixel

||GT − V ||2RNvisibilities , (2)

perhaps after setting the smallest singular values to 0;
a Tikhonov-regularized version thereof; or a bandlimited
version thereof with a linear equality constraint that ensures
the discrete Fourier transform of the recovered temperature
image is annihilated at unobserved frequencies [1].

The inversion recovers brightness temperature images on
a 196x196 hexagonal grid in the direction cosine plane,
which are in turn mapped, based on the satellite’s position
and orientation, to points on an Equal Area Scalable Earth
(EASE) grid [2] of Earth’s surface. A level 1C brightness
temperature snapshot is presented in Fig. 1. Due to aliasing
and mapping geometry, only 5532 EASE cells of the 38416
hexagonal grid points are assigned valid temperatures.3

Error in discretizing (1) on the 196×196 direction-cosine
grid is substantial, though lower than the noise level (see
Fig. 4), leaving space for reparameterization of the integral.

33558 of the 38416 direction cosine hexagonal cells lie beyond the unit
circle, and thus do not correspond to directions. The simulated brightness
temperature along these pseudodirections is 0 K. The remaining 29326 cells
excluded from the brightness temperature image correspond to directions
that do not intersect with Earth, or those that do, but are corrupted by
aliasing.



Fig. 4: Left: the discretization error of each visibility com-
puted on a representative scene with a 196×196 hexagonal
grid, when a 1400×1400 quadrature grid is taken as the true
value. Right: the evolution of the visibility computed of a
particular (long) baseline, computed on a realistic scene with
measured antenna patterns, as the grid densifies by multiples
of 4 sample points, from 128× 128 to 1400× 1400.

II. PARAMETRIC REPRESENTATIONS OF SMOS
BRIGHTNESS TEMPERATURES

A given EASE grid cell may correspond to a recovered
brightness temperature in the hexagonal direction-cosine
grid dozens of times over an orbit, with dozens of Kelvin
of variation. These temperatures can, in principle, vary
in both of the direction-cosine coordinates at which the
pixel is viewed by the satellite, but depend mostly on
incidence angle, much like a Fresnel model [9], [12], [13].
When plotted against the incidence angle, these consecutive
brightness temperature measurements form curves that can
be approximated as the sum of a mean profile, a uniform
shift in brightness temperature across all incidence angles,
and an incidence-angle-dependent shift. Fig. 5 gives the
mean profile and first four principal components of a PCA
model fit to all pixels with fully observed data (i.e., with
data in all 12 incidence-angle bins) in 8 days of L3TB data
computed during the sixth reprocessing campaign. For the
H polarization, the mean profile is concave and decreasing,
which is characteristic of a Fresnel model,4 but brighter rela-
tive to Earth’s surface temperature, due to surface roughness
and multiple interfaces. The curves share a similar form but
differ in mean value and decay extent; nearly all inter-pixel
variance in the L3TB data set is explained by two com-
ponents: a uniform shift in the brightness of the pixel and
an adjustment governing the scale of its decay in incidence
angle. The same analysis is performed using noisier level
1C data, after binning. The computed principal components
are similar, but exhibit processing-chain artifacts (such as
inexact corrections to the visibilities due to acquisition
conditions). In both cases, the principal components and
decline in explained-variance ratios were nearly identical
for models trained on the V-polarization data. Moreover,
the explained-variance ratio beyond principal component 2 is
less than 10−10, signaling a high degree of regularity in these
curves. Letting R be the radius of a spherical approximation
of Earth, h the satellite’s altitude, and umax = sin−1

(
R

R+h

)
the incidence angle at the horizon, the first four components
of this Karhunen-Loève basis of L2 ([0, umax]) nearly agree
with the first four eigenfunctions of the Laplacian matrix

4With respect to the plane of incidence, this is the s polarization.

Fig. 5: Top: the mean profile (left) and first four principal
components (right), trained on L3TB data. The mean profile
is compared to a Fresnel model with a refractive index
fit empirically. (Earth’s surface is not a uniform planar
interface and has no such global refractive index.) Bottom:
the R12-normalized first four principal components of PCA
fit to level 1C data (left) and R1200-normalized first four
eigenvectors of the chain-graph discretization of a manifold
of incidence angles (right).

Fig. 6: SMOS level 1C brightness temperature curve, as well
as the best fit using 1-4 Laplace-Beltrami eigenfunctions of a
discrete approximation to the compact manifold of observed
incidence angles. Projection onto the first principal compo-
nents of a PCA model fit to L3TB data (after subtracting
the mean profile) yields similar results.

of the chain-graph approximation to [0, umax], with nodes
placed uniformly in the direction-cosine plane. That these
two orthonormal bases of L2([0, umax]) nearly agree suggests
the SMOS brightness temperature curves are quite smooth,
since the Laplace-Beltrami eigenfunctions are sorted by
Dirichlet energy (which equals the eigenvalue). Even grant-
ing that future L-band missions will produce images of
higher resolution using a different instrument, reconstructed
brightness temperature curves are unlikely to need more than
2-4 parameters to adequately model each pixel’s change in
apparent brightness as a function of the satellite’s position.
Indeed, the residuals between example brightness tempera-
ture curves and a weighted sum of just the first two basis
functions or Laplace-Beltrami eigenfunctions can profitably
be thought of as uncorrelated noise (see Fig. 7).

III. SATELLITE-ROTATION SYNTHESIS IN GEODETIC
COORDINATES RELATIVE TO THE TRACE

We model Earth’s surface as a sphere of radius R and
the satellite’s orbit as a great circle, at altitude h. Thanks



Fig. 7: Residual (left) between observed level 1C brightness
temperatures of a pixel at various incidence angles and the
parameterized brightness temperature curve. A Kolmogorov-
Smirnov test was performed to see whether the “bag of
residuals” can be profitably modeled as normal distribution
of mean 0 and standard deviation equal to the sample
standard deviation. In five level 1C data files, the null
hypothesis was never rejected at confidence level p = 0.1.
Similarly, Ljung-Box tests find no significant autocorrelation
in the residual (right) at any tested lag, from 1 incidence
angle bin up to half the number of incidence angle bins.

to a yaw correction, the boresight center and subsatellite
point have the same relative displacement each snapshot. In
these simulations, we assume the boresight center is at nadir
and thus intersects Earth at the subsatellite point, though
this is not necessary. The trace, that is, the curve drawn
by the subsatellite point, is therefore a closed geodesic.
This approximation has subpixel accuracy locally. Without
loss of generality, we treat the trace as the Equator and
adopt the geodetic coordinate system of [6], with xa being
the across-track geodetic distance and ya the along-track
geodetic coordinate relative to a fixed meridian.

As the subsatellite point traces a closed geodesic on the
spherical surface S, in the xa-ya plane R2, the set of points
visible to the satellite forms the band B = [−d, d]×R, where
d = cos−1

(
R

R+h

)
is the horizon in geodetic coordinates.

We can choose the reference meridian so that, in geodetic
coordinates, the subsatellite point is at (0, ys(t)) in the tth
snapshot, where ys(t) = ∆yat, and ∆ya is the geodetic
distance the subsatellite point moves in a correlation period.

Letting r(t) be the satellite’s position with respect
to an inertial frame whose origin is the center of
a nonrotating, spherical Earth, the direction of motion
ySAT (t) = r′(t)/||r′(t)||, negative angular momentum vec-
tor xSAT (t) = −(r(t)× r′(t))/||r(t)× r′(t)||, and anticen-
tripetal vector zSAT (t) = y(t)×x(t) = −r(t)/||r(t)|| define
a right-handed, satellite-centered coordinate system, from
which spherical coordinates (ρ, θ, ϕ) and direction cosines
(ξ, η) are defined. The subsatellite point SSP, satellite SAT,
and visible patch of Earth OBS define a triangle that, along
with its projection on the equatorial plane (shaded in Fig. 8),
defines conversions between the two systems:

ρ = (R + h)
√

1 − ξ2 − η2 −
√

R2 − (ξ2 + η2)(R + h)2 (law of cosines);

ya = sin
−1

(
ρ(ξ, η)η√

R2 − ρ2(ξ, η)ξ2

)
; xa = sin

−1

(−ρ(ξ, η)ξ

R

)
.

A. The observation model in semi-geodetic coordinates
Accurately discretizing the observation model in the xa-

ya plane requires many sample points and results in un-
wieldy (> 1 TB) and badly conditioned G matrices. To
preserve shift-invariance, so that each visibility signal across
an orbit is computed via a convolution of the image of
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Fig. 8: Left: visual aid for conversions between satellite-
centered direction cosines (ξ, η) and spherical coordinates
(ρ, ϕ, θ) and geodetic coordinates relative to the trace
(xa, ya). Right: simulated trajectory of satellite superim-
posed on image of brightness temperature parameters α (the
RGB values of NASA’s Blue Marble image).

Fig. 9: Left: the simulated data, uniform in xa-ya coordi-
nates. Right: the same, plotted in the ξ-ya plane. The Rie-
mann sum grid is uniform in ξ-ya coordinates, negotiating
the tradeoff between geodetic coordinates (which offer inter-
pretability and invariance) and satellite-centered direction-
cosine coordinate (which offer smaller Riemann sum grids
for accurate visibilities and more stable inversions).

brightness temperature parameters and fixed function, we
discretize (1) in ξ-ya coordinates:

Vk,l =

∫∫
Sd(ys)

T (ξ, ya)Ak(ξ, ya)Al(ξ, ya)e
−2πi(uk,lξ+vk,lη)

dS(ξ, ya),

where the η-coordinate of a pixel with given ξ-coordinate
and ya coordinate (relative to the subsatellite point ys is

η(ξ, ya) = sin(ya)

√
R2

ρ2(ξ, ya)
− ξ2;

the visible disk Sd(ys) is the set of coordinates (ξ, ya) ∈
[−1, 1]× [ys − d, ys + d] that satisfies

|ξ| ≤
R

(R + h) cos(ya − ys)

√
(R + h)2 cos2(ya − ys) − R2

(R + h)2 − R2
; (3)

and the solid-angle differential can be found using

dS(ξ, ya) =
∂ya

∂η
dS(ξ, η) =

∂ya

∂η

dξ dη√
1 − ξ2 − η2

; where

∂ya

∂η
=

ρ + η ∂ρ
∂η

R2

R2−ρ2ξ2√
R2 − ρ2(ξ2 + η2)

;
∂ρ

∂η
=

(R+h)ρη√
1−ξ2−η2

(R + h)
√

1 − ξ2 − η2 − ρ
.

Due to sampling irregularity5 and the multitude of ξ values
at which a geodetic pixel is observed over an orbit, we use
splines to express the Riemann sum in ξ-ya coordinates.

5As Earth bends away from the satellite toward the horizon, an interval
in the ξ coordinate coincides with a larger patch of surface; see Fig. 9.



Fig. 10: Top: parameter image α reproduced from colum-
nwise spline fits. Bottom: error image between the first
parameter and its columnwise spline fit resampled on the
planisphere (mean absolute error: 0.020, for the red channel
varying between 0 and 1). In both images, the 20 knots—
an unusually small number, for illustration purposes—are
indicated in blue on the right.

B. Parametric Representation of Brightness Temperature
We define our parametric representation of brightness

temperature as follows:

T (ξ, ya) = Tmean(ξ, ya) +

C−1∑
c=0

Ic(ξ, ya)σcTc(ξ, ya), (4)

where the basis functions Tc sparsely capture each point’s
contribution to the irradiance profile and are, along with
the (unknown) brightness temperature parameters (the Ic
images), expressed in ξ-ya coordinates. In practice, they
depend on (ξ, ya) only via the incidence angle u:

u(ξ, ya) = cos
−1

(
(R + h)2 + ρ(ξ, ya)

2 − R2

2(R + h)ρ(ξ, ya)

)
.

C. Spline Model on the Parametric Representation

We begin with an M × N × C equirectangular image
I (e.g., Fig. (8), right) of the C brightness temperature
parameters. As this image is uniform in geodetic coordi-
nates, we fit a spline model to each fixed-ya column, using
knots spaced so that an equal number of Riemann sum grid
points (green exes in Fig. 11), over a snapshot, reposes
between each knot; visibility accuracy is not sensitive to the
periphery. We denote the L×N ×C image of L-parameter
columnwise spline models as α. An equirectangular image
resampled from such a model is sharp in the center and
blurry near the horizon, as in Fig. 10. Natural cubic splines,
B-splines, and Gaussian processes all work, with well-
selected knots to ensure accurate visibilities in simulation
and stable matrices in inversion. Since the splines are
columnwise, adjacent columns may exhibit disagreement.6

Given any spline model, let Bj be the matrix that maps
the spline weights for any brightness temperature parameter
channel c ∈ Z/CZ to the evaluated brightness temperature
parameters in the column with offset index j relative to the
subsatellite point. In the tth snapshot, the subsatellite point
is in column t, and the brightness temperature parameters of
column t + j at the column’s Riemann sum sample points
(green exes in the jth column of Fig. 11) are Bjα[:, t+j, c].

6Two-dimensional splines, such as thin-plate splines [14], can in princi-
ple be used, as can the Riesz representers of the bounded, linear observation
functionals (1), though the latter involves intractable computations to form
the G matrices and the former poses (perhaps surmountable) conditioning
issues.

Fig. 11: Left: Riemann sum grid (green), uniform in ξ-ya
coordinates, along with brightness temperature parameters,
uniform in geodetic coordinates relative to the trace. The
20 spline knots given in blue. Right: spline fits to the (a
priori, unknown) brightness temperature parameters in a
given column.

D. The Fourier Transform Trick
Let Sd

ξ,η be the intersection of the disk Sd(ys) and the
odd-parity Riemann sum grid

[
−
⌊

R
(R+h)∆ξ

⌋
, −

⌊
R

(R+h)∆ξ

⌋
+ ∆ξ,

. . . ,

⌊
R

(R+h)∆ξ

⌋ ]
× ∆ya

[⌊
−Ny

2

⌋
, . . . ,

⌊
Ny
2

⌋]
.We define

Q
c
k,l(ξ, ya) = σcTc(ξ, ya) · Ak(ξ, ya)Al(ξ, ya)e

−2πi
(
uk,lξ+vk,lη(ξ,ya)

)
·

∂ya(ξ, ya)

∂η

/√
1 − ξ2 − η(ξ, ya)2∆ξ∆ya.

The term Qc
k,l(ξ, ya) does not depend on what is being

observed; it merely describes how the instrument is ob-
serving. It does not depend on the satellite’s position and
changes only when the antenna patterns are re-estimated
during calibration. This allows us to write our observation
model as a convolution between our image of brightness
temperature parameters and this function. The terms that
constitute the product Qc

k, l(ξ, ya) can either be computed
directly on the choice of locations of sample points (as is
the case of the Jacobian or the complex exponential) or
interpolated onto these points (as is the case with the well-
sampled, smooth antenna radiation patterns Al).7

We subtract out the contribution of the mean temperature
profile Tmean to the visibilities; the integral giving the
centered visibility Ṽk,l associated with antennas k and l is
discretized as follows:

Ṽk,l(ys) =
∑

(ξ,ya)∈Sd
ξ,ya

C−1∑
c=0

Q
c
k,l(ξ, ya)Ic(ξ, ya + ys). (5)

where Ic(ξ, ya + ys) gives the (spline-modeled) weight on
the cth brightness temperature basis function for the patch
of area ∆ξ∆ya centered at (ξ, ya + ys). Taking the partial
Fourier transform along the snapshot number t, letting N j

x
give the number of Riemann sum sample points in column j
relative to the subsatellite point, whose sorted and vectorized

7For long baselines, the complex exponential term varies the fastest,
and for more accuracy (or a smaller Riemann sum grid), we replace it and
the Jacobian with their average value over the Riemann sum cell of area
∆ξ∆ya, minding the singularity in the Jacobian at the horizon.



ξ coordinates are ξj , we write

̂̃
Vk,l(ω) =

T−1∑
t=0

Ṽk, l(ys(t))e
−2πitω/T

=

C−1∑
c=0

⌊
Ny
2

⌋
∑

j=−
⌊
Ny
2

⌋
N

j
x−1∑

n=0

Q
c
k, l(ξj [n], j∆ya)·

Bj

(
T−1∑
t=0

α [n, j + t (mod N), c] e
−2πitω/T

)
︸ ︷︷ ︸(

Bj α̂partial[:,ω,c]
)
[n]e2πijω/T

=

C−1∑
c=0

⌊
Ny
2

⌋
∑

j=−
⌊
Ny
2

⌋Qc
k, l(j)

T
Bj α̂partial[:, ω, c]e

2πijω/T
,

where Qc
k, l(j)

T is the length-N j
x row vector(

Qc
k, l(ξj [0], j∆ya), . . . , Qc

k, l

(
xj

[
Nj

x − 1
]
, j∆ya

) )
. In the

second line of the derivation above, the function

α̂partial
def
=

T−1∑
t=0

α [n, j + t (mod N), c] e
−2πitω/T

is the discrete Fourier transform of channel c of the image
α along row n if N = T . That this does not hold in general
is the source of apparitions at the boundary of an image.

Our unknowns are now the spline basis function weights
α[:, :, c], after taking the T -point DFT. We can recover it one
frequency ω ∈ Z/TZ at a time. For each ω ∈ Z/NZ, let
I(ω) be the length-LC column vector formed by stacking
the unknown spline weights on the brightness temperature
parameters at frequency ω

I(ω) =
(
α̂partial[:, ω, 0]

T
, . . . , α̂partial[:, ω, C − 1]

T
)T

(6)

and let V (ω) be the length-Nbaseline vector of transformed
visibilities at orbital frequency ω:

V (ω) =

(̂̃
V 0,0(ω), . . . ,

̂̃
V 0,Nant−1(ω), . . . ,

̂̃
V Nant−1,0(ω), . . . ,

̂̃
V Nant−1,Nant−1(ω)

)T

.

The kNant+ lth row of the Nbaseline×LC matrix G(ω)
can be written
G(ω)[kNant + l, :] = ⌊Ny/2⌋∑

j=−⌊Ny/2⌋

(
Q

0
k, l(j)

T
Bj

)
, . . . ,

⌊Ny/2⌋∑
j=−⌊Ny/2⌋

(
Q

C−1
k, l (j)

T
Bj

)
We have partitioned row kNant + l of G, of length

CL, into C length-L vectors; the cth such vector is∑⌊Ny/2
⌋

j=−
⌊
Ny/2

⌋ (Qc
k, l(j)

T Bj

). The spline weights on the brightness
temperature parameters at frequency ω can be found by
solving V (ω) = G(ω)T (ω) for each ω ∈ Z/TZ. G
matrices have a clear singular-value cutoff, but the singular
value computed on the nonzero singular values can vary
over a single global inversion from 102 to 107, depending
on the orbital frequency ω. Without noise, constructions
using a fixed Tikhonov parameter have slight imperfections,
as in Fig. 12. We add i.i.d. complex Gaussian noise with
variance V 2

DC

2Bτ to visibilities simulated8 using (5) and invert

8VDC is the mean noise-free visibility associated with the baseline
(0, 0), and the bandwidth-correlation time product Bτ is 2e7 for SMOS.
The noise associated with the baseline (−u,−v) is the complex conjugate
of the noise associated with (u, v).

Fig. 12: Left: error in brightness temperature sampled at
22.5◦ incidence angle of the brightness spline weights recov-
ered from SMOS visibilities, resampled on the planisphere,
using Tikhonov parameter 10−3 for each orbital frequency
ω. Right: error between simulated and reconstructed bright-
ness temperatures at three distinct incidence angles, using
SMOS instrument. The swath is wider and error in K sub-
stantially lower than single-snapshot inversions performed
on a hexagonal grid.

them to recover an image of spline weights, from which
the brightness temperature parameters can be reconstructed.
The brightness temperature error image of a sample orbit is
given in Fig. 12 (right).

IV. CONCLUSION

The multisnapshot inversion technique takes advantage
of the coordinate invariance and measurement redundancy
to unfold and denoise interferometric images, improving
satellite swath width and is well-suited to interferometric
processing of irregular antenna arrays [8]. While enabling
new orbits and instrument designs, the technique imposes
the constraint of look-invariance.
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