
HAL Id: hal-04473794
https://hal.science/hal-04473794

Preprint submitted on 22 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ϕ-FEM-FNO: a new approach to train a Neural
Operator as a fast PDE solver for variable geometries

Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian
Vuillemot

To cite this version:
Michel Duprez, Vanessa Lleras, Alexei Lozinski, Vincent Vigon, Killian Vuillemot. ϕ-FEM-FNO: a
new approach to train a Neural Operator as a fast PDE solver for variable geometries. 2024. �hal-
04473794�

https://hal.science/hal-04473794
https://hal.archives-ouvertes.fr

ϕ-FEM-FNO: a new approach to train a Neural Operator as a
fast PDE solver for variable geometries

Michel Duprez∗, Vanessa Lleras†, Alexei Lozinski‡,
Vincent Vigon§ and Killian Vuillemot¶

February 22, 2024

Abstract

In this paper, we propose a way to solve partial differential equations (PDEs) by
combining machine learning techniques and a new finite element method called ϕ-FEM.
For that, we use the Fourier Neural Operator (FNO), a learning mapping operator. The
purpose of this paper is to provide numerical evidence to show the effectiveness of this tech-
nique. We will focus here on the resolution of the Poisson equation with non-homogeneous
Dirichlet boundary conditions. The key idea of our method is to address the challeng-
ing scenario of varying domains, where each problem is solved on a different geometry.
The considered domains are defined by level-set functions due to the use of the ϕ-FEM
approach. We will first recall the idea of ϕ-FEM and of the Fourier Neural Operator.
Then, we will explain how to combine these two methods. We will finally illustrate the
efficiency of this combination with some numerical results on two test cases, showing in
particular that our method is faster than learning-based and finite element solvers for a
fixed accuracy.

1 Introduction

Finite Element Method (FEM) is one of the most popular approaches to approximate the
solutions of Partial Differential Equations (PDE) arising in engineering, physics, biology, and
other applications (see e.g. [10]). It is important to solve them quickly (sometimes in real-
time) with good accuracy. There have been numerous attempts to achieve this using machine
learning-based (ML-based) methods. They can be split into two groups :

∗MIMESIS team, Inria de l’Université de Lorraine, MLMS team, Université de Strasbourg, 2 Rue Marie
Hamm, 67000 Strasbourg, France, michel.duprez@inria.fr

†IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France,
vanessa.lleras@umontpellier.fr

‡Université de Franche-Comté, Laboratoire de mathématiques de Besançon, UMR CNRS 6623, 16 route de
Gray, 25030 Besançon Cedex, France, alexei.lozinski@univ-fcomte.fr

§Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS,
Tonus team, Inria de l’Université de Lorraine, 7 rue René Descartes, 67000 Strasbourg, France,
vincent.vigon@math.unistra.fr

¶IMAG, Univ Montpellier, CNRS UMR 5149, 499-554 Rue du Truel, 34090 Montpellier, France. MIMESIS
team, Inria de l’Université de Lorraine, MLMS team, Université de Strasbourg, 2 Rue Marie Hamm, 67000
Strasbourg, France, killian.vuillemot@umontpellier.fr

1

1. Physics-inspired approaches: ML-based methods can be used as an approximation
ansatz and approximate the solution of PDEs by minimizing the residual or the asso-
ciated energy of the PDEs and the distance to some observations, without ever using
traditional approximation by FEM or similar. The most popular member of this class of
methods is PINNs [23], but one can also cite Deep Galerkin [25] and Deep Ritz methods
[29]. Despite the initial promise, there is now abundant numerical evidence that these
methods do not outperform the classical FEM in terms of solution time and accuracy,
see for instance a recent study in [11]. It seems that these methods cannot thus be
considered as good candidates for real-time realistic computations.

2. Classical solver as database: Classical FEM (or similar) is used to obtain a "database"
of solutions for a collection of representative parameter values that are used to train a
neural network to learn the mapping linking the parameters to the solution. All this
step is computationally expensive and is done in the preparatory stage (offline). The
expected outcome is that one can use the trained network to obtain the solution for
any given parameters almost instantaneously (online). Examples include U-Net (see e.g.
[9]), graph neural operator [15], DeepOnet [18] and Fourier Neural Operator (FNO)
[16, 14].

In our article, we focus on FNO as the method that showed a superior cost-accuracy tradeoff
over the others (see [16]). The issue with FNO is that it needs Cartesian grids to perform
discrete fast Fourier transform, and the initial implementation was thus limited to problems
posed on rectangular boxes. There have been attempts to adapt FNO to general geometries,
cf. Geo-FNO [14] where the irregular input domain is deformed into a uniform latent mesh on
which the FFT can be applied. In our article, we propose an alternative approach: we treat
the geometry, given by the level-set function, as one of the inputs of the network alongside
the other data of the problem while using a Cartesian grid without deforming it. Incidentally,
this viewpoint of treating the geometry (i.e.thanks to the level-set function) together with the
data to construct an approximation using a simple (ex. Cartesian) grid was also the starting
point to develop ϕ-FEM. It is thus natural to combine ϕ-FEM (at the offline training stage)
with FNO. As a bonus, this combination, which we will call ϕ-FEM-FNO, allows us to avoid
the interpolation errors from a body-fitted mesh to a Cartesian one, which would be inevitable
if we would use a traditional FEM for training.

This paper aims to illustrate the efficiency of our approach ϕ-FEM-FNO, in the case of
complex and varying domains for the Poisson-Dirichlet problem:{

−∆u = f , in Ω ,

u = g , on Γ ,
(1)

where Ω is a connected domain of Rd, d = 1, 2, 3 and Γ its boundary.
Our contributions:

• We propose a new machine learning approach called ϕ-FEM-FNO which takes as input
the parameters of the PDE (f , g) and the geometry of the domain given by a level-
set function ϕ and gives as output an approximation of the solution of the PDE. In
comparison to [14], we do not need a transformation between the geometry and the unit
square.

2

• In addition, we highlight in Fig. 11 that our approach has a better accuracy/CPU-time
ratio than Geo-FNO, which has been compared with other techniques in [14], and than
a FNO trained using standard FEM solutions interpolated on cartesian grids.

• Since the geometry is described by a level-set function, the prediction of the PDE solution
is exact on the boundary of the domain. We can also find this idea in [26] for an approach
with some PINNS.

The paper will be divided into three parts. In section 2, we will first describe the two
methods used: ϕ-FEM and FNO. We will then present in Section 3 our idea to combine them.
Finally, we will illustrate the efficiency of the method with numerical results with varying
ellipses and complex shapes in Section 4 and give some conclusions in Section 5. In the end,
we detail in the first appendix the standardization operator. The second appendix details
the calibration of the hyperparameters used for our FNO, and in the third appendix, we
justify numerically our choice of loss function. In the last appendix, we present the optimizer
algorithm.

2 Description of the methods

In the rest of the manuscript, Ω is a domain of dimension 2 included in [0, 1]2.

2.1 Overview

Our idea is to build a neural network which will be an approximation of the operator mapping
the data f , g, and the geometry to the solution of (1). We want the output to be obtained
with good accuracy and a low computational time. The objective is to train this neural
network using synthetic data generated by a discrete solver of PDE. The neural network and
the discrete solver must be chosen to perform independently of each other, and must also be
compatible.

As a discrete solver, we choose ϕ-FEM [8] which is a finite element method with an
immersed boundary approach using a level-set function to describe the geometry of the domain.
The optimal convergence of ϕ-FEM has been previously proven theoretically and numerically
for the Poisson equation with Dirichlet boundary conditions [8], with Neumann boundary
conditions [5], for the Stokes problem [6] and for the Heat-Dirichlet equation [7]. Moreover,
in [3], the efficiency of the method has been illustrated numerically on multiple examples in
the case of linear elasticity (better than the continuous Lagrange FEM approach on conformal
meshes).

As neural network, we have decided to use the Fourier Neural Operator (FNO), introduced
in [16] and [13]. The FNO relies on an iterative architecture proposed in [15]. An advantage
of FNO is that it takes a step size much bigger than is allowed in numerical methods. In
the case of the approximation of the PDE solution, the authors of [16] have illustrated that
FNO has better performance than the classical Reduced Basis Method (using a POD basis)
[4], a Fully Convolution Networks [31], an operator method using PCA as an autoencoder on
both the input and output data and interpolating the latent spaces with a neural network
[2], the original graph neural operator [15], the multipole graph neural operator [17], a neural
operator method based on the low-rank decomposition of a kernel similar to the unstacked
DeepONet proposed in [18], a ResNet (18 layers of 2-d convolution with residual connections)

3

[12], a U-Net [24] and TF-Net [28]. Furthermore, the training can be done on many PDEs
with the same underlying architecture.

Moreover, these two methods are compatible since ϕ-FEM is a precise non-conforming
finite element method, that can be used on cartesian grids, as required by the FNO that will
be used.

In the next subsection, we will describe ϕ-FEM and FNO. We introduce in Table 1 nota-
tions that will be used in the rest of the manuscript.

Notation Meaning

F
N

O

θ Set of trainable parameters
Gθ Operator mapping the input to the solutions
G† Ground truth operator mapping the solutions : ϕ-FEM resolution

F , F−1 Discrete Fourier and inverse Fourier transform
W Cl

θ Linear transformation applied on lower Fourier modes
Clθ Convolution layer
Blθ Linear transformations applied on the spatial domain

Pθ, Qθ Transformations between high dimension channel space and original space
N , N−1 Standardization and unstandardization operators

σ Non linear activation function

ϕ
-F

E
M

ϕ Level-set function defining the domain Ω and its boundary Γ
O Box [0, 1]2

Th ϕ-FEM computational mesh
T Γ
h Set of cells of Th cut by the boundary
FΓ
h Set of internal facets of T Γ

h

σD Stabilisation parameter

Table 1: Notations table.

2.2 Description of ϕ-FEM

Let us first briefly describe the ϕ-FEM method introduced in [8] to solve (1). We will skip
many theoretical aspects but refer the reader to [8] for more details. We suppose that the
domain Ω is included in the box O = [0, 1]2 ⊂ R2. In the ϕ-FEM approach, to solve (1), we
assume that the domain Ω and its boundary Γ are given by a level-set function ϕ : [0, 1]2 → R
in the following way

Ω := {ϕ < 0} and Γ := {ϕ = 0} . (2)

Let T O
h be a cartesian mesh of O = [0, 1]2 composed by simplexes of size h. More precisely,

the background Cartesian mesh T O
h is obtained by dividing O = [0, 1]2 into (nx−1)× (ny−1)

rectangular cells and then dividing each of them into two triangular cells by a diagonal, where
nx = 1/hx+1, ny = 1/hy +1 and h =

√
h2x + h2y. Denoting by ϕh the Lagrange interpolation

of ϕ on T O
h , we consider the submesh Th of T O

h , called the computational mesh, composed of
the cells of T O

h intersecting the domain {ϕh < 0}, i.e.

Th :=
{
T ∈ T O

h : T ∩ {ϕh < 0} ≠ ∅
}
.

4

Figure 1: Left: example of exact domain Ω. Right: associated considered ϕ-FEM meshes. In
red, the exact boundary Γ of the domain Ω, in white T O

h , in gray T Γ
h and in blue, Th \ T Γ

h .

We also introduce the submesh T Γ
h containing the cells cut by the approximate boundary

({ϕh = 0}), i.e.
T Γ
h := {T ∈ Th T ∩ {ϕh = 0} ≠ ∅} .

We denote by Ωh and ΩΓ
h the domains occupied by Th and T Γ

h , respectively, and by ∂Ωh the
boundary of Ωh (different from Γh = {ϕh = 0}). All the meshes are illustrated for a specific
domain in Fig. 1. Finally, we need to introduce a set of facets containing all the internal faces
of the mesh T Γ

h , i.e., the faces of T Γ
h \∂Th. Referring to Fig. 1 (right), these faces are the ones

of the gray cells except the ones common to a gray cell and a white cell. We will denote by
FΓ
h this set, defined by

FΓ
h := {F (an internal facet of Th) such that ∃ T ∈ Th : T ∩ Γh ̸= ∅ and F ∈ ∂T} .

Let k ⩾ 1 be an integer. We define the finite element space

V
(k)
h := {vh ∈ H1(Ωh) vh|T ∈ Pk(T) ∀ T ∈ Th} .

We now introduce the considered ϕ-FEM formulation of system (1) (see [8]): Find wh ∈
V

(k)
h such that, for all sh ∈ V

(k)
h , denoting uh = ϕhwh + gh and vh = ϕhsh,∫

Ωh

∇uh · ∇vh −
∫
∂Ωh

∂uh
∂n

vh +Gh(uh, vh) =

∫
Ωh

fhvh +Grhs
h (vh) ,

where gh, fh are some Lagrange interpolations of g and f , respectively,

Gh(u, v) = σDh
∑

E∈FΓ
h

∫
E
[∂nu] [∂nv] + σDh

2
∑
T∈T Γ

h

∫
T
∆u∆v ,

and

Grhs
h (v) = −σDh2

∑
T∈T Γ

h

∫
T
fh∆v .

5

The brackets in Gh stand for the jump over the facets of FΓ
h , ∂nu stands for the normal

derivative of u and σD > 0 is a h-independent parameter.

2.3 The “ground truth" operator

In the rest of the manuscript, fh, gh, ϕh, uh and wh will represent the matrices of Rnx×ny

associated to these P1-functions composed for each index i = 0, . . . , nx − 1, j = 0, . . . , ny − 1,
of the values of an extrapolation in V O

h of these functions at the node of the mesh T O
h of

coordinate (xi, yj), with xi = hxi := i/(nx − 1), yj = hyj := j/(ny − 1).
In the tradition of FNO literature, the FNO will approximate an operator called the

“ground truth operator” which is denoted by G†. In our case, G† will be the operator mapping
the data fh, gh, and the geometry given by the level-set ϕh to the ϕ-FEM approximated
solution wh . More precisely, G† will be defined as follows:

G† : Rnx×ny×3 → Rnx×ny×1

(fh, ϕh, gh) 7→ wh ,
(3)

where wh is the ϕ-FEM solution associated to fh, gh and ϕh. The exact form of this extrapo-
lation has no impact on the construction of the FNO since the values of wh outside Ωh are not
seen in the loss defined below. In practice, this extrapolation will be done by FEniCS ([1]).

2.4 Architecture of the FNO

We will now introduce a few essential points to understand the architecture of the FNO. We
refer the reader to [16, 13, 14] for detailed explanations on the FNO or [15] for more details
about neural operators.

The goal of the FNO is to construct a parametric mapping

Gθ : Rnx×ny×3 → Rnx×ny×1 ,

(fh, ϕh, gh) 7→ wθ ,

that approximates the "ground truth" mapping G† (3). We predict the ϕ-FEM representation
wh with wθ and uθ = ϕhwθ + gh will be an approximation of uh = ϕhwh + gh as described in
Figure 2. Here θ stands for the numerous parameters that we have to find by minimizing the
loss function. So by predicting wh instead of directly predicting the ϕ-FEM solution uh, our
approximation uθ will be exactly equal to gh on the discrete boundary Γh.

Remark. The idea of predicting wh instead of uh directly is driven by the fact that the mul-
tiplication by ϕh imposes the exact boundary conditions. Indeed, predicting uh would lead
to prediction errors on the boundary of the domain and would lead to the need to add a loss
acting on the values of the solution on the boundary. Moreover, this additional term would
have not corrected entirely the issues of precision on the boundary since we would never have
an exact imposition of the boundary condition with the prediction of the neural operator.

2.4.1 The structure of the FNO

Layer sequence The mapping Gθ is composed of several sub-mappings, called layers

Gθ = N−1 ◦Qθ ◦ H4
θ ◦ H3

θ ◦ H2
θ ◦ H1

θ ◦ Pθ ◦N . (4)

6

fh

φh

gh

wθ

Gθ

× +

φhwθ

1Ωh

uθ

φhwθ + gh

× uθ × 1Ωh

uθ|Ωh

Figure 2: Construction of a prediction of ϕ-FEM-FNO.

Each layer acts on three-dimensional tensors with the third dimension (the number of channels)
varying from one layer to another according to the following scheme:

Gθ : Rnx×ny×3 N−→ Rnx×ny×3 Pθ−→ Rnx×ny×nd
H1

θ−−→ Rnx×ny×nd
H2

θ−−→

. . .
H4

θ−−→ Rnx×ny×nd
Qθ−−→ Rnx×ny×1 N−1

−−−→ Rnx×ny×1 , (5)

where nd is a sufficiently large dimension. A graphic representation of Gθ is given in Fig. 3.
The transformations Pθ and Qθ are respectively an embedding to the high dimensional channel
space and a projection to the target dimension, both computed using a neural network (see
[16]). The principal components of FNO are the 4 Fourier layers Hℓ

θ having the same structure
presented below.

Normalisation N and N−1 To improve the performance of a neural network, it is known
that normalizing the inputs and outputs is almost mandatory (see [19] for example). So the
train data will be standardized channel by channel in the input and unstandardized in the
output thanks to the operator N and N−1, respectively. This step is explained in detail in
Appendix A.

Structure of the embedding Pθ and the projection Qθ The transformation Pθ is made
of one fully connected layer of size nd neurons acting on each node, i.e. for all i ∈ {1, ..., nx},
j ∈ {1, ..., ny} and k ∈ {1, ..., nd},

Pθ(X)ijk =

3∑
k′=1

WPθ
kk′Xijk′ +BPθ

k ,

with WPθ ∈ Mnd,3(R), BPθ ∈ Rnd some parameters. The transformation Qθ is made of two
fully connected layers of size nQ then 1 acting also on each node, i.e. Qθ = (Qθ,ijk)ijk defined

7

for all X = (Xijk)ijk by, for all i ∈ {1, ..., nx}, j ∈ {1, ..., ny},

Qθ(X)ij =

[nQ∑
k=1

W
Qθ,2

1k σ

(
nd∑

k′=1

W
Qθ,1

kk′ Xijk′ +B
Qθ,1

k

)]
+BQθ,2 ,

with WQθ,1 ∈ Mnd,nQ(R), BQθ,1 ∈ RnQ , WQθ,2 ∈ MnQ,1(R), BQθ,2 ∈ R some parameters
and σ is an activation function applied term by term. We choose the GELU (Gaussian Error
Linear Unit) function given by f(x) = xΦ(x) with Φ(x) = P (X ⩽ x) where X ∼ N (0, 1), as
in the original implementation of the FNO1 and of the Geo-FNO2.

Structure of Fourier layers Hℓ
θ A layer Hℓ

θ is made of two sub-layers organized as follows
(see [16]):

Hℓ
θ(X) = σ

(
Cℓθ(X) + Bℓθ(X)

)
,

where

• Cℓθ is a convolution layer defined by

Cℓθ(X) = F−1
(
W Cℓ

θF(X)
)
∈ Rnx×ny×nd×nd , (6)

with W Cℓ
θ ∈ Cnx×ny×nd×nd some parameters and F , F−1 stand for the real Fast Fourier

Transform (RFFT and its inverse): for all i ∈ {1, ..., nx}, j ∈ {1, ..., ny} and k ∈
{1, ..., nd},

F(X)ijk =
∑
i′j′

Xi′j′ke
2
√
−1π

(
ii′
nx

+ jj′
ny

)
,

and for Y ∈ Cnx×ny×nd

F−1(Y)ijk =
∑
i′j′

Yi′j′ke
−2

√
−1π

(
ii′
nx

+ jj′
ny

)
.

• Bℓθ = (Bℓθ,ijk)ijk is the "bias-layer" defined for all X = (Xijk)ijk by, for all i ∈ {1, ..., nx},
j ∈ {1, ..., ny} and k ∈ {1, ..., nd},

Bℓθ(X)ijk =

nd∑
k′=1

W
Bℓ
θ

kk′Xijk′ +B
Bℓ
θ

k ,

with WBℓ
θ ∈Mnd

(R) and BBℓ
θ ∈ Rnd are some parameters.

The coefficients W · and B· are the trainable parameters, which have some constraints
given below.

1https://github.com/neuraloperator/neuraloperator
2https://github.com/neuraloperator/Geo-FNO

8

Constraint on the parameters

• Symmetry: To obtain a real matrix Cℓθ(X), we impose to W Cℓ
θ the Hermitian symmetry,

i.e. W
Cℓ
θ

nx−i,ny−j,k = W
Cℓ
θ

i,j,k. In practice, since we use a specific implementation of the
FFT called RFFT (Real-FFT): the discrete Fourier coefficients are stored in arrays of size
nx × (ny/2 + 1) (integer division) and are automatically symmetrized when performing
the inverse transformation. Hence, there is no precaution to take for the matrix Ŵ in
practice. Simply it must be of size nx × (ny/2 + 1).

• Low pass filter: The solutions to our problem (1) are usually rather smooth. Hence,
when we perform the RFFT, the "very high" frequencies can be neglected. They simply
participate in the fact that the RFFT is a bijection. Typically, a good approximated
solution can be recovered, keeping only the m×m first "low" frequencies.

Remark (Number of parameters). An interesting aspect of the FNO is the small number of
parameters to optimize. Indeed, since we truncate the high frequencies, for each Clθ the number
of parameters to optimize is less than nx×ny×nd×nd. In fact, the total number of parameters
nθ does not depend on the resolution and is given by

nθ =

Pθ : 3×nd+nd︷ ︸︸ ︷
4× nd + 4× (

Cl
θ : by truncation of
high frequencies︷ ︸︸ ︷
2× n2

d ×m2 +

Bl
θ︷ ︸︸ ︷

n2
d + nd)︸ ︷︷ ︸

Hl
θ

+

Qθ : nd×nQ+nQ+nQ×1+1︷ ︸︸ ︷
(nd + 2)× nQ + 1 .

In the following test cases, for the chosen hyperparameters this will represent 324577 param-
eters to optimize.

Remark. Once trained, FNOs can work with input data fh, gh, wh of arbitrary dimensions.
This property of multi resolution is due to a special structure of FNO. In fact, FNO is presented
in [16, 13] as an approximation of mappings acting on infinite dimensional function spaces. It
is thus not surprising that its discretization can be done, in principle, on any mesh.

Border issues An issue of the RFFT applied to non-periodic functions is the Gibbs phe-
nomenon: some oscillations appear on the border. To erase them, we apply a padding tech-
nique: we extend the matrices, adding entries all around, before performing the convolution.
After the convolution, we restrict the matrix to its original shape to partially erase the oscil-
lations. See the last point of Appendix B for more details.

3 The proposed architecture

As previously said, the main idea of this paper is to present the combination of the two
methods we have presented before, namely ϕ-FEM and the FNO. The main objective of this
approach is thus to take advantage of the precision of ϕ-FEM and the capacity of the FNO to
produce nearly instantaneous results once the network is trained so that the method can be
used in real-time simulations. A detailed representation of the entire used pipeline is given in
Fig. 3, where the input data and the final output are in red.

9

ϕh

fh

gh

X

Gθ

N Pθ Fourier layer Qθ N−1 wθ

4 times
×

+ uθ

v

F W Cℓ
θ F−1

Bℓθ

+

ClθHl
θ

σ

Figure 3: The ϕ-FEM-FNO pipeline. Illustration based on the representation of [16]. The
upper part represents the entire pipeline, and the lower part is a zoom on a Fourier layer.
The red circles correspond to the inputs provided by the user and the output returned by
our ϕ-FEM-FNO. We represent the inputs and outputs seen by the FNO in purple, where
X = (fh, ϕh, gh). In orange, Pθ and Qθ are two transformations parameterized by neural
networks. Moreover, F and F−1 are respectively the Fourier and inverse Fourier transforms.
In blue, σ is the activation function. Finally, black arrows correspond to steps inside our FNO,
and purple arrows to steps outside the FNO.

10

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0

1

2

3

4

5

6

7

0 10 20 30 40 50 60
0

10

20

30

40

50

60

0, 1 and 2

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Figure 4: Left: values of the level-set function ϕ. Right: Example of S0 (yellow, green, and
blue pixels), S1 (yellow and green pixels), and S2 (yellow pixels).

By construction, a prediction wθ of our FNO will be given on the same cartesian regular
grid of the inputs. Since we are interested in the solution only over Ωh, we need to define
a loss function acting only on the corresponding pixels. An example of data and truncated
output of our approach is represented in Fig. 7.

Loss function. Let us denote by Fh = (fn
h)n=0,...,Ndata , Φh = (ϕn

h)n=0,...,Ndata , Gh = (gnh)n=0,...,Ndata ,
and Wθ = (wn

θ)n=0,...,Ndata = (Gθ(fn
h , ϕ

n
h, g

n
h))n=0,...,Ndata with Ndata the size of the consid-

ered sample (validation sample or test sample for example). Moreover, we denote Utrue =
(untrue)n=0,...,Ndata where untrue = ϕn

hw
n
h+gnh , the ground truth solution and Uθ = (unθ)n=0,...,Ndata

with unθ = ϕn
hGθ(fn

h , ϕ
n
h, g

n
h) + gnh = ϕn

hw
n
θ + gnh the output of ϕ-FEM-FNO.

The loss to be optimized is given by

L (Utrue;Uθ) =
1

Ndata

Ndata∑
n=0

√∑2
i=0 Ei(untrue;u

n
θ)∑2

i=0Ni(untrue)
, (7)

where

E0(untrue;u
n
θ) =

∑
(i,j)∈Sn

0

∥untrue(i, j)− unθ (i, j)∥2 ,

E1(untrue;u
n
θ) =

∑
(i,j)∈Sn

1

(
∥∇h

xu
n
true(i, j)−∇h

xu
n
θ (i, j)∥2 + ∥∇h

yu
n
true(i, j)−∇h

yu
n
θ (i, j)∥2

)
,

E2(untrue;u
n
θ) =

∑
(i,j)∈Sn

2

(
∥∇h

x∇h
xu

n
true(i, j)−∇h

x∇h
xu

n
θ (i, j)∥2

+ ∥∇h
x∇h

yu
n
true(i, j)−∇h

x∇h
yu

n
θ (i, j)∥2 + ∥∇h

y∇h
yu

n
true(i, j)−∇h

y∇h
yu

n
θ (i, j)∥2

)
,

11

and

N0(u
n
true) =

∑
(i,j)∈Sn

0

∥untrue(i, j)∥2 ,

N1(u
n
true) =

∑
(i,j)∈Sn

1

(
∥∇h

xu
n
true(i, j)∥2 + ∥∇h

yu
n
true(i, j)∥2

)
,

N2(u
n
true) =

∑
(i,j)∈Sn

2

(
∥∇h

x∇h
xu

n
true(i, j)∥2 + ∥∇h

x∇h
yu

n
true(i, j)∥2 + ∥∇h

y∇h
yu

n
true(i, j)∥2

)
,

where ∇h is the centered finite difference approximation of the gradient and S0 is the set
of pixels satisfying ϕ ⩽ 0, i.e. corresponding to inside vertices of Ωh, and S1 (resp. S2) is the
set of pixels of S0 (resp. S1) deprived of a layer of pixels. These sets are represented in Fig. 4.

Remark. For the numerical part, the finite differences approximations ∇h
x and ∇h

y are defined
on the entire tensors. Indeed, we apply a padding technique during their computation. Hence,
the values exist everywhere on the tensors. See Fig. 15 for a representation of the results of
padding techniques.

Finally, we introduce the relative error of each order, Lp, p = 0, 1, 2, given by

Li (Utrue;Uθ) =
1

Ndata

Ndata∑
n=0

√
Ei(untrue;u

n
θ)

Ni(untrue)
. (8)

Remark. In (7), we can remark that the loss is computed with respect to untrue and not wn
true.

This way of computing the loss does not mean that our FNO will predict unθ . It only means
that we will predict a solution wθ such that, multiplied by input function ϕh and added to gh,
the result will be close to untrue. Moreover, we use the first and second derivatives in the loss
since it leads to better results than using only L0 as the loss function (see Appendix C).

Relative L2 norms. We will also compute two types of L2 relative norms to evaluate the
performance of our method. The first one will be used to compute the errors with respect to
fine standard finite element solutions uref. This norm is defined by

∥ΠΩrefuθ − uref∥0,Ωref

∥uref∥0,Ωref

=

√√√√∫Ωref
(ΠΩrefuθ − uref)2 dx∫

Ωref
u2ref dx

, (9)

where ΠΩref denotes an approximation of the L2-orthogonal projection on the reference domain
Ωref (fine conformed mesh of Ω).

The second norm, that will be used to compute the error between a FNO solution and a
ground truth solution, is given by √

E0(utrue;uθ)

N0(utrue)
, (10)

where uθ = ϕhGθ(ϕh, fh, gh) + gh and utrue = ϕhwh + gh.

12

4 Numerical results

Let us now illustrate the efficiency of our technique by numerical test cases. We will first con-
sider the case of parametric domains, using varying elliptic domains to illustrate the accuracy
and the fastness of the method compared to four other methods. Then, we will extend our
study to more complex shapes.

We will fix nd = 20 (number of neurons acting on each node), nQ = 128 (number of
neurons in the first layer of the projection Qθ) and m = 10 (the number of low frequencies
considered in the low pass filter). This choice is motivated by the results of Appendix B. In
the data produced by ϕ-FEM, the parameter σD is fixed to 1.

Training, validation, and test samples We will detail three types of samples. The
one used to train our models (optimization of the parameters) is the training sample. The
validation sample will be used to evaluate the accuracy of a model for several validation steps
during the training. This sample will help us to determine the best model of a training,
avoiding overfitting. Finally, the term testing data will be used for new data, generated in
the same way as the training and validation samples but not used at all during the training
of the models.

Implementation details All the simulations were executed on a laptop with an Intel Core
i7-12700H CPU, 32Gb of memory, and an NVIDIA RTX A2000 GPU with 8Gb of memory.

The data were generated using the python finite element library FEniCS [1] and the FNO
is implemented3 using the Pytorch[22] library. Moreover, we will use an ADAM optimizer with
an initial learning rate α = 0.005, β1 = 0.9, β2 = 0.999, and ε = 10−7 to train the operator
(see Appendix D Algo. 1). During training, the learning rate is reduced when the loss on the
validation sample does not decrease over several epochs. See the numerical implementation of
the learning rate scheduler4 for more details.

The algorithm of the training loop is presented in Appendix D Algo. 2. The chosen
hyperparameters are described in Appendix B.

4.1 The case of varying ellipses

Let us first consider the case of elliptic domains. We will solve the equation{
−∆u = f , in Ω ,

u = g , on Γ .
(11)

The level-set functions will be given by

ϕ(x0,y0,lx,ly ,θ)(x, y) =
((x− x0) cos(θ) + (y − y0) sin(θ))

2

l2x

+
((x− x0) sin(θ)− (y − y0) cos(θ))

2

l2y
− 1 , (12)

3All the codes and datasets used in this paper are available at https://github.com/KVuillemot/PhiFEM_
and_FNO.

4https://github.com/KVuillemot/PhiFEM_and_FNO/tree/main/Ellipses/main/scheduler.py

13

with
x0, y0 ∼ U([0.2, 0.8]) , lx, ly ∼ U([0.2, 0.45]) and θ ∼ U([0, π]) . (13)

The level-set (12) represents the equation of an ellipse centered in (x0, y0) of semi-major
axis lx and semi-minor axis ly, rotated by an angle θ around the center of the ellipse, as
illustrated for example in Fig. 1 (left). In addition, since the domain must lie entirely within
the unit square, we fix additional constraints on the parameters of ϕ(x0,y0,lx,ly ,θ) to ensure
that this condition is satisfied (see the GitHub repository5 for the implementation of these
constraints).

The random functions f and g of (11) are given by

f(µ0,µ1,σx,σy)(x, y) = 25 exp

(
−(x− µ0)

2

2σ2
x

− (y − µ1)
2

2σ2
y

)
, (14)

and
g(α,β)(x, y) = α

(
(x− 0.5)2 − (y − 0.5)2

)
cos (βyπ) , (15)

where (µ0, µ1) ∼ U([0.2, 0.8]2∩{ϕ < −0.15}), σx, σy ∼ U([0.15, 0.45]) and α, β ∼ U([−0.8, 0.8]).
We generate a set of data of size 1800, split into a training set of size 1500 and a validation

set of size 300. The training set is then divided into batches of size 32 (number of data
considered in the loss function in one computation of the gradient) at each of the 2000 epochs
(number of loops over all the batches), as explained in Algorithm 2. This test case will be
divided into 3 main parts: we will first study the results during the training on the validation
sample, which will lead to the choice of an "optimal" model. Then, we will focus on the results
on a first test sample, to compare the results of the models during the training with a ϕ-FEM
solutions sample. Finally, in the third part, we will compare our ϕ-FEM-FNO method to
ϕ-FEM, a standard FEM solver, a FNO trained with interpolated standard FEM solutions,
and Geo-FNO (see [14]).

Results on the validation sample We represent in Fig. 5 (left) the evolution of the loss
function L and of each Li on a random subset of the training dataset and in Fig. 5 (right) on
the validation dataset, both of size 300 . During the training, we select the model minimizing
the loss function L on the validation set. This model will be considered to be the optimal
model returned by the training and will be used in the third part of this test case. To check
the optimality of this model, we represent with boxplots the evolution of the L2 errors given
by formula (10) of few models of the training, on the validation sample, in Fig. 6. This
representation illustrates that the selected model seems to be the best one. We also represent
in Fig. 7 the data and the prediction minimizing the L2 error among the validation data.

Validation of the model of a first test dataset. We will now focus on a second important
point: the error of the models on a test dataset, in the norm (10). This will allow us to verify
that the operator is well trained and that on new data, it behaves approximately as on the
validation data. This will also be a final check of the optimality of the selected best model. For
that, we will consider 10000 new data and compute the error in the norm defined by (10), for
some saved models of the training, including the optimal one. The results in Fig. 8 confirm that
the selected optimal model seems to be the best of the training. In addition, we also represent
in Fig. 9 the evolution of the minimal, maximal, average errors, and the standard deviation of

5https://github.com/KVuillemot/PhiFEM_and_FNO/blob/main/Ellipses/main/prepare_data.py

14

0 250 500 750 1000 1250 1500 1750 2000
Epochs

10
3

10
2

10
1

Evolution of and i on the training set

0(train)
1(train)

2(train)
(train)

0 250 500 750 1000 1250 1500 1750 2000
Epochs

Evolution of and i on the validation set

0(val)
1(val)

2(val)
(val)

Figure 5: Test case 1. Results of the training for the first test case. Evolution of the Li for
i = 0, 1, 2 and of the loss function L. Left: results on the training sample. Right: results on
the validation sample.

50 100 250 500 750 1000 1250 1500 2000 1995
Training epochs

10
4

10
3

10
2

L2
re

la
tiv

e
er

ro
r

Figure 6: Test case 1. Evolution of the (10) errors on the validation set at different steps of
the training. The optimal model is represented in red.

0 20 40 60
0

10

20

30

40

50

60

f

16 18 20 22 24

0 20 40 60
0

10

20

30

40

50

60

g

0.02 0.01 0.00 0.01

0 20 40 60
0

10

20

30

40

50

60

w + g

0.0 0.1 0.2 0.3 0.4

0 20 40 60
0

10

20

30

40

50

60

wref + g

0.0 0.1 0.2 0.3 0.4

Figure 7: Test case 1. Example of result among the validation sample after 1995 epochs,
with an error in the norm (10) of 1.5× 10−4.

15

50 100 250 500 750 1000 1250 1500 2000 1995
Training epochs

10
4

10
3

10
2

10
1

L2
re

la
tiv

e
er

ro
r

Figure 8: Test case 1. Evolution of the (10) errors on the first test sample at different steps
of the training.

0 500 1000 1500 2000
Epochs

10
2

Mean
Standard deviation

0 500 1000 1500 2000
Epochs

10
4

10
3

10
2

10
1

L2
re

la
tiv

e
er

ro
r

Maximum
Minimum

Figure 9: Test case 1. Evolution of the (10) errors on the test dataset at different steps of
the training. Left: in blue, the average value of the L2 relative error. In orange, the standard
deviation of the error. Right: in blue, the maximal value of the L2 relative error. In orange,
the maximal value. Red crosses correspond to the values for the best model.

the errors, on the same test dataset, with respect to the training epochs. This verification leads
to the conclusion that for this test case, 1500 training data seems to be sufficient to describe
the space of parameters (and thus of data) and to obtain a precise operator. Moreover, we
can see in the different representations that it could have been interesting to continue training
the operator since the errors seem to continue decreasing at 2000 epochs. However, we tried
to train the operator over 3000 epochs and the results did not significantly improve anymore
after 2000 epochs.

Comparison of Standard FEM, ϕ-FEM, ϕ-FEM-FNO, "Standard-FEM-FNO" and
Geo-FNO Let us then move to the most important numerical results to illustrate the inter-
est of our ϕ-FEM-FNO technique. In this part, we will compare ϕ-FEM-FNO with four other
approaches, to show the effectiveness of our method:

• ϕ-FEM-FNO: we call the previous optimal model with 1500 training data of resolution

16

64 × 64 (corresponding to a cell size h ≈ 0.022), taking, as said before, σD = 1 and P1

finite elements;

• ϕ-FEM: we apply the operator G†, with background meshes of resolution 64 × 64 (cor-
responding to a cell size h ≈ 0.022), taking σD = 1 and P1 finite elements;

• Standard FEM: we use a standard P1 finite element method to solve the problems on
meshes with cell size h ≈ 0.022, corresponding to the resolution used for the other
approaches;

• Standard-FEM-FNO: we use a FNO trained with standard P1 FEM solutions on meshes
of sizes h ≈ 0.022, interpolated on Cartesian grids of size 64 × 64 as data. The loss
function used to train Standard-FEM-FNO is the relative H2 norm and the operator is
trained during 2000 epochs.

• Geo-FNO: we have trained a Geo-FNO, adapting the approach of [14] to our test case,
using as input of the operator a set of 2600 points and the values of f and g at each
of these points. We used 2600 points to obtain an average cell size close to 0.02. The
operator has been trained during 2000 epochs, using the L2 relative norm. The difference
with the other approaches is that the cell sizes are not constant between two meshes
since the constant is the number of points defining the meshes. Hence, in Fig. 11, we
consider the average size of cell to compare the methods.

The three ML-based methods (ϕ-FEM-FNO, Standard-FEM-FNO, and Geo-FNO) have
been trained using the same dataset, adapted to each method (i.e., during the data generation
steps, we consider the same set of parameters (x0, y0, lx, ly, θ, µ0, µ1, σx, σy, α, β)), and the
same hyperparameters during training (see Appendix B).

Remark (Implementation aspect.). To compare our method with a standard finite element
method, we need to construct conforming meshes using the values of the level-set function ϕ.
The creation of a mesh using a level-set function is not directly possible with FEniCS. Thus,
we need to create such meshes manually. For this step, we use pymedit6 which uses the Mmg
platform7. We refer the reader to the GitHub repository8 for details on the installation and
two examples of use.

To compare ϕ-FEM-FNO with the other methods, we generate a new test sample of size 300
and use the best models of each ML-based method to predict the solutions to these problems.
The solutions of each method are projected on a reference fine mesh where the size of cells
href ≈ 0.002, as illustrated in Fig. 10. The errors are then computed in the norm (9) using a
fine standard finite element solution as a reference solution. Fig. 11 (top left) illustrates that
the trained ϕ-FEM-FNO after 1995 epochs approaches the precision of a standard method,
and is sometimes even better. Moreover, ϕ-FEM is approximately only 5 times more precise
than the ϕ-FEM-FNO operator. In addition, ϕ-FEM-FNO is approximately 2.5 times and 10
times more precise than Standard-FEM-FNO and Geo-FNO respectively.

In Fig. 11 (top right), we illustrate the fastness of ϕ-FEM-FNO, compared to standard
FEM and ϕ-FEM. For that, we change the size of the input dataset and apply each of the three
methods. As we can make several ϕ-FEM-FNO calls in parallel on the GPU, computation

6https://pypi.org/project/pymedit/
7https://www.mmgtools.org/
8https://github.com/KVuillemot/PhiFEM_and_FNO/blob/main/install_and_use_mmg.md

17

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
Reference solution

0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

-FEM solution
L2 relative error : 0.00035

0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Standard FEM solution
L2 relative error : 0.00118

0.0 0.1 0.2 0.3 0.4 0.5

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Predicted solution
L2 relative error : 0.00075

0.0 0.1 0.2 0.3 0.4 0.5

Figure 10: Test case 1. Outputs of ϕ-FEM, standard FEM and ϕ-FEM-FNO. The prediction
of ϕ-FEM-FNO is made using the model after 1995 epochs.

time does not change much with the number of considered data. Hence, in comparison, the
time required to solve multiple problems is much lower with ϕ-FEM-FNO than with the other
methods.

Moreover, it is also interesting to locate the precision of the predictions of the FNO-based
methods on the convergence curves of the two finite element methods. For that, we generate
20 new data, and we compute reference solutions to all these problems using a fine standard
finite element, with h ≈ 0.001 for each problem. We then compute ϕ-FEM and standard
FEM for different cell sizes h. We represent the L2 errors of the two methods with respect
to the mesh size h (Fig. 11, bottom left) and with respect to the computation times (Fig. 11,
bottom right). These two representations also justify our choice of using ϕ-FEM as a finite
element solver. Indeed, if the standard FEM had given better results than ϕ-FEM on test
problems, ϕ-FEM would not necessarily have been the best solver to generate data. Moreover,
we represent the errors of ϕ-FEM-FNO and standard-FEM-FNO for the same problems, called
on data of resolutions 64 × 64, and of Geo-FNO for the same problems, using 2600 points.
In Fig. 11 (bottom left), blue and orange crosses are the mean error for different sizes h.
The filled-in areas correspond to intervals around the mean points, whose lengths are the
standard deviations of the errors for each h. The red cross (resp. purple cross) is the average
error of ϕ-FEM-FNO (resp. Standard-FEM-FNO) for the same dataset, and the intervals are
constructed in the same way as the blue and orange filled-in areas. Finally, in brown, we
represent the same for Geo-FNO, using the average h among the 20 resolutions as the x-axis.

Finally, in Fig. 11 (bottom right), we illustrate the biggest advantage of our method, by
representing the errors with respect to the computation times for each method. For that,
we compute the average time and error for ϕ-FEM and standard FEM for each size h. We
represent these averages with orange and blue crosses. Moreover, the blue and orange filled-in
areas correspond to the same intervals as in Fig. 11 (bottom left). We represent in blue and
orange the intervals centered in the average computation time for each size, whose lengths
are the standard deviations of the computation times. Finally, we represent with red, purple,
and brown ellipses the same things for ϕ-FEM-FNO, standard-FEM-FNO, and Geo-FNO: the
centers of the ellipses are the average computation times and average errors, the heights of the
ellipses are the standard deviations of the errors, and their widths are the standard deviations
of the computation times. For ϕ-FEM, the computation times are the sum of the times needed
to select and to build Ωh, the assembly of the finite element matrix, and the resolution of the
linear system. For standard FEM, we add the mesh construction time, the assembly time,
and the resolution time. Finally, for the FNO-based methods, the computation times are only

18

-FEM Std FEM -FEM-FNO Std-FEM-FNO Geo-FNO

Method

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

10
0

10
1

10
2

Number of input data

10
3

10
4

C
om

pu
ta

tio
n

tim
e

ra
tio

Std-FEM / -FEM-FNO
-FEM / -FEM-FNO

10
2

10
1

h

10
4

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

Std-FEM
-FEM
-FEM-FNO

Std-FEM-FNO
Geo-FNO

10
2

10
1

10
0

10
1

Computation time (s)

10
4

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

Std-FEM
-FEM
-FEM-FNO

Std-FEM-FNO
Geo-FNO

Figure 11: Test case 1. Top left: Relative L2 errors of the methods (from left to right:
ϕ-FEM, standard method, ϕ-FEM-FNO, Standard-FEM-FNO, Geo-FNO). Top right: com-
putation times of the methods. Bottom left: Relative L2 errors, with respect to h. Bottom
right: Relative L2 errors, with respect to the computation times.

the time of one call of the models.

4.2 The case of varying complex shapes

We now move to a more complex case. Indeed, for the first test case, we have considered the
case of very smooth and convex shapes. However, since the objective of ϕ-FEM is to work
on medical images, it is interesting to work on more complex shapes. Indeed, our idea is to
provide a method that can give fast and precise results on such domains. To create complex
geometries, we use random level-set functions generated using Fourier series, oscillating in the
box (0, 1)2, such that the level-set functions ϕ are defined by 9 Fourier modes as follows

ϕ(x, y) = 0.4−
3∑

k=1

3∑
l=1

αkl sin(kπx) sin(lπy), (16)

where αkl ∼ U([−1, 1]). Moreover, we add a few constraints on the constructed domain
Ω = {ϕ < 0}: it must not be too close to the boundary, too small, and must be a connected
domain. If these conditions are not verified, we create another level-set function ϕ by creating
a different set of parameters. We represent 4 examples of such level-set functions and given
domains, in Fig. 12. Finally, we solve the equation (11), using f and g defined by (14) and
(15) respectively.

19

0

10

20

30

40

50

60
h

0.4 0.2 0.0 0.2 0.4

0

10

20

30

40

50

60
h = { h < 0}

1 0 1

0

10

20

30

40

50

60
h

0.2 0.0 0.2 0.4

0

10

20

30

40

50

60
h = { h < 0}

1 0 1

0

10

20

30

40

50

60
h

0.4 0.2 0.0 0.2 0.4

0

10

20

30

40

50

60
h = { h < 0}

1 0 1

0

10

20

30

40

50

60
h

0.2 0.0 0.2 0.4

0

10

20

30

40

50

60
h = { h < 0}

1 0 1

Figure 12: Test case 2. Examples of considered level-set functions and domains, using (16).

Remark (Preparation of the dataset.). After the step of data generation, we must observe a step
of data preparation. Indeed, some shapes are not well treated with ϕ-FEM such as not smooth
enough shapes or some shapes with holes. Hence, we perform a step of selection of the data:
we compute the maximum of the residues (i.e. the maximal value of ∆h(ϕhwh + gh) + fh, on
Ωh, where ∆huh = ∇h

x∇h
xuh +∇h

y∇h
yuh) to ensure that the derivatives and second derivatives

do not explode. These restriction is done only during the generation of the training and
validation data.

For this test case, the previous constraint leads to selecting a sample of size 2637 over
a dataset of size 3000. This dataset is then divided into a training set of size 2200 and a
validation sample of size 437. Finally, the operator is trained during 2000 epochs, with the
same hyperparameters as in the first test case.

The evolution of Li, i = 0, 1, 2 and of L are presented in Fig. 13. As for the first test
case, at the end of the training, we consider as the optimal model the one minimizing the loss
function on the validation sample, here, the one after 1984 epochs.

To compare the standard FEM, ϕ-FEM, and ϕ-FEM-FNO, we consider the best ϕ-FEM-
FNO model, i.e. after 1984 epochs. We compute the errors with respect to a fine standard finite
element solution, as in the first test case, on a test dataset of size 300 (that do not necessarily
respect the above constraint on the residuals used during the training data generation). The
results are given in Fig. 14 (top). The predictions of ϕ-FEM-FNO are then close to the
solutions of the standard FEM and are sometimes even better. However, we can remark some
atypical points. These points correspond to very complex shapes, far from the shapes of the
training dataset. Increasing the size of the training dataset can correct this issue but our idea
was to illustrate that in general, our approach gives precise results without too much training
data. Moreover, to illustrate the advantage of our method compared to finite element solvers,
we represent, as in the first test case (Fig. 11), the convergence curves of standard FEM and ϕ-
FEM, adding the errors of the ϕ-FEM-FNO predictions. In Fig. 14 (bottom left), we represent
the error against the cell size h and in Fig. 14 (bottom right), against the computation times.

20

0 250 500 750 1000 1250 1500 1750 2000
Epochs

10
3

10
2

10
1

Evolution of and i on the training set

0(train)
1(train)

2(train)
(train)

0 250 500 750 1000 1250 1500 1750 2000
Epochs

Evolution of and i on the validation set

0(val)
1(val)

2(val)
(val)

Figure 13: Test case 2. Results of the training for the first test case. Evolution of the Li for
i = 0, 1, 2 and of the loss function L. Left: results on the training sample. Right: results on
the validation sample.

The computation time of the standard method is the sum of the times needed to generate
a mesh from a level-set function, to assemble and to solve the linear system. For ϕ-FEM, it
is the sum of the times needed to select the cells of Ωh and of ΩΓ

h , and the times to assemble
and solve the linear system. Finally, the computation time of ϕ-FEM-FNO corresponds to the
time to call the model for one data. Hence, Fig. 14 (right) illustrates very well the interest
of our method: for approximately the same error as a standard finite element solver, the
computation is approximately 150 times faster.

5 Conclusion and future works

We have shown on two test cases that after training, our ϕ-FEM-FNO can compute faster
than standard finite element methods, ϕ-FEM, an interpolate-FEM approach or Geo-FNO on
several problems. Moreover, we have illustrated that these results can be obtained using small
amounts of training data, even for complex cases with big variations of geometries.

A number of perspectives remain for future research. It would be interesting to extend the
results to other problems since ϕ-FEM schemes have been written and studied theoretically and
numerically (Neumann conditions, mixed conditions, linear elasticity, Stokes, time-dependent
PDEs, . . .). In future works, we can compare the results with other neural networks like for
example, CNN ([21]). Some enhancements like factorization of the layer for the operator ([27])
could be made in order to accelerate the training and increase the accuracy.

Moreover, in the future, we can extend our results to the case of hyperelastic materials
as in [20], and implement the method in the DeepPhysX project9. Furthermore, another
interesting point would be to extend our method to more realistic scenarios, considering real
medical images and more realistic forces and boundary conditions. Finally, we can also imagine
extending our method to the case of Pk functions, using the degrees of freedom values instead

9https://mimesis.inria.fr/project/deepphysx/

21

-FEM Standard FEM -FEM-FNO
Method

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

10
2

10
1

h

10
4

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

Std-FEM
-FEM
-FEM-FNO

10
2

10
1

10
0

10
1

Computation time (s)

10
4

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

Std-FEM
-FEM

-FEM-FNO

Figure 14: Test case 2. Top: relative L2 errors (9) of the three methods on similar resolutions,
with 300 data. Bottom left: relative L2 errors (9) against resolution. Right: relative L2 errors
(9) of the methods against computation time (in seconds).

22

of nodal values for the data generation and thus predicting the values of the solution at each
Pk degrees of freedom.

Finally, to represent more complex and general forces, one can train an FNO using Gaus-
sian forces. Then, one can decompose a new random force in a sum of Gaussian distributions
and use the trained model on each one of the Gaussian forces. Thanks to GPU parallelization,
each prediction can be done simultaneously, and it only remains to sum the predictions to
obtain the final result.

6 Acknowledgment

The authors were supported by the ANR project JCJC 22-CE46-0003.

References

[1] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring,
M. Rognes, and G. Wells. Archive of numerical software: The fenics project version 1.5.
University Library Heidelberg, 2015.

[2] K. Bhattacharya, B. Hosseini, N. B. Kovachki, and A. M. Stuart. Model reduction and
neural networks for parametric pdes. The SMAI journal of computational mathematics,
7:121–157, 2021.

[3] S. Cotin, M. Duprez, V. Lleras, A. Lozinski, and K. Vuillemot. ϕ-FEM: an efficient
simulation tool using simple meshes for problems in structure mechanics and heat transfer.
In Partition of Unity Methods (Wiley Series in Computational Mechanics) 1st Edition.
Wiley, Nov. 2022.

[4] R. A. DeVore. The theoretical foundation of reduced basis methods. Model reduction and
approximation: theory and algorithms, 15:137, 2017.

[5] M. Duprez, V. Lleras, and A. Lozinski. A new ϕ-FEM approach for problems with
natural boundary conditions. Numer. Methods Partial Differential Equations, 39(1):281–
303, 2023.

[6] M. Duprez, V. Lleras, and A. Lozinski. ϕ-FEM: an optimally convergent and easily
implementable immersed boundary method for particulate flows and Stokes equations.
ESAIM Math. Model. Numer. Anal., 57(3):1111–1142, 2023.

[7] M. Duprez, V. Lleras, A. Lozinski, and K. Vuillemot. ϕ-FEM for the heat equation: opti-
mal convergence on unfitted meshes in space. Comptes Rendus. Mathématique, 361:1699–
1710, 2023.

[8] M. Duprez and A. Lozinski. ϕ-FEM: a finite element method on domains defined by
level-sets. SIAM J. Numer. Anal., 58(2):1008–1028, 2020.

[9] R. Enjalbert, A. Odot, and S. Cotin. mimesis-inria/deepphysx: 22.06, Dec. 2022.

[10] A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159. Springer,
2004.

23

[11] T. G. Grossmann, U. J. Komorowska, J. Latz, and C.-B. Schönlieb. Can physics-informed
neural networks beat the finite element method? arXiv preprint arXiv:2302.04107, 2023.

[12] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[13] N. B. Kovachki, Z. Li, B. Liu, K. Azizzadenesheli, K. Bhattacharya, A. M. Stuart, and
A. Anandkumar. Neural operator: Learning maps between function spaces. CoRR,
abs/2108.08481, 2021.

[14] Z. Li, D. Z. Huang, B. Liu, and A. Anandkumar. Fourier neural operator with learned
deformations for pdes on general geometries, 2022.

[15] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. Neural operator: Graph kernel network for partial differential equa-
tions. arXiv preprint arXiv:2003.03485, 2020.

[16] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and
A. Anandkumar. Fourier neural operator for parametric partial differential equations,
ICLR 2021.

[17] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, A. Stuart, K. Bhattacharya, and
A. Anandkumar. Multipole graph neural operator for parametric partial differential equa-
tions. Advances in Neural Information Processing Systems, 33:6755–6766, 2020.

[18] L. Lu, P. Jin, and G. E. Karniadakis. Deeponet: Learning nonlinear operators for iden-
tifying differential equations based on the universal approximation theorem of operators.
arXiv preprint arXiv:1910.03193, 2019.

[19] M. Nastorg, M.-A. Bucci, T. Faney, J.-M. Gratien, G. Charpiat, and M. Schoenauer. An
Implicit GNN Solver for Poisson-like problems. working paper or preprint, Feb. 2023.

[20] A. Odot, R. Haferssas, and S. Cotin. DeepPhysics: a physics aware deep learning frame-
work for real-time simulation. working paper or preprint, Mar. 2023.

[21] K. O’Shea and R. Nash. An introduction to convolutional neural networks, 2015.

[22] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Te-
jani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala. Pytorch: An imper-
ative style, high-performance deep learning library, 2019.

[23] M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational Physics, 378:686–707, Feb. 2019.

[24] O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical
image segmentation. In Medical Image Computing and Computer-Assisted Intervention–
MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015,
Proceedings, Part III 18, pages 234–241. Springer, 2015.

24

[25] J. Sirignano and K. Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

[26] N. Sukumar and A. Srivastava. Exact imposition of boundary conditions with distance
functions in physics-informed deep neural networks. Computer Methods in Applied Me-
chanics and Engineering, 389:114333, 2022.

[27] A. Tran, A. Mathews, L. Xie, and C. S. Ong. Factorized fourier neural operators. In The
Eleventh International Conference on Learning Representations, 2023.

[28] R. Wang, K. Kashinath, M. Mustafa, A. Albert, and R. Yu. Towards physics-informed
deep learning for turbulent flow prediction. In Proceedings of the 26th ACM SIGKDD In-
ternational Conference on Knowledge Discovery & Data Mining, pages 1457–1466, 2020.

[29] B. Yu et al. The deep ritz method: a deep learning-based numerical algorithm for solving
variational problems. Communications in Mathematics and Statistics, 6(1):1–12, 2018.

[30] J. Zhao, R. J. George, Z. Li, and A. Anandkumar. Incremental spectral learning in fourier
neural operator, 2023.

[31] Y. Zhu and N. Zabaras. Bayesian deep convolutional encoder–decoder networks for
surrogate modeling and uncertainty quantification. Journal of Computational Physics,
366:415–447, 2018.

A Standardization of the data

To improve the performance of our FNO, since the data can have very different values, we
have decided to standardize the input and output data, as in [16]. The standardization is
applied independently channel by channel of X, i.e. for F , Φ and G. For each channel C of
X, denoting by Ctrain the training part of the data-set corresponding to the channel C, the
associated standardized channel is given by

NC(C) =

(
C −mean(Ctrain)

std(Ctrain)

)
. (17)

Thus N(X) = (NF (F), Nϕ(Φ), NG(G)).
The unstandardization function N−1 is given by

N−1(Y) = Y × std(Y train) + mean(Y train) , (18)

where Y denotes the output of the FNO and Y train is the vector composed of the training
ground truth solutions.

B Calibration of the hyperparameters.

In this section, we justify our choice of hyperparameters. For that, we have performed in
Table 2 a random grid search over the following hyperparameters :

• The hidden dimension, nd. We have tested with nd = 10, 15, 20 and 25.

25

• The number of Fourier modes m. We have tested to train an operator with 5, 10, 15 or
20 Fourier modes. It is important to remark that there is an inescapable constraint on
this hyperparameter: the number of Fourier modes must be strictly less than the number
of nodes divided by two. So, if we increase the number of Fourier modes to more than
31, we will not be able to train or use our FNO on meshes of size 64 × 64. Moreover,
as explained in [30], choosing a too high number of modes can lead to overfitting during
the training.

• The initial value of the learning rate α, chosen in {0.01, 0.005, 0.002, 0.001}.

• The batch size, taken equal to 32, 64, or 128.

• The L2 regularization parameter λ, chosen in {0, 0.01, 0.001, 0.0001}.

• The padding technique and the proportion of padding: we have tested three techniques:
apply no padding, constant padding, and reflective padding. The differences between
the three techniques for a simple example are illustrated in Fig. 15 (see https://www.
tensorflow.org/api_docs/python/tf/pad for the original version). We have tested
with 0.025 and 0.05 as padding proportion, i.e. adding respectively 1 and 3 pixels at
each side of the images.

1 2 3

4 5 6

7 8 9

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 1 2 3 0 0

0 0 4 5 6 0 0

0 0 7 8 9 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

9 8 7 8 9 8 7

6 5 4 5 6 5 4

3 2 1 2 3 2 1

6 5 4 5 6 5 4

9 8 7 8 9 8 7

6 5 4 5 6 5 4

3 2 1 2 3 2 1

Figure 15: Different versions of padding techniques. Left: the original image (equivalent to
the one with no padding). Center: the result of a constant padding of the original image.
Right: the result of a reflective padding.

To determine an optimal choice of hyperparameters we have randomly chosen several com-
binations of them, among the sets of values given previously. For each of these combinations,
we have performed training over 2000 epochs, using the dataset of the first test case of Sec-
tion 4. For each training, we have computed two metrics on the validation sample: the relative
L2 error and the relative H2 error (i.e. the loss function). We present in Table 2 the results
of the best model for each set of parameters. This best model has been obtained by taking
the minimal relative L2 error over the training epochs. The set of parameters giving the best
results among the tested parameters is on the top line. We present the 20 best results. More-
over, in Table 2, the column "try" corresponds to the try with the set of parameters. Indeed,
we have performed at most 3 tries for each set, to see how much the errors depend on the
random initialization of the weights and if there was one set of parameters that would have
been better for different tries.

This random search leads to four initial guesses of optimal hyperparameters (the red
lines of Table 2). We have then fine-tuned the hyperparameters around the previous initial

26

L2

error
α m nd Batch

size
λ padding

proportion
padding
mode

try H2

error

epoch
duration

(s)

0.0013 0.005 10 20 32 0.001 0.05 Reflect 1 0.0025 2.4
0.0014 0.002 20 25 32 0.001 0 ⧸ 1 0.0026 2.7
0.0016 0.005 15 20 32 0.001 0.025 Constant 3 0.0034 2.7
0.0017 0.005 20 25 32 0.0001 0 ⧸ 3 0.0031 3.0
0.0017 0.002 10 25 32 0.0001 0.05 Reflect 3 0.0030 3.1
0.0018 0.002 10 15 64 0.0001 0.025 Constant 2 0.0040 1.8
0.0018 0.005 5 25 64 0.01 0.025 Constant 1 0.0032 2.4
0.0018 0.001 20 20 64 0.0001 0 ⧸ 1 0.0042 2.0
0.0018 0.002 15 15 64 0.0001 0 ⧸ 3 0.0038 1.7
0.0019 0.002 20 15 64 0.0001 0.05 Constant 2 0.0040 1.9
0.0019 0.002 10 15 32 0.0001 0.05 Constant 2 0.0035 2.5
0.0020 0.01 5 25 64 0.01 0 ⧸ 1 0.0034 2.0
0.0021 0.01 10 25 64 0.0001 0.05 Constant 3 0.0038 2.4
0.0021 0.001 5 10 32 0.001 0 ⧸ 1 0.0041 1.8
0.0021 0.001 15 20 128 0.0001 0.025 Reflect 1 0.0051 1.8
0.0021 0.002 5 25 64 0 0 ⧸ 3 0.0045 2.2
0.0022 0.002 20 20 32 0.01 0.05 Reflect 2 0.0044 2.8
0.0022 0.001 15 20 128 0.0001 0.05 Reflect 1 0.0051 1.9
0.0024 0.002 10 20 32 0.01 0 ⧸ 1 0.0045 2.6
0.0024 0.005 15 15 128 0.0001 0.025 Constant 3 0.0049 1.4
0.0024 0.001 10 10 32 0.01 0.025 Constant 1 0.0049 2.3

Table 2: Results of the hyperparameters random search.

guesses, finally choosing the ones giving the best compromise between H2 error, L2 error, and
computation times. These parameters are α = 0.005, m = 10, nd = 20, λ = 0.001, a batch
size of 32, and a reflective padding with a proportion of 0.05, leading to the optimal results
given in the first line of Table 2.

C Choice of the loss

To justify our choice of including the first and second derivatives in the loss function during
training, we compare the results of three training using the 3 following losses :

L0 (Utrue;Uθ) :=
1

Ndata

Ndata∑
n=0

√
E0(untrue;u

n
θ)

N0(untrue)
,

LH1 (Utrue;Uθ) :=
1

Ndata

Ndata∑
n=0

√
E0(untrue;u

n
θ) + E1(untrue;u

n
θ)

N0(untrue) +N1(untrue)
,

and the loss L defined by (7).

27

FNO 0 loss FNO H1 loss FNO loss
Method

10
4

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

-FEM Std FEM FNO 0 FNO H1 FNO
Method

10
3

10
2

R
el

at
iv

e
L2

er
ro

r

Figure 16: Left: Errors of prediction on 10000 data in the norm (10) (with respect to ϕ-FEM
solutions). Right: Errors on 300 data in the norm (9) (with respect to fine standard FEM
solutions).

To compare the three losses, we will predict the results of a dataset of size 10000 using
the best model of each training and compute the L2 relative errors with respect to a ground
truth ϕ-FEM solution (i.e. in the norm (10). The results are presented in Fig. 16 (left), and
confirm that using the second derivatives in the loss function leads to better results. However,
since the differences between the three losses are small, we cannot say that it is mandatory
to use L instead of L0. We also compare the three versions on a test dataset of 300 data, on
which we compute the errors with respect to fine standard reference solutions. The results in
Fig. 16 (right) lead to the same conclusion.

D ADAM and training loop algorithm

We present the details of the considered ADAM optimizer in Algorithm 1. In Algorithm 2
we denote (F i,Φi, Gi) a batch of data. The batches are randomly chosen such that F i =
(fk

h)k∈Ki
, Φi = (ϕk

h)k∈Ki
, Gi = (gkh)k∈Ki

with Ki a collection of random indices of data and
i ∈ {1, . . . , number of batches}. The sets Ki are constructed such that Ki ∩Kj = ∅ for i ̸= j.

Algorithm 1 ADAM optimizer step.
Initialisation : t, θt−1, β1, β2, ε, mt−1, vt−1.
Compute the gradient : gt ← ∇f(θt−1)
Momentum update :

mt ← β1 ·mt−1 + (1− β1) · gt , vt ← β2 · vt−1 + (1− β2) · gt · ḡt

Bias correction :
m̂t ←

mt

1− βt
1

, v̂t ←
vt

1− βt
2

Parameters update :
θt ← θt−1 −

α√
v̂t + ε

· m̂t − w1θt−1

28

Remark (Calibration of the learning rate.). The learning rate is a very important parameter
to tune to obtain precise results. Indeed, we have not included results to illustrate our choice
of learning rate, but it is important to specify that many tests have been done to determine
the right parameter: choosing a high learning rate or decreasing its value too slowly leads to
big oscillations and bad convergence. Choosing a too-low value or decrease too fast leads to
a very slow and bad convergence since the loss decreases very slowly and does not succeed in
decreasing enough to have good results. Hence, our learning rates have been fine-tuned using
several training on the two test cases using different learning rate schedulers. The scheduler
giving the best results was the chosen one, using the validation loss to make the learning rate
decrease.

Algorithm 2 Training loop.
Initialisation: θ0 the initial random parameters, X = (F,Φ, G) and Ytrue the training part
of the dataset, the batch size and the regularization parameter λ .
for t = 1 to number of epochs do

for i = 1 to number of batches do
Select a batch (F i,Φi, Gi) ⊂ X and Y i

true ⊂ Ytrue of size batch size.
Call the model : Yθ = Gθti−1

(F i,Φi, Gi).
Compute the loss :

L(Y i
true, Yθ) +

λ

2× batch size

∑
j

|wj |2︸ ︷︷ ︸
L2 regularization

.

Compute the gradient of the loss, w.r.t the parameters θti−1: ∇θti−1
L.

Optimizer step : step of Algorithm 1.
end for

Let (Fval,Φval, Gval) and Yval be the validation part of the dataset.
Call the model on the validation sample : Yθ = Gθti(Fval,Φval, Gval).
Compute the loss : L(Yval, Yθ).
Learning rate scheduler step.

end for

Training step

Validation step

29

