
HAL Id: hal-04473794
https://hal.science/hal-04473794v3

Preprint submitted on 14 Feb 2025

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Phi-FEM-FNO: a new approach to train a Neural
Operator as a fast PDE solver for variable geometries

Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian
Vuillemot

To cite this version:
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian Vuillemot. Phi-FEM-FNO:
a new approach to train a Neural Operator as a fast PDE solver for variable geometries. 2024.
�hal-04473794v3�

https://hal.science/hal-04473794v3
https://hal.archives-ouvertes.fr

φ-FEM-FNO: a new approach to train a Neural Operator as a
fast PDE solver for variable geometries

Michel Duprez∗, Vanessa Lleras†, Alexei Lozinski‡,
Vincent Vigon§ and Killian Vuillemot¶

February 14, 2025

Abstract

In this paper, we propose a way to solve partial differential equations (PDEs) by
combining machine learning techniques and the finite element method called φ-FEM. For
that, we use the Fourier Neural Operator (FNO), a learning mapping operator. The
purpose of this paper is to provide numerical evidence to show the effectiveness of this
technique. We will focus here on the resolution of two equations: the Poisson-Dirichlet
equation and the non-linear elasticity equations. The key idea of our method is to address
the challenging scenario of varying domains, where each problem is solved on a different
geometry. The considered domains are defined by level-set functions due to the use of
the φ-FEM approach. We will first recall the idea of φ-FEM and of the Fourier Neural
Operator. Then, we will explain how to combine these two methods. We will finally
illustrate the efficiency of this combination with some numerical results on three test
cases. In addition, in the last test case, we propose a new numerical scheme for hyperelastic
materials following the φ-FEM paradigm.

1 Introduction

Finite Element Method (FEM) is one of the most popular approaches to approximate the
solutions of Partial Differential Equations (PDE) arising in engineering, physics, biology, and
other applications (see e.g. [11]). It is important to solve them quickly (sometimes in real-
time) with good accuracy. There have been numerous attempts to achieve this using machine
learning-based (ML-based) methods. They can be split into two groups :

∗MIMESIS team, Inria de l’Université de Lorraine, MLMS team, Université de Strasbourg, 2 Rue Marie
Hamm, 67000 Strasbourg, France, michel.duprez@inria.fr

†IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France,
vanessa.lleras@umontpellier.fr

‡Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de
Gray, 25030 Besançon Cedex, France, alexei.lozinski@univ-fcomte.fr

§Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS,
Tonus team, Inria de l’Université de Lorraine, 7 rue René Descartes, 67000 Strasbourg, France,
vincent.vigon@math.unistra.fr

¶IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France. MIMESIS
team, Inria de l’Université de Lorraine, MLMS team, Université de Strasbourg, 2 Rue Marie Hamm, 67000
Strasbourg, France, killian.vuillemot@umontpellier.fr

1

1. Physics-inspired approaches: ML-based methods can be used as an approximation
ansatz and approximate the solution of PDEs by minimizing the residual or the asso-
ciated energy of the PDEs and the distance to some observations, without ever using
traditional approximation by FEM or similar. The most popular member of this class of
methods is PINNs [26], but one can also cite Deep Galerkin [30] and Deep Ritz methods
[32]. Despite the initial promise, there is now abundant numerical evidence that these
methods do not outperform the classical FEM in terms of solution time and accuracy,
see for instance a recent study in [12]. It seems that these methods cannot thus be
considered as good candidates for real-time realistic computations.

2. Classical solver as database: Classical FEM (or similar) is used to obtain a
"database" of solutions for a collection of representative parameter values that are used
to train a neural network to learn the mapping linking the parameters to the solution.
This step is computationally expensive and is done in the preparatory stage (offline).
The expected outcome is that one can use the trained network to obtain the solution for
any given parameters almost instantaneously (online). Examples include U-Net (see e.g.
[27]), Graph Neural Operator [17], DeepOnet [20] and Fourier Neural Operator (FNO)
[18, 16].

In our article, we focus on FNO as the method that showed a superior cost-accuracy tradeoff
over the others (see [18]). The issue with FNO is that it needs Cartesian grids to perform
discrete fast Fourier transform, and the initial implementation was thus limited to problems
posed on rectangular boxes. There have been attempts to adapt FNO to general geometries,
cf. Geo-FNO [16] where the irregular input domain is deformed into a uniform latent mesh on
which the FFT can be applied. In our article, we propose an alternative approach: we treat
the geometry, given by the level-set function, as one of the inputs of the network alongside the
other data of the problem while using a Cartesian grid without deforming it. Incidentally, this
viewpoint of treating the geometry (i.e. thanks to the level-set function) together with the
data to construct an approximation using a simple (ex. Cartesian) grid was also the starting
point to develop φ-FEM. It is thus natural to combine φ-FEM (at the offline training stage)
with FNO. As a bonus, this combination, which we will call φ-FEM-FNO, allows us to avoid
the interpolation errors from a body-fitted mesh to a Cartesian one, which would be inevitable
if we used a traditional FEM for training.

This paper aims to illustrate the efficiency of our approach φ-FEM-FNO, in the case of
complex and varying domains for the Poisson-Dirichlet problem:{

−∆u = f , in Ω ,

u = g , on Γ ,
(1)

and for the non-linear elasticity equations:
−divP (u) = f , in Ω ,

u = uD , on ΓD ,

P (u) · n = t , on ΓN ,

(2)

where Ω is a connected domain of Rd, d = 1, 2, 3 and Γ its boundary, with Γ = ΓD ∪ ΓN and
ΓD ∩ ΓN = ∅ in (2).

Our contributions are the following:

2

• We propose a new machine learning approach called φ-FEM-FNO which takes as input
the parameters of the PDE and the geometry of the domain encoded by a level-set func-
tion φ, and gives as output an approximation of the solution of the PDE. In comparison
to [16], we do not need a transformation between the geometry and the unit square. Our
approach is thus simpler and results in a lighter and smaller operator to train.

• In addition, we highlight in Fig. 9 that our approach has a better accuracy/CPU-time
ratio than Geo-FNO, which has been compared with other techniques in [16], and than
an FNO trained using standard FEM solutions interpolated on cartesian grids or a UNet
trained using the same approach as for φ-FEM-FNO.

• We introduce and validate a new φ-FEM scheme to solve hyperelastic problems on
complex geometries and propose a combination of this scheme with the φ-FEM-FNO
approach.

• We also introduce an ML-based method constructed using a classical finite element solver
and a level-set description of the domains. This method we called Standard-FEM-FNO
is very simple but also provides quite interesting results compared to our main method
φ-FEM-FNO.

The paper will be divided into three parts. In Section 2, we will first describe the two
methods used: φ-FEM and FNO. We will then present in Section 3 our idea to combine them.
For readability, these two sections will be devoted to the treatment of the Poisson-Dirichlet
equation (1). Finally, we will illustrate the efficiency of the method with numerical results in
Section 4 and give some conclusions in Section 5. In the end, we detail in the first appendix
the standardization operator, and we present the optimizer algorithm in the second appendix.

2 Description of the methods

In the rest of the manuscript, Ω is a domain of dimension 2 included in [0, 1]2. Moreover, we
focus in this section on the resolution of the equation (1).

2.1 Overview

Our idea is to build a neural network that will be an approximation of the operator mapping
the data f , g, and the geometry to the solution of (1). We want the output to be obtained
with good accuracy and a low computational time. The objective is to train this neural
network using synthetic data generated by a discrete solver of PDE. The neural network and
the discrete solver must be chosen to perform independently of each other, and must also be
compatible.

As a discrete solver, we choose φ-FEM [10] which is a finite element method with an
immersed boundary approach using a level-set function to describe the geometry of the domain.
The optimal convergence of φ-FEM has been previously proven theoretically and numerically
for the Poisson equation with Dirichlet boundary conditions [10], with Neumann boundary
conditions [7], for the Stokes problem [8] and for the Heat-Dirichlet equation [9]. Moreover,
in [5], the efficiency of the method compared to the continuous Lagrange FEM approach on
conformal meshes has been illustrated numerically on multiple examples in the case of linear
elasticity.

3

Notation Meaning

F
N

O

θ Set of trainable parameters
Gθ Operator mapping the input to the solutions
G† Ground truth operator mapping the solutions

F , F−1 Discrete Fourier and inverse Fourier transform
W Cl

θ Linear transformation applied on lower Fourier modes
Clθ Convolution layer
Blθ Linear transformations applied on the spatial domain

Pθ, Qθ Transformations between high dimension channel space and original space
N , N−1 Standardization and unstandardization operators

σ Non linear activation function

φ
-F

E
M

φ Level-set function defining the domain Ω and its boundary Γ
O Box [0, 1]2

Th φ-FEM computational mesh
T Γ
h Set of cells of Th cut by the boundary
FΓ
h Set of internal facets of T Γ

h

σD Stabilisation parameter

Table 1: Notations table.

As neural network, we have decided to use the Fourier Neural Operator (FNO), introduced
in [18] and [15]. The FNO relies on an iterative architecture proposed in [17]. An advantage
of FNO is that it takes a step size much bigger than is allowed in numerical methods. In the
case of the approximation of the PDE solution, the authors of [18] have illustrated that FNO
has better performance than the classical Reduced Basis Method (using a POD basis) [6], a
Fully Convolution Networks [33], an operator method using PCA as an autoencoder on both
the input and output data and interpolating the latent spaces with a neural network [3], the
original graph neural operator [17], the multipole graph neural operator [19], a neural operator
method based on the low-rank decomposition of a kernel similar to the unstacked DeepONet
proposed in [20]. They have also illustrated that FNO outperforms a ResNet (18 layers of 2-d
convolution with residual connections) [13], a U-Net [27] and TF-Net [31]. Furthermore, the
training of FNOs can be done on many PDEs with the same underlying architecture.

Moreover, these two methods are compatible since φ-FEM is a precise non-conforming
finite element method, that can be used on cartesian grids, as required by the FNO that will
be used.

In the next subsections, we will describe φ-FEM and FNO to solve the equation (1). We
introduce in Table 1 notations that will be used in the rest of the manuscript.

2.2 Description of φ-FEM

Let us first briefly describe the φ-FEM method introduced in [10] to solve (1). We will skip
many theoretical aspects but refer the reader to [10] for more details. We suppose that the
domain Ω is included in the box O = [0, 1]2 ⊂ R2 and is given by a level-set function φ such
that:

Ω := {φ < 0} and Γ := {φ = 0} ,

4

10
1

h

10
4

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

Std-FEM
-FEM
(h2)

Figure 1: Left: example of φ-FEM meshes. In red, the exact boundary Γ of an ellipse Ω,
in white T O

h , in gray T Γ
h and in blue, Th \ T Γ

h . Right: Convergence curves of φ-FEM and a
standard finite element method, to solve (1) for 5 combinations of domain, force, and boundary
conditions.

where Γ is the boundary of Ω.
Let T O

h be a triangular cartesian mesh of O = [0, 1]2 composed of nx−1 and ny−1 squares
divided into triangular cells in its width and its height, of sizes h. Denoting by φh the Lagrange
interpolation of φ on T O

h , we consider the submesh Th of T O
h , called the computational mesh,

composed of the cells of T O
h intersecting the domain {φh < 0}, i.e.

Th :=
{
T ∈ T O

h : T ∩ {φh < 0} ≠ ∅
}
.

We also introduce the submesh T Γ
h containing the cells cut by the approximate boundary

({φh = 0}), i.e.
T Γ
h := {T ∈ Th T ∩ {φh = 0} ≠ ∅} .

We denote by Ωh and ΩΓ
h the domains occupied by Th and T Γ

h , respectively, and by ∂Ωh the
boundary of Ωh (different from Γh = {φh = 0}). All the meshes are illustrated for a specific
domain in Fig. 1 (left). Finally, we need to introduce a set of facets containing all the internal
faces of the mesh T Γ

h , i.e., the faces of T Γ
h \ ∂Th. Referring to Fig. 1 (left), these faces are the

ones of the gray cells except the ones common to a gray cell and a white cell. We will denote
by FΓ

h this set, defined by

FΓ
h := {F (an internal facet of Th) such that ∃ T ∈ Th : T ∩ Γh ̸= ∅ and F ∈ ∂T} .

Let k ⩾ 1 be an integer. We define the finite element space

V
(k)
h := {vh ∈ H1(Ωh) vh|T ∈ Pk(T) ∀ T ∈ Th} .

We now introduce the considered φ-FEM formulation of system (1) (see [10]): Find wh ∈
V

(k)
h such that, for all sh ∈ V (k)

h , denoting uh = φhwh + gh and vh = φhsh,∫
Ωh

∇uh · ∇vh −
∫
∂Ωh

∂uh
∂n

vh +Gh(uh, vh) =

∫
Ωh

fhvh +Grhs
h (vh) ,

5

where gh, fh are some Lagrange interpolations of g and f , respectively,

Gh(u, v) = σDh
∑

E∈FΓ
h

∫
E
[∂nu] [∂nv] + σDh

2
∑
T∈T Γ

h

∫
T
∆u∆v ,

and

Grhs
h (v) = −σDh2

∑
T∈T Γ

h

∫
T
fh∆v .

The brackets in Gh stand for the jump over the facets of FΓ
h , ∂nu stands for the normal

derivative of u and σD > 0 is a h-independent parameter. Figure 1 (right) illustrates the
convergence of φ-FEM (measured in relative L2 norm) and a standard finite element method
in solving (1) for five combinations of domain Ω, force f , and boundary condition g. Both
methods exhibit the same order of convergence; however, the error of φ-FEM is significantly
smaller than the one of the classical method. This observation strongly supports the choice
of φ-FEM as the finite element solver.

2.3 The “ground truth” operator

In the rest of the manuscript, without specific mention, fh, gh, φh, uh and wh will represent the
matrices of Rnx×ny associated to these P1-functions composed for each index i = 0, . . . , nx−1,
j = 0, . . . , ny − 1, of the values of the evaluation or an extrapolation in V O

h of these functions
at the node of the mesh T O

h of coordinate (xi, yj), with xi := i/(nx − 1), yj := j/(ny − 1),
where

V O
h := {vh ∈ H1(O) vh|T ∈ Pk(T) ∀ T ∈ T O

h } .
In the tradition of FNO literature, the FNO will approximate an operator called the

“ground truth operator” which is denoted by G†. In our case, G† will be the operator mapping
the data fh, gh, and the geometry given by the level-set φh to the φ-FEM approximated
solution wh. More precisely, G† will be defined as follows:

G† : Rnx×ny×3 → Rnx×ny×1

(fh, φh, gh) 7→ wh ,
(3)

where wh is the φ-FEM solution associated to fh, gh and φh. Note that wh is simply extrapo-
lated by 0 outside Ωh, with no impact on the FNO since these 0 values are not seen in the loss
defined below. Hence, we do not necessarily need explicit expressions of f and g. In practice,
this extrapolation will be done by DOLFINx ([2, 29, 28, 1]).

2.4 Architecture of the FNO

We will now introduce a few essential points to understand the architecture of the FNO. We
refer the reader to [18, 15, 16] for detailed explanations on the FNO or [17] for more details
about neural operators.

The goal of the FNO is to construct a parametric mapping

Gθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, φh, gh) 7→ wθ ,

6

fh

ϕh

gh

wθ

Gθ

× +
ϕhwθ

1Ωh

uθ

ϕhwθ + gh

× uθ × 1Ωh

uθ|Ωh

Figure 2: Construction of a prediction of φ-FEM-FNO to solve (1).

that approximates the "ground truth" mapping G† (3). We predict the φ-FEM representa-
tion wh with wθ and uθ = φhwθ+gh will be an approximation of uh = φhwh+gh as described
in Figure 2. Here θ stands for the numerous parameters that we have to find by minimizing
the loss function.

Remark. The decision to predict wh instead of uh directly stems from the fact that multiplying
by φh ensures the exact imposition of boundary conditions. Predicting uh directly would
introduce errors at the domain boundaries and could necessitate the inclusion of a loss term
specifically targeting the solution’s boundary values. In Section 4, we will demonstrate the
impact of predicting wh versus uh in the first test case, and compare it to a scenario where
uh is predicted, with no loss modification.

2.4.1 The structure of the FNO

Layer sequence The mapping Gθ is composed of several sub-mappings, called layers

Gθ = N−1 ◦Qθ ◦ H4
θ ◦ H3

θ ◦ H2
θ ◦ H1

θ ◦ Pθ ◦N .

Each layer acts on three-dimensional tensors with the third dimension (the number of channels)
varying from one layer to another according to the following scheme:

Gθ : Rnx×ny×3 N−→ Rnx×ny×3 Pθ−→ Rnx×ny×nd
H1

θ−−→ Rnx×ny×nd
H2

θ−−→

. . .
H4

θ−−→ Rnx×ny×nd
Qθ−−→ Rnx×ny×1 N−1

−−−→ Rnx×ny×1 ,

where nd is a sufficiently large dimension. A graphic representation of Gθ is given in Fig. 3.
The transformations Pθ and Qθ are respectively an embedding to the high dimensional channel
space and a projection to the target dimension, both computed using a neural network (see
[18]). The principal components of FNO are the 4 Fourier layers Hℓ

θ having the same structure
presented below.

7

Normalisation N and N−1 To improve the performance of a neural network, it is known
that normalizing the inputs and outputs is almost mandatory (see [23] for example). So the
train data will be standardized channel by channel in the input and unstandardized in the
output thanks to the operator N and N−1, respectively. This step is explained in detail in
Appendix A.1.

Structure of the embedding Pθ and the projection Qθ The transformation Pθ is made
of one fully connected layer of size nd neurons acting on each node, i.e. for all i ∈ {1, ..., nx},
j ∈ {1, ..., ny} and k ∈ {1, ..., nd},

Pθ(X)ijk =
3∑

k′=1

WPθ
kk′Xijk′ +BPθ

k ,

with WPθ ∈ Mnd,3(R), BPθ ∈ Rnd some parameters. The transformation Qθ is made of
two fully connected layers of size nQ then 1 acting also on each node, i.e. Qθ = (Qθ,ijk)ijk
defined for all X = (Xijk)ijk by, for all i ∈ {1, ..., nx}, j ∈ {1, ..., ny},

Qθ(X)ij =

[nQ∑
k=1

W
Qθ,2

1k σ

(
nd∑

k′=1

W
Qθ,1

kk′ Xijk′ +B
Qθ,1

k

)]
+BQθ,2 ,

with WQθ,1 ∈ Mnd,nQ(R), BQθ,1 ∈ RnQ , WQθ,2 ∈ MnQ,1(R), BQθ,2 ∈ R some parameters
and σ is an activation function applied term by term. We choose the GELU (Gaussian Error
Linear Unit) function given by f(x) = xφ(x) with φ(x) = P (X ⩽ x) where X ∼ N (0, 1), as
in the original implementation of the FNO1 and of the Geo-FNO2.

Structure of Fourier layers Hℓ
θ A layer Hℓ

θ is made of two sub-layers organized as follows
(see [18]):

Hℓ
θ(X) = σ

(
Cℓθ(X) + Bℓθ(X)

)
,

where

• Cℓθ is a layer defined by

Cℓθ(X) = F−1
(
W Cℓ

θF(X)
)
∈ Rnx×ny×nd×nd ,

with W Cℓ
θ ∈ Cnx×ny×nd×nd some parameters and F , F−1 stand for the real Fast Fourier

Transform (RFFT) and its inverse: for all i ∈ {1, ..., nx}, j ∈ {1, ..., ny} and k ∈
{1, ..., nd},

F(X)ijk =
∑
i′j′

Xi′j′ke
2
√
−1π

(
ii′
nx

+ jj′
ny

)
,

and for Y ∈ Cnx×ny×nd

F−1(Y)ijk =
∑
i′j′

Yi′j′ke
−2

√
−1π

(
ii′
nx

+ jj′
ny

)
.

1https://github.com/neuraloperator/neuraloperator
2https://github.com/neuraloperator/Geo-FNO

8

• Bℓθ = (Bℓθ,ijk)ijk is the "bias-layer" defined for all X = (Xijk)ijk by, for all i ∈ {1, ..., nx},
j ∈ {1, ..., ny} and k ∈ {1, ..., nd},

Bℓθ(X)ijk =

nd∑
k′=1

W
Bℓ
θ

kk′Xijk′ +B
Bℓ
θ

k ,

with WBℓ
θ ∈Mnd

(R) and BBℓ
θ ∈ Rnd .

The coefficients of W · and B· are the trainable parameters, which have some constraints
given below.

Constraint on the parameters

• Symmetry: To obtain a real matrix Cℓθ(X), we impose to W Cℓ
θ the Hermitian symmetry,

i.e. W
Cℓ
θ

nx−i,ny−j,k = W
Cℓ
θ

i,j,k. In practice, since we use a specific implementation of the
FFT called RFFT (Real-FFT): the discrete Fourier coefficients are stored in arrays of size
nx × (ny/2 + 1) (integer division) and are automatically symmetrized when performing
the inverse transformation. Hence, there is no precaution to take for the matrix Ŵ in
practice. Simply it must be of size nx × (ny/2 + 1).

• Low pass filter: The solutions to our problem (1) are usually rather smooth. Hence,
when we perform the RFFT, the "very high" frequencies can be neglected. They simply
participate in the fact that the RFFT is a bijection. Typically, a good approximated
solution can be recovered, keeping only the m×m first "low" frequencies.

Remark (Number of parameters). An interesting aspect of the FNO is the reasonable number
of parameters to optimize. Indeed, since we truncate the high frequencies, for each Clθ the
number of parameters to optimize is less than nx× ny × nd× nd. In fact, the total number of
parameters nθ does not depend on the resolution and is given by

nθ =

Pθ : 3×nd+nd︷ ︸︸ ︷
4× nd + 4× (

Cl
θ : by truncation of
high frequencies︷ ︸︸ ︷
2× n2d ×m2 +

Bl
θ︷ ︸︸ ︷

n2d + nd)︸ ︷︷ ︸
Hl

θ

+

Qθ : nd×nQ+nQ+nQ×1+1︷ ︸︸ ︷
(nd + 2)× nQ + 1 .

In the following first test case, for the chosen hyperparameters this will represent 324577
parameters to optimize.
Remark. Once trained, FNOs can work with input data of arbitrary dimensions nx, ny. This
property of multi resolution is due to a special structure of FNO. In fact, FNO is presented
in [18, 15] as an approximation of mappings acting on infinite dimensional function spaces. It
is thus not surprising that its discretization can be done, in principle, on any mesh.

Border issues An issue of the RFFT applied to non-periodic functions is the Gibbs phe-
nomenon: some oscillations appear on the border. To erase them, we apply a padding tech-
nique: we extend the matrices, adding entries all around, before performing the convolution.
After the convolution, we restrict the matrix to its original shape to partially erase the oscil-
lations (see the PyTorch documentation3 for an example).

3https://pytorch.org/docs/stable/generated/torch.nn.ReflectionPad2d.html

9

ϕh

fh

gh

X

Gθ

N Pθ Fourier layer Qθ N−1 wθ

4 times

×

+ uθ

v

F W C
`
θ F−1

B`θ

+

ClθHl
θ

σ

Figure 3: The φ-FEM-FNO pipeline to solve (1). Illustration based on the representation of
[18]. The upper part represents the entire pipeline, and the lower part is a zoom on a Fourier
layer. The red circles correspond to the inputs provided by the user and the output returned
by our φ-FEM-FNO. We represent the inputs and outputs seen by the FNO in purple, where
X = (fh, φh, gh). In orange, Pθ and Qθ are two transformations parameterized by neural
networks. Moreover, F and F−1 are respectively the Fourier and inverse Fourier transforms.
In blue, σ is the activation function. Finally, black arrows correspond to steps inside our FNO,
and purple arrows to steps outside the FNO.

3 The proposed architecture

As previously said, the main objective of this paper is to present a novel approach that
combines two existing methods: φ-FEM and the Fourier Neural Operator (FNO). This method
aims to leverage the high precision of φ-FEM while utilizing the FNO’s ability to generate
nearly instantaneous predictions after training. Such a combination enables the approach to
be employed effectively in real-time simulations. An overview of the entire pipeline is provided
in Fig. 3, where the input data and the final output are highlighted in red.

By construction, a prediction of the FNO will be given on the same cartesian regular grid
of the inputs. Since we are interested in the solution only over Ωh, we need to define a loss
function acting only on the corresponding pixels. An example of data and truncated output
of our approach is represented in Fig. 6.

Loss function. Let Ndata be the size of a considered sample of data. We denote Utrue =
(untrue)n=0,...,Ndata where untrue = φn

hw
n
h+g

n
h , the ground truth solution and Uθ = (unθ)n=0,...,Ndata

with unθ = φn
hGθ(fnh , φn

h, g
n
h) + gnh = φn

hw
n
θ + gnh the output of φ-FEM-FNO.

The loss to be optimized is an approximation of the average H1 error, given by

10

Figure 4: In red, the real boundary of an example domain. In blue and gray, the set S0. In
gray, S1.

L (Utrue;Uθ) =
1

Ndata

Ndata∑
n=0

(E0(untrue;u
n
θ) + E1(untrue;u

n
θ)) , (4)

where

E0(untrue;u
n
θ) = ∥untrue − unθ ∥20,Sn

0
,

and

E1(untrue;u
n
θ) = ∥∇h

xu
n
true −∇h

xu
n
θ ∥20,Sn

1
+ ∥∇h

yu
n
true −∇h

yu
n
θ ∥20,Sn

1
,

where ∇h is the centered finite difference approximation of the gradient and S0 is the set of
pixels corresponding to the vertices of Ωh, and S1 is the set of pixels of S0 deprived of a layer
of pixels (constructed using the 8-th neighborhood, see Fig. 4).
Remark. In (4), we compute the loss with respect to untrue and not wn

true. This way of computing
the loss does not mean that our FNO will predict unθ . It only means that we will predict a
solution wθ such that, multiplied by input function φh and added to gh, the result will be
close to untrue. In the following test cases, we will illustrate numerically the difference between
using wtrue and utrue in the loss.

4 Numerical results

Let us now illustrate the efficiency of our technique by numerical test cases. We will first
solve the Poisson equation (1) considering the case of parametric domains, using varying
elliptic domains to illustrate the accuracy and the fastness of the method compared to five
other methods. Then, we will extend our study to more complex shapes and finally to the
resolution of a hyperelastic problem (2).

We will fix nd = 20 (number of neurons acting on each node), nQ = 128 (number of
neurons in the first layer of the projection Qθ), and m = 10 (the number of low frequencies
considered in the low pass filter). In the data produced by φ-FEM, the parameter σD is fixed
to 1 for the two first test cases.

11

Implementation details All the simulations were executed on a laptop with an Intel Core
i7-12700H CPU, 32Gb of memory, and an NVIDIA RTX A2000 GPU with 8Gb of memory. The
data were generated using the python finite element library DOLFINx ([2, 29, 28, 1]) and
the FNO is implemented4 using the Pytorch[25] library. Moreover, we will use an ADAM
optimizer with an initial learning rate α = 0.0005, β1 = 0.9, β2 = 0.999, and ε = 10−7 to
train the operator (see Appendix A.2 Algo. 1). During training, the learning rate is reduced
when the loss on the validation sample does not decrease over several epochs. The algorithm
of the training loop is presented in Appendix A.2 Algo. 2.

Evaluation metrics. To evaluate the performance of the FNO, we define two different
metrics, allowing us to compute the L2 relative errors:

• The first metric that will be used to compute the error between a FNO solution and a
ground truth solution, is given by

E1(utrue, uθ) :=

√
E0(utrue;uθ)

N0(utrue)
, (5)

where uθ = φhGθ(φh, fh, gh)+ gh and utrue = φhwh+ gh. Moreover, we denote L0(·) the
average value of this metric among a given dataset (train, validation, etc).

• The second metric will be used to compute the errors with respect to fine standard finite
element solutions uref and is defined by

E2(uref, uθ) :=
∥ΠΩrefuθ − uref∥0,Ωref

∥uref∥0,Ωref

=

√√√√∫Ωref
(ΠΩrefuθ − uref)2 dx∫

Ωref
u2ref dx

, (6)

where ΠΩref denotes an approximation of the L2-orthogonal projection on the reference
domain Ωref (fine conformed mesh of Ω).

4.1 The Poisson-Dirichlet equation on varying ellipses

Let us first consider the simple case of the Poisson equation (1) on elliptic domains given by
the level-set functions

φ(x0,y0,lx,ly ,θ)(x, y) = −1 +
((x− x0) cos(θ) + (y − y0) sin(θ))2

l2x

+
((x− x0) sin(θ)− (y − y0) cos(θ))2

l2y
, (7)

with
x0, y0 ∼ U([0.2, 0.8]) , lx, ly ∼ U([0.2, 0.45]) and θ ∼ U([0, π]) .

The equation (7) defines an ellipse centered in (x0, y0) of semi-major axis lx and semi-
minor axis ly, rotated by an angle θ around the center of the ellipse, as illustrated for example

4All the codes and datasets used in this paper are available at https://github.com/KVuillemot/PhiFEM_
and_FNO.

12

0 250 500 750 1000 1250 1500 1750 2000

Epochs

10
5

10
4

10
3

10
2

10
1

Evolution of on the training
and validation sets

(train)
(validation)

0 250 500 750 1000 1250 1500 1750 2000

Epochs

10
3

10
2

10
1

Evolution of the relative L2 error
on the training and validation sets

0(train)
0(validation)

Figure 5: Test case 1. On the left-hand side (resp. right-hand side), we represent the
evolution of the cost function L (resp. the relative L2 error) on a subset of the training set
and on the validation set.

in Fig. 1 (left). We apply a rejection sampling method on the previous parameters to ensure
that each domain is entirely lying within the unit square. The random functions f and g of
(1) are given by

f(A,µ0,µ1,σx,σy)(x, y) = A exp

(
−(x− µ0)2

2σ2x
− (y − µ1)2

2σ2y

)
, (8)

and
g(α,β)(x, y) = α

(
(x− 0.5)2 − (y − 0.5)2

)
cos (βyπ) , (9)

where A ∼ U([−30,−20] ∪ [20, 30]), (µ0, µ1) ∼ U([0.2, 0.8]2 ∩ {φ < −0.15}), σx, σy ∼
U([0.15, 0.45]) and α, β ∼ U([−0.8, 0.8]).

We generate a set of data of size 2100, split into a training set of size 1500, a validation set
of size 300, and a test set of size 300. The training set is then divided into batches of size 32
(number of data considered in the loss function in one computation of the gradient) at each
of the 2000 epochs (number of loops over all the batches), as explained in Algorithm 2.

Remark (Data generation). Note that to generate the data we use P2 interpolations of f and
φ, considering that we can use a maximal information. However, to compare the methods,
since the FNO approaches are based on the nodal values, we will use only the nodal values of
the functions for the FEMs-based methods, to have comparable results.

Results on the validation sample We represent in Fig. 5 (left) the evolution of the loss
function L on a random subset of the training dataset and on the validation dataset, both of
size 300. In Fig. 5 (right), we represent the evolution of L0 on the same samples of data.

During the training, we select the model minimizing the loss function L on the validation
set. This model will be considered to be the optimal model returned by the training and will
be used in the third part of this test case.

13

Figure 6: Test case 1. Example of result among the validation sample with an error in the
norm (5) of 2.5× 10−3, corresponding to the median error.

50 100 500 1000 1250 1500 1750 2000 1989
Training epochs

10
3

10
2

10
1

L2
re

la
tiv

e
er

ro
r E

1

Figure 7: Test case 1. Evolution of the (5) errors on 2500 test data at different steps of the
training. The optimal model is represented in red.

Validation of the model of a first test dataset. We now address a second crucial aspect:
evaluating the error of the models on a test dataset, using the norm (5). This evaluation
ensures that the operator is well trained and performs consistently on new data, behaving as
on the validation data. Additionally, it serves as a final validation of the optimality of the
selected best model. To achieve this, we consider 2500 new data and compute the error in
the norm (5) at several steps of the training, including the optimal one. The results, shown
in Fig. 7, illustrate that the selected optimal model is the best among those tested.

Comparison of φ-FEM-FNO, FEM’s based methods and other ML-based methods
We now turn to the key numerical results to illustrate the advantages of our φ-FEM-FNO
technique. In this part, we compare φ-FEM-FNO with several other approaches, to highlight
the effectiveness of our method:

• φ-FEM-FNO: we call the previous optimal model with 1500 training data of resolution
64× 64 (corresponding to a cell size h ≈ 0.022);

• φ-FEM-FNO 2: we apply the same process as for φ-FEM-FNO, but predicting directly
uθ instead of wθ, i.e. we define a new operator

Gθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, φh, gh) 7→ uθ .

We use the same loss function (i.e. L defined in (4)) except that unθ is directly the
prediction;

14

• φ-FEM-UNET: we have adapted the previous framework to another well-known Neural
Network architecture, namely the UNet architecture (see [27]). To train this network,
we use the loss function L defined in (4). Note that this model represents much more
parameters to optimize than the FNO-based methods. For this test case, we optimize a
total of 7753025 parameters (20 times more than for φ-FEM-FNO).

• φ-FEM: we apply the operator G†, with background meshes of resolution 64× 64 (cor-
responding to a cell size h ≈ 0.022), taking σD = 1 and P1 finite elements;

• Standard FEM: we use a standard P1 finite element method to solve the problems on
meshes with cell size h ≈ 0.022, corresponding to the resolution used for the other
approaches;

• Standard-FEM-FNO: we use a FNO trained with standard P1 FEM solutions on meshes
of sizes h ≈ 0.022, interpolated on Cartesian grids of size 64 × 64 as data. The loss
function used to train Standard-FEM-FNO is the relative H1 norm and the operator is
trained during 2000 epochs.

• Geo-FNO: we have trained a Geo-FNO, adapting the approach of [16] (see the imple-
mentation on the GitHub5) to match our test case, using as input of the operator a set
of 2600 points and the values of f and g at each of these points. We used 2600 points
to obtain an average cell size close to 0.02. The operator has been trained during 2000
epochs, using the L2 relative norm.

The five ML-based methods have been trained using the same dataset, adapted to each
method (i.e., during the data generation steps, we consider the same set of parameters, and
the same hyperparameters during training.)

Remark (Implementation aspect.). To compare our method with a standard finite element
method, we need to construct conforming meshes using the values of the level-set function
φ. The creation of a mesh using a level-set function is not directly possible with DolfinX.
Thus, we need to create such meshes manually. For this step, we use pymedit6 with the Mmg
platform7. We refer the reader to the GitHub repository8 for details on the installation and
two examples of use.

To compare φ-FEM-FNO with other methods, we evaluate the best models of each ma-
chine learning-based approach using a test sample of size 300. The predicted solutions are
projected onto a reference fine mesh with cell sizes of approximately href ≈ 0.005, as shown
in Fig. 8. Errors are computed using the norm defined in (6), with a fine standard finite
element solution serving as the reference. Fig. 9 (left) demonstrates that the trained φ-FEM-
FNO achieves a precision comparable to FEM-based methods. Furthermore, φ-FEM-FNO is
approximately twice as precise as Standard-FEM-FNO and ten times more precise than Geo-
FNO. Additionally, φ-FEM-FNO outperforms φ-FEM-UNET, highlighting the advantages of
the FNO over UNet architectures.

Finally, while φ-FEM-FNO-2 also performs better than Standard-FEM-FNO and Geo-
FNO, its precision is slightly lower than that of φ-FEM-FNO.

5https://github.com/neuraloperator/Geo-FNO/blob/main/elasticity/elas_geofno_v2.py
6https://pypi.org/project/pymedit/
7https://www.mmgtools.org/
8https://github.com/KVuillemot/PhiFEM_and_FNO/blob/main/install_and_use_mmg.md

15

Figure 8: Test case 1. Reference solution (uref). Outputs of standard FEM (ustd) , φ-FEM
(uφ), and (φ-FEM-FNO uθ). The presented test case corresponds to the median one among
the FNO L2 relative errors.

-FEM
Std FEM

-FEM-FNO
-FEM-FNO 2

Std-FEM-FNO
Geo-FNO

-FEM-UNET

10
3

10
2

10
1

R
el

at
iv

e
L2

er
ro

r E
2

10
2

10
1

Computation time (s)

10
2

R
el

at
iv

e
L2

er
ro

r E
2

-FEM
Std-FEM

-FEM-FNO
-FEM-FNO 2

Std-FEM-FNO
Geo-FNO

-FEM-UNET

Figure 9: Test case 1. Left: Relative L2 errors of the methods. Right: Relative L2 errors,
with respect to the computation times.

In Fig. 9 (right), each marker represents the average error of a method plotted against the
average computation time (in seconds). The shaded regions are constructed using the standard
deviation of computation times (x-axis) and relative errors (y-axis) to indicate variability.

For the φ-FEM method, the computation time includes the sum of the following com-
ponents: selecting and constructing Ωh and ΩΓ

h (including background mesh construction),
interpolation times for f , φ, and g, assembling the finite element matrix, and solving the
linear system. For standard FEM, the computation time accounts for mesh construction, in-
terpolation times for f and g, matrix assembly, and solution of the linear system. In contrast,
for ML-based methods, the computation time is the model inference time.

The results clearly demonstrate that ML-based methods are significantly faster than FEM-
based approaches. Specifically, they highlight that while φ-FEM-FNO achieves nearly the
same precision as FEM-based methods, it is approximately 100 times faster.

4.2 Second test case: Poisson equation on random complex shapes

We now consider a more complex test case while still solving (1). The functions f and g are
defined as in (8) and (9), with f restricted to positive values. This time, however, we explore
more intricate and diverse random shapes. To generate these geometries, we use random
level-set functions constructed as a sum of three Gaussian functions. The level-set functions

16

-1.0 -0.5 -0.0 0.5 1.0 -0.8 -0.4 -0.0 0.4 0.8

Gaussian centers

-1.0 -0.5 -0.0 0.5 1.0 -1.3 -0.6 -0.0 0.6 1.3

Examples of considered geometries and corresponding

Figure 10: Test case 2. Examples of considered level-set functions and domains, using (10).
The black crosses mark the centers of the Gaussian functions.

Figure 11: Test case 2. Reference solution (uref). Outputs of standard FEM (ustd) , φ-FEM
(uφ), and (φ-FEM-FNO uθ).

φ are defined as:
φ(x, y) = −ψ(x, y) + 0.5 max

(x,y)∈[0,1]2
ψ(x, y) , (10)

with

ψ(x, y) =

3∑
k=1

exp

(
−(x− xk)2

2σk
− (y − yk)2

2γk

)
,

where the parameters xk, yk, σk and γk are sampled using a Latin Hypercube [21], along with
the parameters of the functions f and g.

The training hyperparameters remain the same as in the first test case, except for the
batch size, which is set to 8.

We represent 4 examples of such level-set functions and given domains, in Fig. 10. We
train the operator for 2000 epochs using 500 training data and 300 validation data. As in
the first test case, we use the average H1 norm (4) as loss function to minimize. We evaluate
the performance of the model on 300 test data, comparing the method to a standard finite
element approach, to φ-FEM, and Standard-FEM-FNO. To evaluate the performance of the
methods, as in the first test case, we use a reference standard fine solution, as depicted in
Fig. 11.

Once again, the results in Fig.12 (left) demonstrate that φ-FEM-FNO achieves accuracy
comparable to FEM-based methods and outperforms Standard-FEM-FNO. However, φ-FEM-
FNO and Standard-FEM-FNO achieve these results significantly faster, as illustrated in Fig.12
(right).

17

-FEM Standard FEM -FEM-FNO Std-FEM-FNO

10
3

10
2

R
el

at
iv

e
L2

er
ro

r E
2

10
2

10
1

Computation time (s)

10
3

10
2

R
el

at
iv

e
L2

er
ro

r E
2

-FEM
Std-FEM

-FEM-FNO
Std-FEM-FNO

Figure 12: Test case 2. Left: comparison of the three methods on 300 new data. Right:
relative L2 error against computation time.

Finally, Fig. 13 illustrates the correlation between the error and the Hausdorff distance of
a test shape to the closest shape in the training data.

4.3 2D - Hyperelastic problems with holes

We now demonstrate the potential of our approach on a test case, close to biomechanical
experiments [22]: the non-linear elasticity equation (2). Specifically, we will consider a rect-
angular plate with five circular holes, referred to as Ω and illustrated in Fig. 14. Here the
variability in the geometry will be the centers and radii of the holes.

Let us define the boundaries of the plate as follows:

• Γt
D and Γb

D are the top and bottom sides of the rectangle, c.f. Fig. 14;

• ΓN is the Neumann boundary, further subdivided into:

– Γl
N and Γr

N , are the left and right sides of the rectangle, respectively,

– for i ∈ {1, · · · , 5}, Γi
N the boundaries of the ith circular hole.

On Γb
D, the plate is clamped, while a constant displacement uD is applied on Γt

D. For the
holes, boundary conditions are enforced using φ-FEM, whereas standard techniques are used
for the remaining boundaries.

Remark. We consider the following partition of Γ:

Γ =

Standard imposition︷ ︸︸ ︷
Γb
D ∪ Γt

D ∪ Γl
N ∪ Γr

N ∪
5⋃

i=1

Γi
N︸ ︷︷ ︸

φ-FEM imposition

.

The problem is formulated as follows (see [14, eq. (8.28)]): find the displacement field
u ∈ R2 that satisfies:

18

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

Hausdorff distance to the closest training shape

0.002

0.004

0.006

0.008

0.010

0.012

0.014

L2
re

la
tiv

e
er

ro
r E

2

Linear fitting

Figure 13: Test case 2. Left: Examples of test geometries. Each represented training shape
is the closest one to the considered test shape, in the sense of Hausdorff distance. Right: L2

relative errors against the Hausdorff distance to the closest training shape.

−divP (F (u)) = 0 , in Ω ,

u = uD , on Γt
D ,

u = 0 , on Γb
D ,

P (F (u)) · n = 0 , on ΓN .

The first Piola-Kirchhoff stress tensor, P , is given by (see [14, eq. (6.1)]):

P (F (u)) =
∂W (F (u))

∂F
,

where the strain energy density function W is defined as (see [4]):

W =
µ

2
(I1 − 3− 2 ln(J)) +

λ

2
ln(J)2,

which represents a compressible Neo-Hookean material.
Here, I1 = tr(C) is the first invariant of the right Cauchy-Green deformation tensor C,

defined as C = F TF , with F = I +∇u representing the deformation gradient and J = detF
the Jacobian determinant. The Lamé parameters µ and λ are expressed as:

µ =
E

2(1 + ν)
, and λ =

Eν

(1 + ν)(1− 2ν)
,

with the Young modulus of E and the Poisson’s ratio of ν fixed to 0.97Pa and 0.3 respectively.

19

ΓbD

ΓtD

ΓN

Ω

ΓbD

Figure 14: Test case 3. Left: Representation of the considered situation for the third
test case. Center: example of deformed geometry. Right: Representation of the considered
variations of the holes for the data generation. The black dashed squares correspond to the
bounds of the centers of the holes and the red areas contain all the possible holes configurations.

4.3.1 φ-FEM scheme

In this case, since Ω is a square domain, the external boundary conditions on Ω can be applied
straightforwardly using conforming methods. Therefore, we will strongly enforce the boundary
conditions on all external edges.

To account for the presence of multiple holes, we define distinct level-set functions to
construct our φ-FEM scheme. Each circular hole Ci with boundary Γi

N = {φi = 0}, i =
1, . . . , 5, is defined by

Ci = {φi < 0}, with φi(x, y) = r2i − (x− xi)2 − (y − yi)2 ,

where (xi, yi, ri) are the coordinates of the center and the radius of the hole i.
The domain Ω is then defined as:

Ω =

5∏

i=1

φi︸ ︷︷ ︸
φ

< 0

 ∩ (0, 1)2.

An example of this configuration is shown in Fig. 14. To account for each boundary
condition, we introduce several meshes and sub-meshes. First, we define the computational
mesh Th, which covers Ω and denote by Ωh := ∪T∈ThT . This mesh consists of all the cells of a
Cartesian grid over the box (0, 1)2 such that at least one vertex v of the cell satisfies φ(v) < 0.

Next, we define a sub-mesh T Γ
h , which collects all cells intersecting the circular boundaries:

T Γ
h := {T ∈ Th : ∃i = 1, . . . , 5 s.t. φi ⩾ 0 on a vertex of T}

and denote by ΩΓ
h := ∪T∈T Γ

h
T . We now introduce the finite element spaces used in the

formulation. For an integer k ≥ 2, the solution u will belong to the space V k
h , defined as:

20

V k
h :=

{
vh : Ωh → Rd : vh|T ∈ Pk(T)d ∀T ∈ Th, vh continuous on Ωh if k ≥ 0

}
,

and its homogeneous counterpart V k,0
h , both FE spaces on Th. In addition, we need to

introduce two auxiliary variables to impose the Neumann boundary conditions on the holes.
Let ΩΓ,i

h be the domain covering the mesh that collects all cells in Th cut by the boundary
Γi
N :

T ΓN
i

h = {T ∈ Th : T ∩ ΓN
i,h ̸= ∅},

with ΓN
i,h = {φi,h = 0}, where φi,h is the Pk interpolation of φi on T Ω

h .
The auxiliary variables will live in the following FE spaces:

Zk
h :=

{
zh : ΩΓ

h → R(d×d) : zh|T ∈ Pk(T)(d×d) ∀T ∈ T Γ
h , zh continuous on ΩΓ

h

}
,

and

Qk
h :=

{
qh : ΩΓ

h → Rd : qh|T ∈ Pl(T)d ∀T ∈ T Γ
h , qh continuous on ΩΓ

h if k ≥ 0
}
.

For each hole i, we impose homogeneous Neumann boundary conditions through the fol-
lowing equations:

y + P (F (u)) = 0, on ΩΓ,i
h ,

y∇φi + pφi = 0, on ΩΓ,i
h .

The variables y and p are discretized in the spaces Zk
h and Qk−1

h , respectively.
This yields to the following variational formulation: find uh ∈ V k

h , ph ∈ Qk−1
h , yh ∈ Zk

h ,
such that

∫
Ωh

P (F (uh)) : ∇vh+
5∑

i=1

(∫
∂ΩΓ,i

h

yhn·vh+γu
∫
ΩΓ,i

h

(yh+P (F (uh))) : (zh+Du(P ◦F)(uh)vh)

+
γp
h2

∫
ΩΓ,i

h

(yh∇φi,h +
1

h
phφi,h) · (zh∇φi,h +

1

h
qhφi,h)

+ γdiv

∫
ΩΓ,j

h

div yh · div zh
)
+Gh (uh,vh) = 0 ,

∀vh ∈ V k,0
h , qh ∈ Qk−1

h , zh ∈ Zk
h , (11)

where
Gh(u,v) := σNh

∫
Γh

[P (F (u))n] · [Du(P ◦ F)(u)vn] ,

with Γh := ∂ΩΓ
h \ ∂Ωh (corresponding to the facets between the blue and grey cells in the

example of Fig. 1), Du(P ◦ F)(u)v denoting the derivative of P evaluated at u, in the
direction v and γp, γu, γdiv, σN some positive constants.

21

10
4

10
5

Number of degrees of freedom

10
4

10
3

10
2

L2
re

la
tiv

e
er

ro
r

-FEM
Standard FEM

(h)

10
1

hmax

10
4

10
3

10
2

L2
re

la
tiv

e
er

ro
r

-FEM
Standard FEM

(h2)

Figure 15: Test case 3. Convergence of the two finite element methods, with respect to the
number of degrees of freedom (left) and the maximal size of cell (right).

Remark. The third term in (11) is the differential at (uh,yh) in the direction (vh, zh) of∫
ΩΓ,i

h

(yh + P (F (uh))) : (yh + P (F (uh))).

Hence, it is a quid of penalization associated with the constraint

yh = −P (F (uh)).

We validate this φ-FEM scheme by comparing the convergence of the method with the
convergence of a standard finite element method, computing the relative L2 error with a
reference fine standard FEM solution. Referring to Fig. 15, we can conclude that φ-FEM
outperforms the standard method for sufficiently fine meshes.

4.3.2 φ-FEM-FNO results

Since this test case is more complex, particularly due to the treatment of Neumann boundary
conditions using the φ-FEM approach, the φ-FEM-FNO architecture presented earlier needs
slight modifications. Specifically, in this approach, the solution is not multiplied by the level-
set function over the entire domain but only on the boundary cells. For more details on this
method applied to the Poisson equation, refer to [7], or for the linear elasticity equation, see
[5]. As a result, the neural operator no longer predicts w; instead, it directly provides the
φ-FEM solution to the problem. This modified method is referred to as φ-FEM-FNO-2 in the
first test case.

Moreover, as this problem involves only null right-hand sides except for uD, the ground-
truth operator to approximate is defined as:

G† : Rnx×ny×2 → Rnx×ny×2

(φh, gh,y) 7→ uh = (uh,x, uh,y) ,

where uh,x and uh,y are the two components of the solution vector uh, and gh,y represents the
vertical component of the Dirichlet boundary condition uD, which is constant throughout the
domain, i.e., gh,y = g for every pixel.

22

For this test case, the neural network approach demonstrates significant advantages over
FEM-based methods. The problem’s strong non-linearity typically requires iterative solvers
in classical methods, and incremental forces are often applied to prevent divergence. These
iterative processes are computationally expensive. In contrast, the φ-FEM-FNO approach only
requires a well-trained operator to directly obtain the solution. Although data generation is
more time-consuming for this test case compared to simpler ones, the trained operator enables
extremely fast solution computation.

Data generation To generate training, validation, and test data, we consider a configura-
tion with five circular holes. The holes are placed sufficiently far from the boundaries of the
unit box and positioned to avoid interpenetration. Data generation is performed using a Latin
Hypercube sampling strategy, this time in a 16-dimensional space (15 dimensions for the hole
parameters and one for the applied boundary condition at the top of the box). A graphical
representation of the sampled hole configurations is shown in Fig. 14 (right). The parameters
of the φ-FEM scheme are set to γu = 0.001, γp = γdiv = σN = 0.01.

Loss modification To train the operator, we need to adapt the loss function defined in (4).
We will now use only an approximation of the H1 semi-norm as loss function, defined by

L (Utrue;Uθ) =
1

Ndata

Ndata∑
n=0

(
E1(untrue,x;u

n
θ,x) + E1(untrue,y;u

n
θ,y)
)
,

where
E1(untrue,·;u

n
θ,·) = ∥∇h

xu
n
true,· −∇h

xu
n
θ,·∥20,Sn

1
+ ∥∇h

yu
n
true,· −∇h

yu
n
θ,·∥20,Sn

1
.

Remark. Using the H1 semi-norm instead of the full H1 norm enhances the performance of the
operator, particularly in the application of boundary conditions. Once the operator generates
a prediction, we can "adjust" the solution by subtracting the mean value of the prediction at
the lower boundary nodes, where the solution is known to be zero.

This approach offers several advantages. First, it simplifies the optimization process, as
the loss function involves fewer terms. Second, it reduces the error at the boundary nodes
compared to using the fullH1 norm, leading to more accurate boundary condition enforcement.

Results To measure the performance of the finite element based approaches and of the φ-
FEM-FNO approach, we will compute the L2 relative error, between a reference displacement
uref and an approximation uh, denoted L̄2(uref,uh).

We train the operator for 2000 epochs using 200 training data divided into batches of size
8 and 300 validation data. We then evaluate the performance of the trained operator on 300
test data, compared to a standard finite element method and to φ-FEM both using triangular
P2 elements, with mesh sizes such that the total number of degrees of freedom is close to the
dimension of the images used for φ-FEM-FNO (i.e. 2 × nx × ny). We represent in Fig. 16
an example of displaced mesh, and the difference between the approximated results of the
methods and a reference fine FEM solution.

In addition, in Fig. 17 (left), we compare the L2 errors of the 3 methods on the 300 test
problems. In Fig. 17 (right), we give the relative Hausdorff error for the same 300 problems,
with respect to the computation time. These representations illustrate that the FEM’s based
approaches are only at most 10 times more precise than our approach, while the computation
times are close to 1000 times higher for the FEM’s based approaches.

23

Figure 16: Test case 3. Example of output of the different methods, corresponding to the
median of the relative L2 errors of φ-FEM-FNO among the 300 problems.

-FEM Standard FEM -FEM-FNO
10

3

10
2

R
el

at
iv

e
L2

er
ro

r

10
2

10
1

10
0

Computation time (s)

10
2

R
el

at
iv

e
L2

er
ro

r

Std-FEM
-FEM
-FEM-FNO

Figure 17: Test case 3. Left: L2 errors of the methods. Right: relative L2 errors of the
methods against computation time.

24

5 Conclusion and future works

We have shown on three test cases that after training, our φ-FEM-FNO can compute faster
than standard finite element methods, φ-FEM, an interpolate-FEM approach, or Geo-FNO
on several problems. Moreover, we have illustrated that these results can be obtained using
small amounts of training data, even for complex cases with big variations of geometries or
non-linear equations.

A number of perspectives remain for future research. It would be interesting to extend the
results to other problems since φ-FEM schemes have been written and studied theoretically
and numerically (mixed conditions, Stokes, time-dependent PDEs, . . .).

Moreover, we have introduced and validated a new φ-FEM scheme to treat a case of non-
linear elastic equation. However, in the future, we can extend our results to the case of other
hyperelastic materials as in [24], and implement the method in the DeepPhysX project9. Fur-
thermore, another interesting point would be to extend our method to more realistic scenarios,
considering real medical images and more realistic forces and boundary conditions. Finally,
we can also imagine extending our method to the case of Pk functions, using the degrees of
freedom values instead of nodal values for the data generation and thus predicting the values
of the solution at each Pk degrees of freedom.

Finally, to represent more complex and general forces, one can train an FNO using Gaus-
sian forces. Then, one can decompose a new random force in a sum of Gaussian distributions
and use the trained model on each one of the Gaussian forces. Thanks to GPU parallelization,
each prediction can be done simultaneously, and it only remains to sum the predictions to
obtain the final result.

6 Acknowledgment

The authors were supported by the ANR project JCJC 22-CE46-0003. The authors would
like to thank Nicola Zotto and Sidaty El Hadramy for their remarks and help during the
preparation of this paper.

References

[1] M. S. Alnaes, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells. Unified form lan-
guage: A domain-specific language for weak formulations of partial differential equations.
ACM Transactions on Mathematical Software, 40, 2014.

[2] I. A. Baratta, J. P. Dean, J. S. Dokken, M. Habera, J. S. Hale, C. N. Richardson, M. E.
Rognes, M. W. Scroggs, N. Sime, and G. N. Wells. DOLFINx: the next generation
FEniCS problem solving environment. preprint, 2023.

[3] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and
neural networks for parametric pdes. The SMAI journal of computational mathematics,
7:121–157, 2021.

[4] J. Bonet and R. D. Wood. Nonlinear continuum mechanics for finite element analysis.
Cambridge university press, 1997.

9https://mimesis.inria.fr/project/deepphysx/

25

[5] S. Cotin, M. Duprez, V. Lleras, A. Lozinski, and K. Vuillemot. ϕ-FEM: an efficient
simulation tool using simple meshes for problems in structure mechanics and heat transfer.
In Partition of Unity Methods (Wiley Series in Computational Mechanics) 1st Edition.
Wiley, Nov. 2022.

[6] R. A. DeVore. The theoretical foundation of reduced basis methods. Model reduction and
approximation: theory and algorithms, 15:137, 2017.

[7] M. Duprez, V. Lleras, and A. Lozinski. A new ϕ-FEM approach for problems with
natural boundary conditions. Numer. Methods Partial Differential Equations, 39(1):281–
303, 2023.

[8] M. Duprez, V. Lleras, and A. Lozinski. ϕ-FEM: an optimally convergent and easily
implementable immersed boundary method for particulate flows and Stokes equations.
ESAIM Math. Model. Numer. Anal., 57(3):1111–1142, 2023.

[9] M. Duprez, V. Lleras, A. Lozinski, and K. Vuillemot. ϕ-FEM for the heat equation: opti-
mal convergence on unfitted meshes in space. Comptes Rendus Mathématique, 361:1699–
1710, 2023.

[10] M. Duprez and A. Lozinski. ϕ-FEM: a finite element method on domains defined by
level-sets. SIAM J. Numer. Anal., 58(2):1008–1028, 2020.

[11] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159. Springer,
2004.

[12] T. G. Grossmann, U. J. Komorowska, J. Latz, and C.-B. Schönlieb. Can physics-informed
neural networks beat the finite element method? IMA Journal of Applied Mathematics,
89(1):143–174, 05 2024.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[14] G. A. Holzapfel. Nonlinear solid mechanics: a continuum approach for engineering science,
2002.

[15] N. B. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. M. Stuart, and
A. Anandkumar. Neural operator: Learning maps between function spaces. CoRR,
abs/2108.08481, 2021.

[16] Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier neural operator with learned
deformations for pdes on general geometries. J. Mach. Learn. Res., 24(1), 2024.

[17] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. Neural operator: Graph kernel network for partial differential equa-
tions. arXiv preprint arXiv:2003.03485, 2020.

[18] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. Fourier neural operator for parametric partial differential equations,
ICLR 2021.

26

[19] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya, and
A. Anandkumar. Multipole graph neural operator for parametric partial differential equa-
tions. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

[20] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

[21] M. D. McKay, R. J. Beckman, and W. J. Conover. A comparison of three methods
for selecting values of input variables in the analysis of output from a computer code.
Technometrics, 21(2):239–245, 1979.

[22] L. Meunier, G. Chagnon, D. Favier, L. Orgéas, and P. Vacher. Mechanical experimental
characterisation and numerical modelling of an unfilled silicone rubber. Polymer testing,
27(6):765–777, 2008.

[23] M. Nastorg, M.-A. Bucci, T. Faney, J.-M. Gratien, G. Charpiat, and M. Schoenauer. An
Implicit GNN Solver for Poisson-like problems. Computers & Mathematics with Applica-
tions, 176:270–288, 2024.

[24] A. Odot, R. Haferssas, and S. Cotin. DeepPhysics: a physics aware deep learning frame-
work for real-time simulation. International Journal for Numerical Methods in Engineer-
ing, 123(10):2381–2398, 2022.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imper-
ative style, high-performance deep learning library, 2019.

[26] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, Feb. 2019.

[27] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18, pages 234–241. Springer, 2015.

[28] M. W. Scroggs, I. A. Baratta, C. N. Richardson, and G. N. Wells. Basix: a runtime finite
element basis evaluation library. Journal of Open Source Software, 7(73):3982, 2022.

[29] M. W. Scroggs, J. S. Dokken, C. N. Richardson, and G. N. Wells. Construction of
arbitrary order finite element degree-of-freedom maps on polygonal and polyhedral cell
meshes. ACM Transactions on Mathematical Software, 48(2):18:1–18:23, 2022.

[30] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

[31] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. Towards physics-informed
deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 1457–1466, 2020.

27

[32] B. Yu et al. The deep Ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[33] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics,
366:415–447, 2018.

A FNO implementation details

A.1 Standardization of the data

To improve the performance of our FNO, since the data can have very different values, we
have decided to standardize the input and output data, as in [18]. The standardization is
applied independently channel by channel of X. For each channel C of X, denoting by Ctrain

the training part of the data-set corresponding to the channel C, the associated standardized
channel is given by

NC(C) =

(
C −mean(Ctrain)

std(Ctrain)

)
,

where the mean and standard-deviation are computed only on Ωh, since all the values are 0
outside Ωh.

The unstandardization function N−1 is given by

N−1(Y) = Y × std(Y train) + mean(Y train) ,

where Y denotes a channel of the output of the FNO and Y train is the vector composed of the
training ground truth solutions.

A.2 ADAM and training loop algorithm

We consider here the case of the first test case. We present the details of the considered
ADAM optimizer in Algorithm 1. In Algorithm 2 we denote (F i, φi, Gi) a batch of data. The
batches are randomly chosen such that F i = (fkh)k∈Ki

, φi = (φk
h)k∈Ki

, Gi = (gkh)k∈Ki
with Ki

a collection of random indices of data and i ∈ {1, . . . , number of batches}. The sets Ki are
constructed such that Ki ∩Kj = ∅ for i ̸= j.

Remark (Calibration of the learning rate.). The learning rate is a critical parameter to tune for
achieving accurate results. While we have not included specific results to illustrate our choice
of learning rate, extensive testing was conducted to determine the optimal value. Choosing a
learning rate that is too high or decreasing it too slowly results in significant oscillations and
poor convergence. Conversely, selecting a learning rate that is too low or decreasing it too
quickly leads to slow and suboptimal convergence, as the loss decreases very slowly and fails
to reach sufficiently low values to produce good results.

To address this, we fine-tuned the learning rates through multiple training sessions on both
test cases, experimenting with various learning rate schedulers. The scheduler that provided
the best results was selected, using the validation loss as a criterion to adjust the learning rate
dynamically.

28

Algorithm 1 ADAM optimizer step.
Initialisation : t, θt−1, β1, β2, ε, mt−1, vt−1.
Compute the gradient : gt ← ∇f(θt−1)
Momentum update :

mt ← β1 ·mt−1 + (1− β1) · gt , vt ← β2 · vt−1 + (1− β2) · gt · ḡt

Bias correction :
m̂t ←

mt

1− βt1
, v̂t ←

vt
1− βt2

Parameters update :
θt ← θt−1 −

α√
v̂t + ε

· m̂t − w1θt−1

Algorithm 2 Training loop.
Initialisation: θ0 the initial random parameters, X = (F,φ,G) and Ytrue the training part
of the dataset, the batch size and the regularization parameter λ .
for t = 1 to number of epochs do

for i = 1 to number of batches do
Select a batch (F i, φi, Gi) ⊂ X and Y i

true ⊂ Ytrue of size batch size.
Call the model : Yθ = Gθti−1

(F i, φi, Gi).
Compute the loss :

L(Y i
true, Yθ) +

λ

2× batch size

∑
j

|wj |2︸ ︷︷ ︸
L2 regularization

.

Compute the gradient of the loss, w.r.t the parameters θti−1: ∇θti−1
L.

Optimizer step : step of Algorithm 1.
end for

Let (Fval, φval, Gval) and Yval be the validation part of the dataset.
Call the model on the validation sample : Yθ = Gθti(Fval, φval, Gval).
Compute the loss : L(Yval, Yθ).
Learning rate scheduler step.

end for

Training step

Validation step

29

