

LRTCFPan: Low-Rank Tensor Completion Based Framework for Pansharpening

Zhong-Cheng Wu, Ting-Zhu Huang, Liang-Jian Deng, Jie Huang, Jocelyn

Chanussot, Gemine Vivone

To cite this version:

Zhong-Cheng Wu, Ting-Zhu Huang, Liang-Jian Deng, Jie Huang, Jocelyn Chanussot, et al.. LRTCF-Pan: Low-Rank Tensor Completion Based Framework for Pansharpening. IEEE Transactions on Image Processing, 2023, 32, pp.1640-1655. 10.1109/TIP.2023.3247165. hal-04473781

HAL Id: hal-04473781 <https://hal.science/hal-04473781v1>

Submitted on 22 Apr 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

LRTCFPan: Low-Rank Tensor Completion Based Framework for Pansharpening

Zhong-Cheng Wu, Ting-Zhu Huang, *Member, IEEE*, Liang-Jian Deng, *Member, IEEE*, Jie Huang, *Member, IEEE*, Jocelyn Chanussot, *Fellow, IEEE*, Gemine Vivone, *Senior Member, IEEE*

 Abstract—Pansharpening refers to the fusion of a low spatial- resolution multispectral image with a high spatial-resolution panchromatic image. In this paper, we propose a novel low-rank tensor completion (LRTC)-based framework with some regular- izers for multispectral image pansharpening, called LRTCFPan. The tensor completion technique is commonly used for image recovery, but it cannot directly perform the pansharpening or, more generally, the super-resolution problem because of the formulation gap. Different from previous variational methods, we first formulate a pioneering image super-resolution (ISR) degradation model, which equivalently removes the downsam-12 pling operator and transforms the tensor completion framework. Under such a framework, the original pansharpening problem is realized by the LRTC-based technique with some deblurring regularizers. From the perspective of regularizer, we further explore a local-similarity-based dynamic detail mapping (DDM) term to more accurately capture the spatial content of the panchromatic image. Moreover, the low-tubal-rank property of multispectral images is investigated, and the low-tubal-rank prior is introduced for better completion and global characteriza- tion. To solve the proposed LRTCFPan model, we develop an alternating direction method of multipliers (ADMM)-based al- gorithm. Comprehensive experiments at reduced-resolution (i.e., simulated) and full-resolution (i.e., real) data exhibit that the LRTCFPan method significantly outperforms other state-of-the- art pansharpening methods. The code is publicly available at: *[https://github.com/zhongchengwu/code](https://github.com/zhongchengwu/code_LRTCFPan) LRTCFPan*.

 Index Terms—Low-rank tensor completion (LRTC), Dynamic detail mapping (DDM), Tubal rank, Alternating direction me- thod of multipliers (ADMM), Pansharpening, Super-resolution. 31

³² I. INTRODUCTION

 \prod_{34} igh-resolution multispectral (HR-MS) remote sensing
images play a crucial role in many practical applications, ³⁴ I images play a crucial role in many practical applications, α ₃₅ e.g., change detection [1], target recognition [2], and classifica-³⁶ tion [3]. Because of some physical constraints on the signal-to-³⁷ noise ratio [4], many sensors onboard satellite platforms, such

This research is supported by NSFC (Grant Nos. 12171072, 12271083), Key Projects of Applied Basic Research in Sichuan Province (Grant No. 2020YJ0216), Natural Science Foundation of Sichuan Province (Grant No. 2022NSFSC0501), and National Key Research and Development Program of China (Grant No. 2020YFA0714001). *(Corresponding authors: Ting-Zhu Huang; Liang-Jian Deng.)*

Z. C. Wu, T. Z. Huang, L. J. Deng and J. Huang are with the School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China (e-mails: wuzhch97@163.com; tingzhuhuang@126.com; liangjian.deng@uestc.edu.cn; huangiie uestc@uestc.edu.cn).

J. Chanussot is with Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France, also with the Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100045, China (e-mail: jocelyn.chanussot@grenoble-inp.fr).

G. Vivone is with the Institute of Methodologies for Environmental Analysis, CNR-IMAA, 85050 Tito Scalo, Italy (e-mail: gemine.vivone@imaa.cnr.it).

Fig. 1. The whole procedure of the proposed LRTCFPan, which is a low-rank tensor completion (LRTC)-based framework with the deblurring regularizer.

as Gaofen-2 (GF-2), QuickBird (QB), and WorldView-3 (WV- ³⁸ 3), acquire a low spatial-resolution multispectral (LR-MS) ³⁹ image while capturing higher spatial information into a gray- ⁴⁰ scaled panchromatic (PAN) image through another sensor. 41 Pansharpening refers to the spatial-spectral fusion of the LR- 42 MS image and the corresponding PAN image, aiming to yield $_{43}$ an underlying HR-MS image. To clearly illustrate the proposed 44 LRTCFPan model, the whole procedure is depicted in Fig. 1. 45

Different methodologies have recently been developed to 46 address the pansharpening problem. The most classical cate- ⁴⁷ gory is the component substitution (CS)-based methods. Some ⁴⁸ exemplary methods mainly include the principal component 49 analysis (PCA) $\lceil 5 \rceil$ method, the intensity-hue-saturation (IHS) $\frac{50}{2}$ [6] method, the Gram-Schmidt adaptive (GSA) [7] method, $\frac{51}{100}$ the band-dependent spatial-detail (BDSD) $[8]$ method, and the $\frac{52}{2}$ partial replacement adaptive component substitution (PRACS) 53 [9] method. In these methods, the spatial component of the 54 LR-MS image is separated by spectral transformation and substituted with the PAN image. Generally, the CS-based methods $_{56}$ are appealing for their reduced computational burden, but they 57 inevitably cause severe spectral distortion $[10]$. Another widely $\frac{58}{2}$ used category is the multi-resolution analysis (MRA)-based 59 methods. These methods inject the spatial details extracted $\overline{60}$ from the PAN image via multi-scale decomposition into the 61 upsampled LR-MS image. The instances of this class are the $\frac{62}{2}$ "à-trous" wavelet transform (ATWT) [11] method, the additive $\overline{63}$ wavelet luminance proportional (AWLP) $\lceil 12 \rceil$ method, and 64 the smoothing filter-based intensity modulation (SFIM) $\begin{bmatrix} 13 \end{bmatrix}$ 65 method. Compared with CS methods, the MRA methods are 66 characterized by higher spectral coherence while reducing spa- 67 tial preservation. Overall, both the CS and MRA methods have 68

 robust performance along different datasets. Furthermore, they usually do not require intensive tuning of parameters and have a lower computational complexity. Therefore, these methods are commonly used for benchmarking in pansharpening.

 More recently, deep learning (DL) has been rapidly devel- oped for computer vision applications $[14]$ – $[17]$. Many convo- lutional neural network (CNN)-based approaches, e.g., [18]– [23], have been designed for pansharpening, showing excellent capabilities for feature extraction and nonlinear mapping learn- ing [24], and getting better performance than traditional meth- ods. However, these CNN-based methods generally require a lot of computational resources and training data $[25]$, which severely limits their computational efficiency, generalization ability, and model interpretability.

83 Variational optimization-based implementations [26]–[29] 84 are in-between the CS/MRA and CNN-based methods, gener-⁸⁵ ally realizing a trade-off between performance and efficiency. 86 The variational methods are characterized by high general-87 ization and model interpretability [24]. These methods, e.g., $88 \quad [25]$, $[30]$ – $[36]$, consider the pansharpening problem as an ill-89 posed inverse problem constructing the link among the LR-MS ⁹⁰ image, the PAN image, and the underlying HR-MS image, thus ⁹¹ formulating an optimization model. The promising results have ⁹² been generated by adopting traditional image super-resolution 93 (ISR) degradation model, as in $[24]$, $[37]$, $[38]$, especially 94 when the characteristics of the MS sensors are considered, ⁹⁵ e.g., [24], [36]. However, due to the coupling of the ill-posed ⁹⁶ blurring and downsampling problems, many super-resolution 97 models either exhibit the unnecessary solving complexity for ⁹⁸ decoupling, e.g., [24], or result in the unintuitive mixture of ⁹⁹ unfolding-based and tensor-based modeling, e.g., [39].

 In this paper, we propose a novel variational pansharpening method, i.e., the low-rank tensor completion (LRTC)-based framework with the deblurring regularizer, called LRTCFPan. More specifically, the proposed model consists of three folds. Firstly, we formulate a new ISR degradation model, thus theoretically decoupling and converting the original pansharp- ening problem into the LRTC-based framework, which directly eliminates the downsampling operator before regularization. Secondly, motivated by both the high-pass modulation (HPM) scheme and the local similarity of remote sensing images, we develop a new local-similarity-based dynamic detail mapping (DDM) regularizer, which is imposed on the LRTC-based framework to dynamically capture the high-frequency infor- mation of the PAN image. Furthermore, the low-tubal-rank characteristic is investigated, and the low-tubal-rank prior is introduced for better completion and global characterization. Under the ADMM framework, the proposed LRTCFPan model is efficiently solved. Extensive experiments confirm the supe- riority of the proposed LRTCFPan method over other classical and state-of-the-art pansharpening methods.

¹²⁰ The *contributions* of this paper are summarized as follows:

 • We formulate a novel ISR degradation model, allowing the LRTC-based framework with the deblurring regular- izer for pansharpening. Such a strategy directly eliminates the downsampling operator and provides a valuable per-spective for the pansharpening task.

Fig. 2. The graphical illustration of the t-SVD of tensor $\mathcal{X} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$.

- We design a local-similarity-based DDM regularizer to 126 better characterize the spatial structure information of the 127 PAN image. Within such a regularizer, we also explore a 128 new procedure for estimating injection coefficients.
- We investigate the low-tubal-rank characteristic of multi-
130 spectral images and impose the low-tubal-rank prior on 131 the LRTC-based framework, aiming for better completion 132 and global characterization.

The remainder of the paper is organized as follows. The 134 notations and preliminaries are introduced in Section II. The 135 related works and the proposed model are described in Sec- ¹³⁶ tion III. The proposed algorithm is provided in Section IV. The $_{137}$ numerical experiments are performed in Section V. Finally, the $_{138}$ conclusion is drawn in Section VI.

II. NOTATIONS AND PRELIMINARIES 140

A. *Notations* 141

Scalars, vectors, matrices, and tensors are denoted by low-
142 ercase letters, e.g., a, lowercase bold letters, e.g., a, upper- ¹⁴³ case bold letters, e.g., \bf{A} , and calligraphic letters, e.g., \bf{A} , $\bf{144}$ respectively. For a third-order tensor $\mathcal{A} \in \mathbb{R}^{I_1 \times I_2 \times \bar{I_3}}$, we 145 employ $\mathcal{A}(:,:,i)$ or $\mathbf{A}^{(i)}$ for its *i*-th frontal slice, $\mathcal{A}(i,j,:)$ 146 for its (i, j) -th tube, and $\mathcal{A}(i, j, k)$ or $a_{i, j, k}$ for its (i, j, k) -th 147 element. The Frobenius norm of $A \in \mathbb{R}^{I_1 \times I_2 \times I_3}$ is defined as 148 $||A||_F := \sqrt{\sum_{i,j,k} |a_{i,j,k}|^2}$. Besides, we use \bar{A} for the discrete 149 Fourier transformation (DFT) on all the tubes of A . Relying 150 upon the MATLAB command, we have $\overline{A} = \text{fft}(\mathcal{A}, [\cdot,]3)$. Conversely, A can be obtained from \overline{A} via the inverse DFT 152 along each tube, i.e., $\mathcal{A} = \text{ifft}(\bar{\mathcal{A}}, [\], 3).$

B. Preliminaries 154

For clarity, we provide some definitions and theorems, and 155 briefly introduce the LRTC basics.

Definition II.1 (Tensor convolution (t-Conv)). *Given a third-* ¹⁵⁷ *order tensor* $A \in \mathbb{R}^{I_1 \times I_2 \times I_3}$ *and a convolution kernel tensor* 158 $\mathcal{B} \in \mathbb{R}^{m \times m \times I_3}$, where set $\{\mathbf{B}^{(i)}\}_{i=1}^{I_3}$ indicates various kernels 159 *along the spectral dimension. Then, the t-Conv between* A *and* ¹⁶⁰ B yields a tensor $A \bullet B \in \mathbb{R}^{I_1 \times I_2 \times I_3}$, whose *i*-th frontal slice 161 *is defined by* 162

$$
(\mathcal{A} \bullet \mathcal{B})(:, :, i) := \mathbf{A}^{(i)} \otimes \mathbf{B}^{(i)},
$$

where ⊗ *represents the spatial convolution operator.* 163

Theorem 1 (Tensor singular value decomposition $(t\text{-SVD})$ 164 [40]). Let $A \in \mathbb{R}^{I_1 \times I_2 \times \bar{I_3}}$ be a third-order tensor, then it can 165 *be factorized as* 166

$$
\mathcal{A} = \mathcal{U} * \mathcal{S} * \mathcal{V}^H,
$$

- ¹⁶⁷ *where* ∗ *is the tensor-tensor product (t-product) operator,* U ∈
- ¹⁶⁸ $\mathbb{R}^{I_1 \times I_1 \times I_3}$ and $\mathcal{V} \in \mathbb{R}^{I_2 \times I_2 \times I_3}$ are orthogonal tensors, $\mathcal{S} \in$
- ¹⁶⁹ $\mathbb{R}^{I_1 \times I_2 \times I_3}$ is an f-diagonal tensor, and $\left(\cdot\right)^H$ represents the
- ¹⁷⁰ *conjugate transpose operator. See [40], [41] for more details.*
- 171 The graphical illustration of the t-SVD is shown in Fig. 2.
- ¹⁷² Definition II.2 (Tensor multi-rank and tubal rank [42]). *Let*
- ¹⁷³ $A \in \mathbb{R}^{I_1 \times I_2 \times I_3}$ be a third-order tensor, then the tensor multi-
- *rank is a vector rank*_m $(A) \in \mathbb{R}^{I_3}$ *with its i-th entry being the*
- *rank of the i-th frontal slice of* \overline{A} *, where* $\overline{A} = \text{fft}(\mathcal{A}, [\cdot, 3)]$ *.* ¹⁷⁶ *The tubal rank, denoted as rank*_t(\mathcal{A})*, is defined as the number*
- ¹⁷⁷ *of nonzero singular tubes of* S*, that is,*

$$
rank_{\mathbf{t}}(\mathcal{A}) := \#\{i, \mathcal{S}(i, i, :) \neq \mathbf{0}\},\
$$

where S *is provided by the t-SVD* $A = U * S * V^H$.

In particular, the inverse DFT $S = \text{ifft}(\bar{S}, [\, |, 3)$ gives the following equation

$$
\mathcal{S}(i, i, 1) = \frac{1}{I_3} \sum_{k=1}^{I_3} \bar{\mathcal{S}}(i, i, k),
$$

- where $\bar{S}(:, :, k)$ is the singular value matrix of the k-th frontal slice of \overline{A} . That is, $rank_{\mathbf{t}}(\mathcal{A}) = \max (rank_{\mathbf{m}}(\mathcal{A})).$
- ¹⁸¹ Definition II.3 (Tensor singular value [43]). *Given a third-*182 *order tensor* $A \in \mathbb{R}^{I_1 \times I_2 \times \bar{I}_3}$, then the singular values of A 183 *are defined as the diagonal elements of* $S(i, i, 1)$ *, where* S *is* ¹⁸⁴ *provided by the t-SVD* $\mathcal{A} = \mathcal{U} * S * \mathcal{V}^H$.

185 Therefore, $rank_{t}(A)$ is equivalent to the number of non- 186 zero tensor singular values of \mathcal{A} , and its non-convex approxi-¹⁸⁷ mation can be given via the following Definition II.4.

¹⁸⁸ Definition II.4 (Log tensor nuclear norm [39]). *For a tensor* 189 $A \in \mathbb{R}^{I_1 \times I_2 \times I_3}$, the log tensor nuclear norm is defined as the log -sum of the singular values of all the frontal slices of \overline{A} , ¹⁹¹ *i.e.,*

$$
\|\mathcal{A}\|_{lt} := \frac{1}{I_3} \sum_{k=1}^{I_3} \sum_{i=1}^t \log(\bar{\mathcal{S}}(i, i, k) + \epsilon),
$$

where $\overline{S} = \texttt{fft}(\mathcal{S}, [0, 3)]$ *, in which* S *is provided by the t-SVD* $A = U * S * V^H$, *t is the rank*_t(*A*), and ϵ *is a small positive* ¹⁹⁴ *value enforcing a non-zero input.*

¹⁹⁵ Theorem 2 (Tensor singular value thresholding (t-SVT) ¹⁹⁶ [44]). *For any* $\tau > 0$, and let $\mathcal{Y} = \mathcal{U} * S * \mathcal{V}^H$ be the t-SVD 197 *of tensor* $\mathcal{Y} \in \mathbb{R}^{I_1 \times I_2 \times I_3}$, *a closed-form minimizer of*

$$
\underset{\mathcal{X}}{\arg\min} \ \tau \|\mathcal{X}\|_{lt} + \frac{1}{2}\|\mathcal{X} - \mathcal{Y}\|_{F}^{2}
$$

¹⁹⁸ *is given by the t-SVT as* $Prox^{\epsilon}_{\tau}(\mathcal{Y})$ *, which is defined by*

$$
Prox_{\tau}^{\epsilon}(\mathcal{Y}) := \mathcal{U} * \mathcal{S}_{\tau}^{\epsilon} * \mathcal{V}^{H},
$$

 $\hat{S}^{\epsilon}_{\tau} = \texttt{ifft}(\bar{\mathcal{S}}^{\epsilon}_{\tau},[~],3)$ *. Let* $\bar{\mathcal{S}} = \texttt{fft}(\mathcal{S},[~],3)$ *, the* $\frac{1}{200}$ elements of $\bar{S}^{\epsilon}_{\tau}$ obey

$$
\bar{S}_{\tau}^{\epsilon}(i,j,k) = \begin{cases} 0, & \text{if } c_2 \le 0, \\ \frac{c_1 + \sqrt{c_2}}{2}, & \text{if } c_2 > 0, \end{cases}
$$

 $\text{where } c_1 = |\bar{\mathcal{S}}(i,j,k)| - \epsilon \text{ and } c_2 = c_1^2 - 4(\tau - \epsilon |\bar{\mathcal{S}}(i,j,k)|).$

Fig. 3. A deeper perspective on the "nearest" downsampling operator, which is widely adopted [37], [39]. The scale factor r is equal to 4, and $\mathcal{M} \downarrow_r = \mathcal{Y}$. Moreover, $\mathcal{Y} \uparrow_{r,0}$ denotes the result of using the scale factor r to perform zero-interpolation for Y.

In what follows, we also briefly introduce the LRTC basics. 202 The LRTC aims to recover the missing entries (values of 0) 203 from an observed incomplete tensor by exploiting various low- ²⁰⁴ rank priors, such as the Tucker rank $[45]$, the multi-rank $[46]$, 205 and the fibered rank [44]. Mathematically, the general rank- ²⁰⁶ minimization tensor completion model is formulated as 207

$$
\min_{\mathcal{X}} \ rank(\mathcal{X}) \qquad \text{s.t.} \quad \mathcal{P}_{\Omega}(\mathcal{X}) = \mathcal{Y}, \tag{1}
$$

where X is the underlying tensor, Y is the observed tensor, Ω is the index set indicating available entries, and $\mathcal{P}_{\Omega}(\cdot)$ is the projection function keeping the entries of $\mathcal X$ in Ω while forcing all the other values to zeros, i.e.,

$$
\left(\mathcal{P}_{\Omega}(\mathcal{X})\right)_{i_1, i_2, \cdots, i_N} := \begin{cases} x_{i_1, i_2, \cdots, i_N}, & \text{if } (i_1, i_2, \cdots, i_N) \in \Omega, \\ 0, & \text{otherwise.} \end{cases}
$$

Remark II.1. *According to the requirements of the projection* ²⁰⁸ *function in* (1)*, variables* X *and* Y *must have the same size,* ²⁰⁹ *and their elements in the set* Ω *must be numerically equivalent.* 210 *However, any two images involved in the pansharpening task* ²¹¹ *typically do not satisfy the prerequisites. Consequently, the* 212 *LRTC cannot be awkwardly applied to the pansharpening task.* ²¹³

III. RELATED WORKS AND PROPOSED MODEL ²¹⁴

Three images are involved in pansharpening, including the 215 underlying HR-MS image $X \in \mathbb{R}^{H \times W \times S}$, the LR-MS image 216 $\mathcal{Y} \in \mathbb{R}^{h \times w \times S}$, and the PAN image $\mathbf{P} \in \mathbb{R}^{H \times W}$. Additionally, 217 $H = h \times r$ and $W = w \times r$ hold, where r is the scale factor. 218

A. Related Works 219

1) Spectral Perspective: Since the LR-MS image can be 220 regarded as the degraded version of the underlying HR-MS ²²¹ image, the primary objective of the pansharpening methods is 222 to construct the degradation model between them. Similar to 223 the single image super-resolution problem $[47]$, $[48]$, there also 244 exists an acknowledged and widely used degradation model for 225 pansharpening, which is formulated by ²²⁶

$$
\mathcal{Y} = (\mathcal{X} \bullet \mathcal{B}) \downarrow_r + \mathcal{N}_0, \tag{2}
$$

where • is the defined t-Conv operator, \downarrow_r denotes the "near- 227 est" downsampling with the scale factor r, and \mathcal{N}_0 indicates an 228 additive zero-mean Gaussian noise. Such a degradation model 229 has extensively been adopted in the field of pansharpening, 230 significantly contributing to the variational optimization-based 231 pansharpening methods, such as $[24]$, $[37]$, $[49]$. *2) Spatial Perspective:* As an ill-posed imaging inverse $_{234}$ problem, the ISR degeneration model (2) makes it challenging to accurately reconstruct the underlying HR-MS image. Con- sequently, the pansharpening problem requires establishing another relationship between the underlying HR-MS image and the PAN image, thereby leveraging the spatial prior information of the latter. Considering the difficulty of nonlin- ear mapping, the multi-resolution analysis (MRA) framework [10], [18], [24], [50] has emerged as a powerful tool for learning the spatial information of the PAN image. Formally, the MRA framework is

$$
\mathcal{X} = \hat{\mathcal{Y}} + \mathcal{G} \cdot (\hat{\mathcal{P}} - \hat{\mathcal{P}}_{LP}),\tag{3}
$$

where $\widehat{\mathcal{Y}} \in \mathbb{R}^{H \times W \times S}$ denotes the interpolated version of \mathcal{Y} , 245 $\widehat{\mathcal{P}} \in \mathbb{R}^{H \times W \times S}$ is the replicated or histogram-matched version 246 of $\mathbf{P}, \hat{\mathcal{P}}_{LP} \in \mathbb{R}^{H \times W \times S}$ is the low-pass filtered version of $\hat{\mathcal{P}},$ 247 G is the injection coefficient, and \cdot is the Hadamard product. ²⁴⁸ Two common options for defining the coefficient are $\mathcal{G} = 1$ ²⁴⁹ (i.e., the additive injection scheme) and $G = \mathcal{Y} \cdot / \mathcal{P}_{LP}$ (i.e., the high-pass modulation (HPM) scheme), where $\cdot/$ denotes the high-pass modulation (HPM) scheme), where $\cdot/$ denotes the ²⁵¹ element-wise division. Benefiting from the greater flexibility ²⁵² in configuring the local weights, the HPM scheme is generally ²⁵³ superior to the additive one and is successfully introduced into 254 the variational pansharpening methods, e.g., $[24]$, $[51]$.

²⁵⁵ *B. Proposed Model*

 As previously described, the coupled formulation between blurring and downsampling typically causes two drawbacks: 1) the unnecessary solving complexity for decoupling, and 2) the inconsistency in modeling form. To alleviate these limitations, we consider developing a new ISR degradation model by in- $_{261}$ vestigating the downsampling operator. As illustrated in Fig. 3, 262 the "nearest" downsampling \downarrow_r can actually be refined into a two-stage operator, i.e., "nearest" sampling and decimation, and the former is a sampling mode for the LRTC problem. 265 Accordingly, when the form of $\mathcal{M} \downarrow_r = \mathcal{Y}$ is established and the LR-MS image is preprocessed, the inverse problem of "nearest" downsampling can be modeled by tensor completion. Inspired by it, we easily modify the original ISR degradation model (2) based on the fact that there exists a zero-mean 270 Gaussian noise \mathcal{N}_1 such that $\mathcal{N}_1 \downarrow_r = \mathcal{N}_0$, leading to

$$
\mathcal{Y} = (\mathcal{X} \bullet \mathcal{B}) \downarrow_r + \mathcal{N}_0 = (\mathcal{X} \bullet \mathcal{B}) \downarrow_r + \mathcal{N}_1 \downarrow_r
$$

= (\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) \downarrow_r. (4)

 Consequently, the new ISR degradation model can be repre-272 sented as $\mathcal{Y} = (\mathcal{X} \cdot \mathcal{B} + \mathcal{N}_1) \downarrow_r$, which assumes that the LR-MS image is the blurred, noisy, then downsampled version of the underlying HR-MS image. When the LR-MS image is further processed, the degradation model can be equivalently rewritten as the following projection-based form

$$
\mathcal{P}_{\Omega}(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) = \mathcal{Y} \uparrow_{r,0},\tag{5}
$$

277 where $\mathcal{Y}\uparrow_{r,0} \in \mathbb{R}^{H\times W\times S}$ is the preprocessed image. Relying ²⁷⁸ upon the projection-based formulation, the downsampling operator \downarrow_r is eliminated, and only the $\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1$ is maintained.

Fig. 4. The graphical illustration of estimating the modulated image D (i.e., $\mathcal{G}_{new} \cdot (\hat{\mathcal{P}} - \hat{\mathcal{P}}_{LP})$ on a reduced-resolution Guangzhou image (source: GF-2). Symbols \cdot and *diff* denote the Hadamard product and the pixel-wise difference, respectively. The block size is 8×8 , and the low-pass filters are available².

To generate the underlying HR-MS image, we can formulate 280 the following rank-minimization problem

$$
\min_{\mathcal{X}, \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1} rank(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1)
$$

s.t. $\mathcal{P}_{\Omega}(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) = \mathcal{Y} \uparrow_{r,0}$, (6)

where $rank(\cdot)$ indicates the tensor rank to be determined. 282 Since model (6) is obviously ill-posed, the regularizer that can 283 leverage the spatial information of the PAN image is required. ²⁸⁴

To explore a superior regularizer, the HPM model of (3) is 285 further improved. Despite the significant merits of the HPM 286 model, the coefficient G , i.e., $\mathcal{Y} \cdot / \mathcal{P}_{LP}$, generally demonstrates 287 unstable computational accuracy and hypersensitivity, which 288 unstable computational accuracy and hypersensitivity, which are explained by the nonuniqueness of $\mathcal Y$ and the oversensi-
tivity of $\widehat{\mathcal P}_{LP}$ for different low-pass filters. Moreover, although $_{290}$ tivity of \mathcal{P}_{LP} for different low-pass filters. Moreover, although 290 is originally adopted to approximate the low-frequency $\mathcal Y$ is originally adopted to approximate the low-frequency $_{291}$ information of $\mathcal X$, the chaotic relationship is inevitably caused $_{292}$ information of X , the chaotic relationship is inevitably caused owing to $\mathcal{Y} = (\mathcal{X} \cdot \mathcal{B} + \mathcal{N}_1) \downarrow_r$. To address these deficiencies, 293 we consider directly computing the low-frequency information 294 of X by $\mathcal{X} \bullet \mathcal{B}$ and developing a novel strategy for estimating 295 the coefficient. Resultantly, we have 296

$$
\mathcal{X} - \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_2 = \mathcal{G}_{new} \cdot (\widehat{\mathcal{P}} - \widehat{\mathcal{P}}_{LP}),\tag{7}
$$

where \mathcal{N}_2 is a Gaussian error, $\widehat{\mathcal{P}}^1$ is the histogram-matched **P**, 297 and \mathcal{G}_{new} is the new coefficient determined in Section III-C. 298 For simplicity, model (7) can compactly be expressed as 299

$$
\mathcal{X} - \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_2 = \mathcal{D},\tag{8}
$$

where $\mathcal{D} = \mathcal{G}_{new} \cdot (\widehat{\mathcal{P}} - \widehat{\mathcal{P}}_{LP})$ is the pre-modulated image. ₃₀₀
Furthermore, considering the similarity of the local spatial de-Furthermore, considering the similarity of the local spatial details, we conduct model (8) on each image patch to learn more $\frac{302}{202}$ accurate coefficients (see Fig. 4), thus completely forming the \sim 303 local-similarity-based DDM regularizer. Equipped with such a 304 regularizer, the rank-minimization model (6) is improved as 305

$$
\min_{\mathcal{X}, \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1} rank(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) + \lambda_1 ||\mathcal{X} - \mathcal{X} \bullet \mathcal{B} - \mathcal{D}||_F^2
$$
\n
$$
\text{s.t.} \quad \mathcal{P}_{\Omega}(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) = \mathcal{Y} \uparrow_{r,0}. \tag{9}
$$

 $\mathbf{P}^{(i)} = (\texttt{Std}(\mathbf{Y}^{(i)}) / \texttt{Std}(\mathbf{P}))\big(\mathbf{P} - \texttt{Mean}(\mathbf{P})\big) + \texttt{Mean}(\mathbf{Y}^{(i)}), \text{ where }$ Mean(\cdot) and $\text{Std}(\cdot)$ are the mean and standard deviation operators.

²[http://openremotesensing.net/knowledgebase/](http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/)

[a-critical-comparison-among-pansharpening-algorithms/](http://openremotesensing.net/knowledgebase/a-critical-comparison-among-pansharpening-algorithms/)

306

4

307 Regarding the above model (9), the low-rank characteristic 308 of variable $\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1$ needs to be investigated. Among the traditional and classical tensor decompositions, the CANDE-310 COMP/PARAFAC (CP) one [52], Tucker one [53], and tensor singular value decomposition (t-SVD) $[40]$ have been widely $_{312}$ applied to the hyperspectral super-resolution problem [54], 313 [55]. Corresponding to these decompositions, the CP rank, Tucker rank, and tubal rank have also been introduced into the tensor completion problem $[56]$ – $[58]$. However, the existence 316 of the optimal CP-rank approximation cannot be assured [59]. 317 Moreover, since the $\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1$ for pansharpening is merely the multispectral image, the low-Tucker-rank property is rel- atively insignificant, especially along the spectral dimension. Accordingly, we investigate the tubal-rank rather than other characteristics of multispectral images. From Fig. $5(c)$ and (f), 322 we observe that $X \bullet \mathcal{B} + \mathcal{N}_1$ has a significant low-rankness, revealing the validity of the low-tubal-rank prior. Additionally, Fig. 5(a) and (d) depict that the underlying HR-MS image X can also exhibit the low-tubal-rank property, which implies that the global low-tubal-rank prior can be imposed on the underlying HR-MS image to penalize the ill-posed deconvo- lution problem. By combining two corresponding low-bubal- rank regularizers, model (9) can be transformed into the final LRTC-based framework, i.e., LRTCFPan, as follows,

$$
\min_{\mathcal{X}, \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1} rank_{\mathsf{t}}(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) + \lambda_1 \| \mathcal{X} - \mathcal{X} \bullet \mathcal{B} - \mathcal{D} \|_F^2
$$

+ $\lambda_2 rank_{\mathsf{t}}(\mathcal{X})$
s.t. $\mathcal{P}_{\Omega}(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) = \mathcal{Y} \uparrow_{r,0}.$ (10)

331 Since directly solving rank minimization is NP-hard, we give 332 the non-convex approximation of model (10) by

$$
\min_{\mathcal{X}, \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1} \|\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1\|_{lt} + \lambda_1 \|\mathcal{X} - \mathcal{X} \bullet \mathcal{B} - \mathcal{D}\|_F^2
$$

+ $\lambda_2 \|\mathcal{X}\|_{lt}$
s.t. $\mathcal{P}_{\Omega}(\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1) = \mathcal{Y} \uparrow_{r,0}.$ (11)

333 Let $\mathcal{T} = \mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1$, model (11) can be further converted to $\min_{\mathcal{X}} \|\mathcal{X}\|_{lt} + \lambda_1 \|\mathcal{X}-\mathcal{X}\bullet \mathcal{B}-\mathcal{D}\|_F^2 + \lambda_2 \|\mathcal{X}\bullet \mathcal{B}-\mathcal{T}\|_F^2$

$$
\frac{1}{\mathcal{X}, \mathcal{T}} \|\cdot\|_{lt} \|\cdot\|_{lt}
$$

where $\mathcal{D} = \mathcal{G}_{new} \cdot (\widehat{\mathcal{P}} - \widehat{\mathcal{P}}_{LP})$ is computed before regularization, and λ_l , $l = 1, 2, 3$, are positive regularization parameters. 335 tion, and λ_l , $l = 1, 2, 3$, are positive regularization parameters.

336 *C. Estimating Coefficient* \mathcal{G}_{new}

 337 According to (7) , we easily have the following equation

$$
\left((\mathcal{X}-\mathcal{X}\bullet\mathcal{B}+\mathcal{N}_2)\bullet\mathcal{B}\right)\downarrow_r=\left(\mathcal{G}_{new}\cdot(\widehat{\mathcal{P}}-\widehat{\mathcal{P}}_{LP})\bullet\mathcal{B}\right)\downarrow_r. (13)
$$

338 When $G_{new}^{(i)}$, $i = 1, 2, \cdots, S$, are constant matrices, the above 339 equation (13) is equivalent to

$$
(\mathcal{X} \bullet \mathcal{B}) \downarrow_r + (\mathcal{N}_2 \bullet \mathcal{B}) \downarrow_r - (\mathcal{X} \bullet \mathcal{B} \bullet \mathcal{B}) \downarrow_r
$$

= $\mathcal{G}_{new} \downarrow_r \cdot ((\widehat{\mathcal{P}} \bullet \mathcal{B}) \downarrow_r - (\widehat{\mathcal{P}}_{LP} \bullet \mathcal{B}) \downarrow_r).$ (14)

Fig. 5. The illustration of the low-tubal-rank characteristic on the reducedresolution Guangzhou image (sensor: GF-2). The first row is (a) the HR-MS image modeled as $\mathcal{X} \in \mathbb{R}^{256 \times 256 \times 4}$, (b) the low-pass filtered image, and (c) the filtered image with Gaussian noise of standard deviation level 0.01. The (d), (e), and (f) illustrate the singular value curves of (a), (b), and (c), respectively. The approximated tubal ranks [44] are marked by black stars.

Since X is unavailable, we assume that there exists a Gaussian $_{340}$ error $\mathcal E$ such that the following equation holds 341

$$
(\mathcal{X} \bullet \mathcal{B} \bullet \mathcal{B}) \downarrow_r = (\mathcal{X} \bullet \mathcal{B} + \mathcal{E}) \downarrow_r \bullet \mathcal{B}.
$$
 (15)

Subsequently, equation (14) can be rewritten as 342

$$
(\mathcal{X} \bullet \mathcal{B}) \downarrow_r + (\mathcal{N}_2 \bullet \mathcal{B}) \downarrow_r - (\mathcal{X} \bullet \mathcal{B} + \mathcal{E}) \downarrow_r \bullet \mathcal{B}
$$

= $\mathcal{G}_{new} \downarrow_r \cdot ((\widehat{\mathcal{P}} \bullet \mathcal{B}) \downarrow_r - (\widehat{\mathcal{P}}_{LP} \bullet \mathcal{B}) \downarrow_r).$ (16)

For $\mathcal{E}_1, \mathcal{E}_2 \in \mathbb{R}^{H \times W \times S}$ and $\mathcal{E}_3 \in \mathbb{R}^{h \times w \times S}$, we further define 343

$$
\Gamma_{\mathcal{E}_1,\mathcal{E}_2} := (\mathcal{X} \bullet \mathcal{B} + \mathcal{E}_1) \downarrow_r - (\mathcal{X} \bullet \mathcal{B} + \mathcal{E}_2) \downarrow_r \bullet \mathcal{B} \qquad (17)
$$

 and 344

$$
\Upsilon_{\mathcal{E}_3} := (\widehat{\mathcal{P}} \bullet \mathcal{B}) \downarrow_r -\mathcal{E}_3. \tag{18}
$$

Ultimately, coefficients $G_{new}^{(i)}$, $i = 1, 2, \cdots, S$, can be esti-
345 mated by 346

$$
\mathbf{G}_{new}^{(i)} = \frac{\sum_{k=1}^{w} \sum_{j=1}^{h} \left((\Gamma_{\mathcal{N}_2 \bullet \mathcal{B}, \mathcal{E}})^{(i)} \cdot (\Upsilon_{(\widehat{\mathcal{P}}_{LP} \bullet \mathcal{B})\downarrow_r})^{(i)} \right)_{j,k}}{\left\| (\Upsilon_{(\widehat{\mathcal{P}}_{LP} \bullet \mathcal{B})\downarrow_r})^{(i)} \right\|_{F}^{2}}
$$
\n
$$
\approx \frac{\sum_{k=1}^{w} \sum_{j=1}^{h} \left((\mathcal{Y} - \mathcal{Y} \bullet \mathcal{B})^{(i)} \cdot (\Upsilon_{(\widehat{\mathcal{P}}_{LP} \bullet \mathcal{B})\downarrow_r})^{(i)} \right)_{j,k}}{\left\| (\Upsilon_{(\widehat{\mathcal{P}}_{LP} \bullet \mathcal{B})\downarrow_r})^{(i)} \right\|_{F}^{2}}
$$
\n
$$
\approx \frac{\sum_{k=1}^{w} \sum_{j=1}^{h} \left((\mathcal{Y} - \mathcal{Y} \bullet \mathcal{B})^{(i)} \cdot (\Upsilon_{(\widehat{\mathcal{P}}_{LP})\downarrow_r \bullet \mathcal{B}})^{(i)} \right)_{j,k}}{\left\| (\Upsilon_{(\widehat{\mathcal{P}}_{LP})\downarrow_r \bullet \mathcal{B}})^{(i)} \right\|_{F}^{2}}
$$
\n
$$
\approx \frac{\left\| (\Upsilon_{(\widehat{\mathcal{P}}_{LP})\downarrow_r \bullet \mathcal{B}})^{(i)} \right\|_{F}^{2}}
$$
\n(19)

where 1 is the all-ones matrix, and the $\Upsilon_{(\widehat{\mathcal{P}}_{LP})\downarrow_r\bullet\mathcal{B}}$ is adopted sate to maintain consistency with the $(\mathcal{X} \bullet \mathcal{B} + \mathcal{E}) \downarrow_r \bullet \mathcal{B}$ in (15). to maintain consistency with the $(\mathcal{X} \bullet \mathcal{B} + \mathcal{E}) \downarrow_r \bullet \mathcal{B}$ in (15). When $\mathcal{N}_1 \rightarrow 0$, $\mathcal{N}_2 \rightarrow 0$, $\mathcal{G}_{new} \rightarrow 1$, but $\mathcal{E} \rightarrow 0$, the negative 349 impact from $\mathcal E$ can be appropriately weakened. 350

351 IV. PROPOSED ALGORITHM

³⁵² *A. Algorithm*

³⁵³ For optimizing the proposed LRTCFPan model, we develop

³⁵⁴ an efficient ADMM-based algorithm. By introducing auxiliary 355 variables Q , R and Z , we can rewrite (12) as the following ³⁵⁶ constrained problem

$$
\min_{\mathcal{X},\mathcal{T}} \|\mathcal{Q}\|_{lt} + \lambda_1 \|\mathcal{R} - \mathcal{Z} - \mathcal{D}\|_F^2 + \lambda_2 \|\mathcal{Z} - \mathcal{T}\|_F^2 + \lambda_3 \|\mathcal{T}\|_{lt}
$$

s.t. $\mathcal{P}_{\Omega}(\mathcal{T}) = \mathcal{Y} \uparrow_{r,0}, \mathcal{Q} = \mathcal{X}, \mathcal{R} = \mathcal{X}, \mathcal{Z} = \mathcal{X} \bullet \mathcal{B}.$ (20)

 357 The augmented Lagrangian function of (20) is

$$
\mathcal{L}(\mathcal{X}, \mathcal{T}, \mathcal{Q}, \mathcal{R}, \mathcal{Z}) = \|\mathcal{Q}\|_{lt} + \lambda_1 \|\mathcal{R} - \mathcal{Z} - \mathcal{D}\|_F^2
$$

+ $\lambda_2 \|\mathcal{Z} - \mathcal{T}\|_F^2 + \lambda_3 \|\mathcal{T}\|_{lt} + \iota(\mathcal{T}) + \frac{\eta_1}{2} \left\|\mathcal{X} - \mathcal{Q} + \frac{\Lambda_1}{\eta_1}\right\|_F^2$
+ $\frac{\eta_2}{2} \left\|\mathcal{X} - \mathcal{R} + \frac{\Lambda_2}{\eta_2}\right\|_F^2 + \frac{\eta_3}{2} \left\|\mathcal{X} \bullet \mathcal{B} - \mathcal{Z} + \frac{\Lambda_3}{\eta_3}\right\|_F^2, (21)$

358 where Λ_l , $l = 1, 2, 3$, are the Lagrange multipliers, η_l , $l =$

359 1, 2, 3, are positive penalty parameters, and $\iota(\mathcal{T})$ is an indicator ³⁶⁰ function defined as

$$
\iota(\mathcal{T}) := \begin{cases} 0, & \text{if } \mathcal{P}_{\Omega}(\mathcal{T}) = \mathcal{Y} \uparrow_{r,0}, \\ \infty, & \text{otherwise.} \end{cases}
$$
 (22)

 361 Afterwards, model (20) can be solved by alternatively mini-³⁶² mizing the following simpler subproblems:

 $1)$ X-subproblem: By fixing $\mathcal{T}, \mathcal{Q}, \mathcal{R}, \mathcal{Z},$ and Λ_l , the X-³⁶⁴ subproblem can be given as

$$
\min_{\mathcal{X}} \frac{\eta_1}{2} \left\| \mathcal{X} - \mathcal{Q} + \frac{\Lambda_1}{\eta_1} \right\|_F^2 + \frac{\eta_2}{2} \left\| \mathcal{X} - \mathcal{R} + \frac{\Lambda_2}{\eta_2} \right\|_F^2
$$

+
$$
\frac{\eta_3}{2} \left\| \mathcal{X} \bullet \mathcal{B} - \mathcal{Z} + \frac{\Lambda_3}{\eta_3} \right\|_F^2.
$$
 (23)

 According to the modulation transfer function (MTF)-matched 366 filters [60], the $\mathbf{B}^{(i)}$, $i = 1, 2, \cdots, S$, can be configured with different blurring kernels $\left[36\right]$. Accordingly, we can rearrange problem (23) as the frontal slice-based expression, i.e.,

$$
\begin{split} \min_{\mathcal{X}} \quad & \frac{\eta_{1}}{2} \sum_{i=1}^{S} \left\| \mathbf{X}^{(i)} - \mathbf{Q}^{(i)} + \frac{\mathbf{\Lambda}_{1}^{(i)}}{\eta_{1}} \right\|_{F}^{2} \\ & + \frac{\eta_{2}}{2} \sum_{i=1}^{S} \left\| \mathbf{X}^{(i)} - \mathbf{R}^{(i)} + \frac{\mathbf{\Lambda}_{2}^{(i)}}{\eta_{2}} \right\|_{F}^{2} \\ & + \frac{\eta_{3}}{2} \sum_{i=1}^{S} \left\| \mathbf{X}^{(i)} \otimes \mathbf{B}^{(i)} - \mathbf{Z}^{(i)} + \frac{\mathbf{\Lambda}_{3}^{(i)}}{\eta_{3}} \right\|_{F}^{2}, \end{split} \tag{24}
$$

³⁶⁹ which is equivalent to

$$
\begin{split} \min_{\mathcal{X}} \quad & \sum_{i=1}^{S} \left(\frac{\eta_1}{2} \left\| \mathbf{X}^{(i)} - \mathbf{Q}^{(i)} + \frac{\mathbf{\Lambda}_1^{(i)}}{\eta_1} \right\|_F^2 \\ &+ \frac{\eta_2}{2} \left\| \mathbf{X}^{(i)} - \mathbf{R}^{(i)} + \frac{\mathbf{\Lambda}_2^{(i)}}{\eta_2} \right\|_F^2 \\ &+ \frac{\eta_3}{2} \left\| \mathbf{X}^{(i)} \otimes \mathbf{B}^{(i)} - \mathbf{Z}^{(i)} + \frac{\mathbf{\Lambda}_3^{(i)}}{\eta_3} \right\|_F^2 \right). \end{split} \tag{25}
$$

Algorithm 1 The ADMM-based LRTCFPan Solver

Input: $\mathcal{Y}, \mathbf{P}, \lambda_l, \eta_l, r = 4$, and $\epsilon = 2 \times 10^{-5}$. Initialization: 1: $\mathcal{X} \leftarrow 0, \mathcal{T} \leftarrow 0, \mathcal{Q} \leftarrow 0, \mathcal{R} \leftarrow 0, \mathcal{Z} \leftarrow 0, \text{ and } \Lambda_l \leftarrow 0.$ 2: $\mathcal{D} \leftarrow \mathcal{G}_{new} \cdot (\hat{\mathcal{P}} - \hat{\mathcal{P}}_{LP}).$
3: while not converged do while not converged do 4: Record the last-update result X*last*. 5: Updata $\mathcal X$ via (27)-(28). 6: Updata $\mathcal T$ via (30). 7: Updata Q via (32) . 8: Updata $\mathcal R$ via (34). 9: Updata $\mathcal Z$ via (36). 10: Updata Lagrange multipliers Λ_l via (37). 11: Check the convergence criterion: 12: $\|\mathcal{X} - \mathcal{X}_{last}\|_F / \|\mathcal{X}_{last}\|_F < \epsilon.$ 13: end while **Output:** The HR-MS image X .

Therefore, the original minimization problem (23) can be 370 separated into S independent problems as follows, 371

$$
\min_{\mathbf{X}^{(i)}} \frac{\eta_1}{2} \left\| \mathbf{X}^{(i)} - \mathbf{Q}^{(i)} + \frac{\mathbf{\Lambda}_1^{(i)}}{\eta_1} \right\|_F^2 + \frac{\eta_2}{2} \left\| \mathbf{X}^{(i)} - \mathbf{R}^{(i)} + \frac{\mathbf{\Lambda}_2^{(i)}}{\eta_2} \right\|_F^2 + \frac{\eta_3}{2} \left\| \mathbf{X}^{(i)} \otimes \mathbf{B}^{(i)} - \mathbf{Z}^{(i)} + \frac{\mathbf{\Lambda}_3^{(i)}}{\eta_3} \right\|_F^2, \ i = 1, 2, \cdots, S. \tag{26}
$$

Under the condition of periodic boundary, the closed-form 372 solution of the *i*-th problem is given by 373

$$
\mathbf{X}^{(i)} \leftarrow \mathcal{F}^{-1} \bigg(\mathbf{\Sigma} \cdot / \left(\eta_3 \mathcal{F}(\mathbf{B}^{(i)}) \cdot \mathcal{F}(\mathbf{B}^{(i)})^{\ddagger} + \eta_1 + \eta_2 \right) \bigg) \tag{27}
$$

 $with$ 374

$$
\Sigma = \eta_1 \mathcal{F}(\mathbf{Q}^{(i)}) + \eta_2 \mathcal{F}(\mathbf{R}^{(i)}) - \mathcal{F}(\mathbf{\Lambda}_1^{(i)}) - \mathcal{F}(\mathbf{\Lambda}_2^{(i)}) + \left(\eta_3 \mathcal{F}(\mathbf{Z}^{(i)}) - \mathcal{F}(\mathbf{\Lambda}_3^{(i)})\right) \cdot \mathcal{F}(\mathbf{B}^{(i)})^{\ddagger}, \tag{28}
$$

where $\mathcal{F}(\cdot)$ and $\mathcal{F}^{-1}(\cdot)$ are the 2-D fast Fourier transform 375 (FFT) and its inverse operator, respectively, and ‡ denotes the ³⁷⁶ complex conjugate. 377

2) \mathcal{T} -*subproblem:* Similarly, the \mathcal{T} -subproblem is $\frac{378}{27}$

$$
\min_{\mathcal{T}} \ \lambda_2 \|\mathcal{Z} - \mathcal{T}\|_F^2 + \lambda_3 \|\mathcal{T}\|_{lt} + \iota(\mathcal{T}).\tag{29}
$$

Based on Theorem 2 and the definition of indicator function 379 $\iota(\mathcal{T})$, we have 380

$$
\mathcal{T} \leftarrow \mathcal{P}_{\Omega^c} \left(\text{Prox}_{\frac{\varepsilon_{\lambda_3}}{2\lambda_2}}(\mathcal{Z}) \right) + \mathcal{Y} \uparrow_{r,0}, \tag{30}
$$

where Ω^c indicates the complementary set of Ω . 381

3)
$$
Q
$$
-subproblem: By fixing the other estimated directions for alternating, we obtain the Q -subproblem as

$$
\min_{\mathcal{Q}} \ \|\mathcal{Q}\|_{lt} + \frac{\eta_1}{2} \left\|\mathcal{X} - \mathcal{Q} + \frac{\Lambda_1}{\eta_1}\right\|_F^2. \tag{31}
$$

Based on Theorem 2 again, we can immediately get 384

$$
Q \leftarrow \operatorname{Prox}_{\frac{\epsilon_1}{\eta_1}}^{\epsilon} \left(\mathcal{X} + \frac{\Lambda_1}{\eta_1} \right). \tag{32}
$$

Fig. 6. The fusion results on the reduced-resolution Guangzhou dataset (source: GF-2). The first two rows: the visual inspection of the ground-truth (GT) image and the close-ups of the fused images. The last two rows: the residual maps using the GT image as a reference.

³⁸⁵ *4)* R*-subproblem:* The R-subproblem is

$$
\min_{\mathcal{R}} \ \lambda_1 \left\| \mathcal{R} - \mathcal{Z} - \mathcal{D} \right\|_F^2 + \frac{\eta_2}{2} \left\| \mathcal{X} - \mathcal{R} + \frac{\Lambda_2}{\eta_2} \right\|_F^2, \tag{33}
$$

which has the closed-form solution as follows,

$$
\mathcal{R} \leftarrow \frac{2\lambda_1(\mathcal{Z}+\mathcal{D}) + \eta_2\mathcal{X} + \Lambda_2}{2\lambda_1 + \eta_2}.
$$
 (34)

³⁸⁷ *5)* Z*-subproblem:* The Z-subproblem is

$$
\min_{\mathcal{Z}} \lambda_1 \|\mathcal{R} - \mathcal{Z} - \mathcal{D}\|_F^2 + \frac{\eta_3}{2} \left\| \mathcal{X} \bullet \mathcal{B} - \mathcal{Z} + \frac{\Lambda_3}{\eta_3} \right\|_F^2
$$
\n
$$
+ \lambda_2 \|\mathcal{Z} - \mathcal{T}\|_F^2.
$$
\n(35)

³⁸⁸ Correspondingly, the closed-form solution is given by

$$
\mathcal{Z} \leftarrow \frac{2\lambda_1(\mathcal{R}-\mathcal{D}) + 2\lambda_2\mathcal{T} + \eta_3\mathcal{X}\bullet\mathcal{B} + \Lambda_3}{2(\lambda_1 + \lambda_2) + \eta_3}.
$$
 (36)

³⁸⁹ Under the ADMM framework, the Lagrangian multipliers 390 Λ_l , $l = 1, 2, 3$, can be directly updated by

$$
\begin{pmatrix}\n\Lambda_1 \\
\Lambda_2 \\
\Lambda_3\n\end{pmatrix}\n\leftarrow\n\begin{pmatrix}\n\Lambda_1 \\
\Lambda_2 \\
\Lambda_3\n\end{pmatrix}\n+\n\begin{pmatrix}\n\eta_1 & 0 & 0 \\
0 & \eta_2 & 0 \\
0 & 0 & \eta_3\n\end{pmatrix}\n\begin{pmatrix}\n\mathcal{X} - \mathcal{Q} \\
\mathcal{X} - \mathcal{R} \\
\mathcal{X} \bullet \mathcal{B} - \mathcal{Z}\n\end{pmatrix}.
$$
\n(37)

³⁹¹ The solving pseudocode for the proposed LRTCFPan model ³⁹² is summarized in Algorithm 1.

³⁹³ *B. Computational Complexity Analysis*

³⁹⁴ The complexity of Algorithm 1 mainly involves comput-³⁹⁵ ing the FFT, the inverse FFT (IFFT), and the SVD. More 396 specifically, the computational complexity of updating $\mathcal X$ is 397 $\mathcal{O}(HWS\log(HW))$. The computational complexity of up-398 dating $\mathcal T$ and $\mathcal Q$ is $\mathcal O(HWS(\log(S) + \min(H, W)))$. Since $\log(S) + \min(H, W) \gg \log(HW)$, more computational re-400 sources are generally consumed for solving the $\mathcal T$ and $\mathcal Q$ ⁴⁰¹ subproblems. Furthermore, the computational complexity of 402 updating R, Z, and Λ_l ($l = 1, 2, 3$) is $\mathcal{O}(HWS)$. Therefore, ⁴⁰³ the total computational complexity for each iteration in Algo-404 rithm 1 is $\mathcal{O}(HWS(\log(HWS) + \min(H, W))).$

V. EXPERIMENTAL RESULTS 405

To validate the superiority of the proposed LRTCFPan ⁴⁰⁶ method, we conduct comprehensive numerical experiments on 407 several commonly used datasets¹, including the Guangzhou 408 dataset (source: GF-2), the Indianapolis dataset (source: QB), ⁴⁰⁹ and the Rio dataset (source: WV-3). The scale factors for all 410 the datasets are 4, i.e., $r = 4$. Numerically, all experimental 411 data are pre-normalized into $[0, 1]$. All the experiments are 412 implemented in MATLAB (R2018a) on a computer with 16Gb 413 of RAM and an Intel(R) Core(TM) i5-4590 CPU: $@3.30$ GHz. 414

For each sensor, e.g., GF-2, QB, and WV-3, $S + 1$ low-pass 415 filters are required for configuring the $\mathbf{B}^{(i)}$, $i = 1, 2, \cdots, S$ 416 (i.e., the blurring kernels of the MS image), and the $(\cdot)_{LP}$ 417 (i.e., the blurring kernel of the PAN image). According to 418 [60], the kernels designed to match the modulation transfer 419 functions (MTFs) of MS and PAN sensors are advisable. 420 More specifically, these $S + 1$ blurring kernels are assumed 421 to be Gaussian-shaped with size of 41×41 having $S + 1$ 422 standard deviations. When applied to a specific sensor, the 423 $S + 1$ standard deviations can be determined accordingly. 424

The compared methods include EXP $[61]$, PRACS $[9]$, C- 425 GSA [62], BDSD-PC [63], AWLP [12], GLP-CBD [60], GLP- ⁴²⁶ FS [64], MF-HG [65], 18'TIP [32], 19'IF [35], 19'CVPR [25], ⁴²⁷ RR $[66]$, CDIF $[49]$, and BAGDC $[51]$. It is worth remarking 428 that the source codes of the competitors are available at either 429 the website² or the authors' homepages. The hyper-parameters 430 adopted in these variational optimization-based methods, i.e., ⁴³¹ the 18'TIP, the 19'IF, the 19'CVPR, the RR, the CDIF, and 432 the BAGDC, are configured within a specific range suggested 433 by their authors to achieve high performance.

When evaluated at reduced-resolution (i.e., simulated) data, 435 six popular metrics, i.e., the peak signal-to-noise ratio (PSNR), 436 the structural similarity index measure (SSIM) $[67]$, the 437 spectral angle mapper (SAM) $[68]$, the spatial correlation 438 coefficient (SCC) $[12]$, the relative dimensionless global error 439

¹<http://www.digitalglobe.com/samples?search=Imagery> ²<http://openremotesensing.net/kb/codes/pansharpening/>

TABLE I THE QUALITY METRICS ON 82 IMAGES WITH A PAN SIZE OF 256×256 from the reduced-resolution Guangzhou dataset (source: GF-2). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method	PSNR	SSIM	SAM	SCC	ERGAS	O4	Runtime[s]
EXP $[61]$	31.094 ± 2.125	0.794 ± 0.060	$2.007 + 0.361$	0.911 ± 0.029	2.645 ± 0.394	0.794 ± 0.043	0.01
PRACS ^[9]	33.973 ± 1.862	0.896 ± 0.027	1.883 ± 0.317	0.953 ± 0.021	1.894 ± 0.283	0.887 ± 0.033	0.07
C-GSA $[62]$	$33.944 + 2.113$	0.895 ± 0.031	1.910 ± 0.396	0.950 ± 0.021	1.924 ± 0.358	0.889 ± 0.036	0.29
$BDSD-PC [63]$	33.882 ± 2.086	0.894 ± 0.030	1.844 ± 0.327	0.953 ± 0.018	1.911 ± 0.323	0.893 ± 0.029	0.04
AWLP $[12]$	33.504 ± 2.012	0.870 ± 0.035	2.164 ± 0.454	0.946 ± 0.018	1.919 ± 0.288	$0.870 + 0.035$	0.08
$GLP-CBD$ [60]	$33.423 + 1.862$	0.886 ± 0.030	$1.763 + 0.343$	$0.944 + 0.023$	$1.981 + 0.310$	$0.888 + 0.030$	24.91
GLP-FS $[64]$	$33.984 + 1.770$	$0.892 + 0.028$	$1.804 + 0.319$	$0.953 + 0.018$	1.838 ± 0.264	$0.890 + 0.035$	0.07
MF-HG [65]	$33.772 + 1.853$	0.894 ± 0.027	1.787 ± 0.310	0.951 ± 0.015	1.910 ± 0.242	0.886 ± 0.036	0.04
$18'$ TIP [32]	34.014 ± 1.797	0.888 ± 0.026	1.623 ± 0.298	0.952 ± 0.020	1.820 ± 0.282	0.890 ± 0.032	35.40
19'IF [35]	$33.411 + 1.819$	0.885 ± 0.029	1.719 ± 0.315	0.947 ± 0.022	1.952 ± 0.349	0.879 ± 0.041	11.81
19'CVPR [25]	33.176 ± 2.198	0.877 ± 0.037	1.737 ± 0.322	$0.946 + 0.018$	$2.114 + 0.332$	$0.870 + 0.027$	9.66
RR [66]	32.668 ± 1.835	0.835 ± 0.044	2.357 ± 0.443	$0.921 + 0.033$	1.986 ± 0.340	0.832 ± 0.055	15.47
CDIF $[49]$	35.312 ± 2.087	0.917 ± 0.025	1.508 ± 0.292	0.965 ± 0.015	1.594 ± 0.293	0.925 ± 0.021	25.58
BAGDC [51]	33.930 ± 1.653	0.890 ± 0.024	2.033 ± 0.359	$0.953 + 0.018$	$1.895 + 0.232$	0.892 ± 0.027	0.67
LRTCFPan	35.918 ± 2.087	$0.921 + 0.022$	1.391 ± 0.274	0.968 ± 0.014	1.496 ± 0.275	$0.926 + 0.039$	29.41
Ideal value	$+\infty$		$\mathbf{0}$		$\bf{0}$		

TABLE II THE QUALITY METRICS ON 42 IMAGES WITH A PAN SIZE OF 256×256 from the reduced-resolution Indianapolis dataset (source: QB). (BOLD: BEST; UNDERLINE: SECOND BEST)

440 in synthesis (ERGAS) $[69]$, and the $Q2^n$ $[70]$, are adopted. ⁴⁴¹ When evaluated at full-resolution (i.e., real) data, the quality 442 with no reference (QNR) [71] metric, which consists of the 443 spectral distortion index (i.e., D_{λ}) and the spatial distortion $_{444}$ index (i.e., D_s), is employed.

⁴⁴⁵ *A. Qualitative Comparison*

 1) Reduced-Resolution Data Experiment: To qualitatively 447 evaluate the performance of the proposed LRTCFPan method, we first conduct the numerical experiments on the reduced- resolution images, which are simulated from the real-world Guangzhou (sensor: GF-2), Indianapolis (sensor: QB), and Rio (sensor: WV-3) datasets. According to Wald's protocol [72], the simulated HR-MS image, the simulated LR-MS image, ⁴⁵² and the simulated PAN image can be considered as the blurred 453 and downsampled versions of the underlying HR-MS image, ⁴⁵⁴ the real LR-MS image, and the real PAN image, respectively. ⁴⁵⁵ Since the ISR degradation model $\mathcal{Y} = (\mathcal{X} \cdot \mathcal{B} + \mathcal{N}_1) \downarrow_r$ assumes 456 that the real LR-MS image is the blurred and downsampled 457 version of the underlying HR-MS image when noise-free, ⁴⁵⁸ the real LR-MS image is actually assigned as the simulated ⁴⁵⁹ HR-MS image without additional processing. Considering the 460 page layout, we present only the visual comparative results ⁴⁶¹ of a 4-bands (i.e., the simulated Guangzhou data) experiment ⁴⁶² and an 8-bands (i.e., the simulated Rio data) experiment. By 463 the RGB rendering, the corresponding results are depicted in ⁴⁶⁴

Fig. 7. The fusion results on the reduced-resolution Rio dataset (source: WV-3). The first two rows: the visual inspection of the ground-truth (GT) image and the close-ups of the fused images. The last two rows: the residual maps using the GT image as a reference.

465 Figs. 6-7. Compared with the GT image, Fig. 6 reveals that the GLP-CBD, the GLP-FS, the CDIF, and our LRTCFPan methods obtain the better performance from both spectral and spatial perspectives. However, other comparators achieve inferior performance considering the overall or local feature evaluation. It is worth underlining that clearer details do not always mean superior performance, e.g., the images recovered by the C-GSA, the AWLP, and the MF-HG methods. That is because the details exceeding those of the GT image are regarded as errors. The performance of Fig. 7 is similar to that 475 of Fig. 6. More specifically, the C-GSA, the GLP-CBD, the 19'IF, the CDIF, and the proposed LRTCFPan methods achieve better visual performance. Nonetheless, the other compared methods reflect varying levels of color deviation and spatial blurring. From the corresponding residual images of Figs. $6-7$, we can further confirm that the proposed LRTCFPan method is superior to other methods, clarifying its significant advantages. 482

 2) Full-Resolution Data Experiment: To corroborate the re- sults obtained at reduced resolution, the proposed LRTCFPan method is further evaluated at the real experimental images, which are cropped from the real datasets, including the real- world Guangzhou (sensor: GF-2), Indianapolis (sensor: QB), and Rio (sensor: WV-3) datasets. Subsequently, the visual 489 performance is displayed in Figs. $8-9$. In this case, the visual comparison requires the PAN image as the spatial reference, whereas the LR-MS image (or the recovered image of the EXP method) is the spectral reference. According to Fig. 8, although many compared approaches, e.g., the PRACS, the AWLP, the GLP-FS, the MF-HG, and the 19'IF, obtain clearer details, the inferior spectral fidelity is caused. Moreover, the C-GSA, the GLP-CBD, the 18'TIP, and the CDIF methods generate abnormal colors, structures, or artifacts. In contrast, the LRTCFPan and the BDSD-PC methods show the better trade-off between spatial sharpening and spectral consistency. From Fig. 9, we can observe that only the C-GSA, the BDSD- PC, the 19'IF, and the LRTCFPan methods can reconstruct the right shape and color of the acquired car. Especially, only the LRTCFPan method can recover the correct direction of the 503 shadow of the car. Therefore, the effectiveness and superiority 504 of the LRTCFPan method are corroborated at full resolution. ⁵⁰⁵

B. Quantitative Comparison 506

To quantitatively compare the LRTCFPan method with 507 other methods, we provide the average numerical metrics ⁵⁰⁸ of 82, 42, 15, 15, 15, and 42 images, which are selected ⁵⁰⁹ from the simulated Guangzhou (sensor: GF-2), the simulated 510 Indianapolis (sensor: QB), the simulated Rio (sensor: WV-3), 511 the real-world Guangzhou (sensor: GF-2), the real-world Indi- ⁵¹² anapolis (sensor: QB), and the real-world Rio (sensor: $WV-3$) $\frac{1}{513}$ datasets, respectively. The statistical values of all the metrics $_{514}$ (means and related standard deviations) and the computational 515 times are shown in Tables I, II, III, IV-(a), IV-(b), and V. 516 Notably, the variational methods, i.e., the $18'$ TIP, the $19'$ IF, the 517 19'CVPR, the RR, the CDIF, the BAGDC, and the LRTCFPan, 518 are implemented using only one set of parameters for all 519 the experiments of the same dataset. Consequently, better 520 performance also implies higher robustness of the parameters. 521 From the results, we observe that the proposed LRTCFPan 522 method generally achieves better average values than the other 523 methods, demonstrating its numerical superiority.

C. Discussions 525

1) Parameter Analysis: In Algorithm 1, seven hyperparam- ⁵²⁶ eters are theoretically involved, including the regularization 527 parameters (i.e., λ_1 , λ_2 , and λ_3), the penalty parameters (i.e., 528 η_1 , η_2 , and η_3), and the blocksize of the block-based DDM 529 regularizer. Among them, λ_3 and η_1 control the low-tubal-rank 530 properties of $X \bullet B + \mathcal{N}_1$ and X, respectively. Empirically, 531 λ_3 and η_1 can be pre-determined within a small range, e.g., 532 $\{10^{-4}, 10^{-3}, 10^{-2}, 10^{-1}\}\$. Similarly, the blocksize can also be 533 selected from $\{8 \times 8, 10 \times 10\}$, showing promising results in $\frac{534}{2}$ almost all the experiments. Afterwards, the remaining param- ⁵³⁵ eters, i.e., λ_1 , λ_2 , η_2 , and η_3 , are searched by jointly reaching 536 the optimal SAM, SCC, ERGAS, and $Q2^n$ metrics. For 537

TABLE III THE QUALITY METRICS ON 15 IMAGES WITH A PAN SIZE OF 256 \times 256 FROM THE REDUCED-RESOLUTION RIO DATASET (SOURCE: WV-3). (BOLD: BEST; UNDERLINE: SECOND BEST)

Method	PSNR	SSIM	SAM	SCC	ERGAS	Q8	$\mathbf{Runtime}[\mathbf{s}]$
EXP $[61]$	27.409 ± 1.281	0.678 ± 0.054	$7.472 + 1.144$	0.835 ± 0.044	$8.441 + 0.954$	0.678 ± 0.034	0.02
PRACS ^[9]	$30.615 + 1.263$	0.844 ± 0.028	7.704 ± 1.245	$0.923 + 0.018$	5.871 ± 0.624	0.843 ± 0.012	0.16
C-GSA $[62]$	31.245 ± 1.051	0.853 ± 0.027	7.888 ± 1.408	0.928 ± 0.016	5.567 ± 0.548	$0.862 + 0.026$	0.53
BDSD-PC $[63]$	$31.521 + 1.106$	0.873 ± 0.021	$7.443 + 1.143$	$0.933 + 0.015$	5.313 ± 0.535	$0.879 + 0.018$	0.08
AWLP $[12]$	31.182 ± 1.189	$0.874 + 0.020$	$7.109 + 1.016$	$0.930 + 0.016$	$5.412 + 0.585$	$0.871 + 0.007$	0.18
$GLP-CBD$ [60]	$31.131 + 1.235$	$0.879 + 0.019$	6.608 ± 0.891	0.929 ± 0.017	5.549 ± 0.545	$0.877 + 0.003$	52.30
GLP-FS $[64]$	$31.102 + 1.070$	$0.861 + 0.025$	7.308 ± 1.230	0.930 ± 0.016	5.499 ± 0.538	$0.865 + 0.017$	0.14
MF-HG $[65]$	$30.884 + 1.200$	0.865 ± 0.026	7.067 ± 1.166	$0.925 + 0.018$	5.664 ± 0.614	$0.863 + 0.011$	0.25
$18'$ TIP [32]	$29.786 + 1.178$	0.812 ± 0.031	7.227 ± 1.124	$0.912 + 0.020$	6.373 ± 0.685	$0.825 + 0.012$	73.95
$19'$ IF $\left[35\right]$	30.088 ± 1.108	0.841 ± 0.024	$7.855 + 1.173$	0.921 ± 0.016	5.831 ± 0.574	$0.840 + 0.015$	23.74
19'CVPR [25]	$30.157 + 1.413$	0.838 ± 0.033	$6.680 + 1.034$	$0.920 + 0.021$	6.159 ± 0.718	$0.829 + 0.017$	17.10
RR [66]	30.972 ± 1.103	0.870 ± 0.019	7.043 ± 1.018	0.928 ± 0.017	5.317 ± 0.583	$0.867 + 0.017$	54.48
CDIF $[49]$	31.808 ± 1.395	0.883 ± 0.020	6.260 ± 0.851	0.938 ± 0.014	5.010 ± 0.522	0.891 ± 0.013	81.18
BAGDC [51]	30.881 ± 0.921	0.874 ± 0.018	$7.276 + 1.051$	0.928 ± 0.015	5.388 ± 0.579	$0.872 + 0.018$	1.16
LRTCFPan	$32.251 + 1.333$	0.891 ± 0.018	6.132 ± 0.880	0.945 ± 0.015	4.834 ± 0.576	$0.901 + 0.004$	57.15
Ideal value	$+\infty$		0		0		

TABLE IV

THE QUANTITATIVE RESULTS FOR ALL THE COMPARED METHODS ON (A) 15 IMAGES FROM THE FULL-RESOLUTION GUANGZHOU DATASET (SOURCE: GF-2) AND (B) 15 IMAGES FROM THE FULL-RESOLUTION INDIANAPOLIS DATASET (SOURCE: QB). THE SIZE OF THE PAN IMAGE IS 400 × 400. (BOLD: BEST; UNDERLINE: SECOND BEST)

538 brevity, Fig. 10 presents the performance of varying λ_1 , λ_2 , η_2 , and η_3 on the reduced-resolution Guangzhou data (source: 540 GF-2). Obviously, $\lambda_1 = 5 \times 10^{-2}$, $\lambda_2 = 1.8 \times 10^1$, $\eta_2 = 8.1$, 541 and $\eta_3 = 1.8$ are the best parameters for configuration. By ⁵⁴² adopting the same strategy on different datasets, all parameter ⁵⁴³ configurations can be obtained and provided in Table VI.

 2) Algorithm Convergence: Since the log tensor nuclear $_{545}$ norm of Definition II.4 is non-convex, the convergence of the proposed ADMM-based LRTCFPan algorithm cannot be the- oretically guaranteed. As depicted in Fig. 11, we numerically illustrate the algorithm convergence on the reduced-resolution Guangzhou (sensor: GF-2), Indianapolis (sensor: QB), and Rio (sensor: WV-3) datasets. For a better presentation, the 550 maximum number of iterations is empirically set to 200. 551 In any considered case, the value of the objective function 552 becomes stable as the iteration number increases, implying 553 the numerical convergence behavior of Algorithm 1. $\frac{554}{256}$

3) Ablation Study: For deeper insights into the LRTCFPan 555 model, we further conduct the ablation study of model (12) 556 on the reduced-resolution Guangzhou image (sensor: GF-2). 557 The following three sub-models are generated to independently 558 verify the contributions of the two low-tubal-rank priors and 559 the proposed local-similarity-based DDM regularizer. 560

RR [66] CDIF [49] BAGDC [51] LRTCFPan

Fig. 8. The RGB compositions of the fused images on the full-resolution Guangzhou dataset (source: GF-2). The size of the PAN image is 400×400 . The close-ups are depicted in the bottom corners of the images.

Submodel-I:

$$
\min_{\mathcal{X}, \mathcal{T}} \|\mathcal{X}\|_{lt} + \lambda_1 \|\mathcal{X} - \mathcal{X} \bullet \mathcal{B} - \mathcal{D}\|_F^2 + \lambda_2 \|\mathcal{X} \bullet \mathcal{B} - \mathcal{T}\|_F^2
$$

s.t. $\mathcal{P}_{\Omega}(\mathcal{T}) = \mathcal{Y} \uparrow_{r,0}$,

Submodel-II:

$$
\min_{\mathcal{X},\mathcal{T}} \|\mathcal{T}\|_{lt} + \lambda_1 \|\mathcal{X} - \mathcal{X} \bullet \mathcal{B} - \mathcal{D}\|_F^2 + \lambda_2 \|\mathcal{X} \bullet \mathcal{B} - \mathcal{T}\|_F^2
$$

s.t. $\mathcal{P}_{\Omega}(\mathcal{T}) = \mathcal{Y} \uparrow_{r,0}$,

Submodel-III:

$$
\min_{\mathcal{X},\mathcal{T}} \|\mathcal{X}\|_{lt} + \lambda_1 \|\mathcal{X} \bullet \mathcal{B} - \mathcal{T}\|_F^2 + \lambda_2 \|\mathcal{T}\|_{lt}
$$

s.t. $\mathcal{P}_{\Omega}(\mathcal{T}) = \mathcal{Y} \uparrow_{r,0}.$

After all optimal parameter configurations are satisfied, the 561 quantitative results of these models are reported in Table VII. 562 As observed, the models employing the local-similarity-based 563 DDM regularizer (i.e., Submodel-I and Submodel-II) perform 564 better, implying the remarkable effectiveness of the regularizer. 565

Fig. 9. The RGB compositions of the fused images on the full-resolution Rio dataset (source: WV-3). The size of the PAN image is 400×400 . The close-ups are depicted in the bottom corners of the images.

⁵⁶⁶ Moreover, two low-tubal-rank priors also realize incremental ⁵⁶⁷ performance improvements. Accordingly, the three regulariz-⁵⁶⁸ ers collectively contribute to the LRTCFPan model.

 4) Comparison of ISR Degradation Models: For decoupling 570 the original $\mathcal{Y} = (\mathcal{X} \bullet \mathcal{B}) \downarrow_r + \mathcal{N}_0$, the variable substitution is usually involved, e.g., [24], leading to the following con-strained model

$$
\min_{\mathcal{X}, \mathcal{Z}} \frac{1}{2} \| \mathcal{Z} \downarrow_r - \mathcal{Y} \|^2_F \qquad \text{s.t.} \quad \mathcal{Z} = \mathcal{X} \bullet \mathcal{B}, \qquad (38)
$$

whose augmented Lagrangian function is 573

$$
\mathcal{L}(\mathcal{X}, \mathcal{Z}) = \frac{1}{2} \left\| \mathcal{Z} \downarrow_r -\mathcal{Y} \right\|_F^2 + \frac{\eta}{2} \left\| \mathcal{X} \bullet \mathcal{B} - \mathcal{Z} + \frac{\Lambda}{\eta} \right\|_F^2. (39)
$$

However, when the new ISR degradation model $\mathcal{Y} = (\mathcal{X} \cdot \mathcal{B} + \sigma^2)$ \mathcal{N}_1) \downarrow_r is employed, we only need to consider the augmented 575 Lagrangian function as follows, 576

$$
\mathcal{L}(\mathcal{X}, \mathcal{T}) = \frac{1}{2} ||\mathcal{X} \bullet \mathcal{B} - \mathcal{T}||_F^2 + \iota(\mathcal{T}). \tag{40}
$$

TABLE V THE QUALITY METRICS FOR 42 IMAGES FROM THE FULL-RESOLUTION RIO DATASET (SOURCE: WV-3). THE SIZE OF THE PAN IMAGE IS 400×400 . (BOLD: BEST; UNDERLINE: SECOND BEST)

Method	\mathbf{D}_{λ}	\mathbf{D}_s	QNR	Time[s]
EXP $[61]$		0.004 \pm 0.001 0.105 \pm 0.019 0.892 \pm 0.019		0.06
PRACS ^[9]	$0.018 + 0.013$		0.054 ± 0.035 0.928 \pm 0.040	0.51
C -GSA $[62]$	0.044 ± 0.038		0.075 ± 0.064 0.887 \pm 0.086	0.94
$BDSD-PC [63]$		0.020 ± 0.011 0.044 ± 0.021 0.937 ± 0.029		0.14
AWLP [12]		0.051 ± 0.057 0.058 ± 0.072 0.898 ± 0.101		0.57
GLP-CBD [60]		0.065 ± 0.084 0.046 ± 0.037 0.894 ± 0.100		119.49
GLP-FS [64]		0.045 ± 0.047 0.056 ± 0.064 0.904 ± 0.091		0.26
MF-HG $[65]$		0.053 ± 0.050 0.064 ± 0.055 0.889 ± 0.087		0.18
18'TIP [32]		0.035 ± 0.030 0.067 ± 0.041 0.902 ± 0.060		212.45
19'IF [35]		0.087 ± 0.043 0.096 ± 0.048 0.828 ± 0.080		55.94
19'CVPR [25]		0.016 ± 0.006 0.046 ± 0.012 0.939 ± 0.016		73.26
RR [66]		0.062 ± 0.052 0.086 ± 0.077 0.861 ± 0.103		102.93
CDIF [49]		0.028 ± 0.009 0.048 ± 0.016 0.926 ± 0.018		182.18
BAGDC [51]		0.060 ± 0.055 0.048 ± 0.048 0.898 ± 0.088		4.60
LRTCFPan		0.022 ± 0.013 0.022 ± 0.027 0.956 ± 0.036		153.51
Ideal value	$\mathbf{0}$	0	1	

Fig. 10. The SAM, SCC, ERGAS, and Q4 curves for (a) λ_1 , (b) λ_2 , (c) η_2 , and (d) η_3 on a reduced-resolution Guangzhou image (sensor: GF-2). To show them with the same range of values, the obtained indexes are post-processed by zero-mean normalization, i.e., $(index - Mean(index)) / Std(index)$. Moreover, the means and the standard deviations of the SAM, the SCC, the ERGAS, and the Q4 are provided for four subfigures, i.e., (a) 2.341 ± 0.467 ; 0.947 ± 0.017 ; 2.897 ± 0.596 ; 0.812 ± 0.069 , (b) 14.913 ± 9.950 ; 0.588 ± 0.298 ; 19.503 ± 9.366 ; 0.267 ± 0.362 , (c) 3.515 ± 3.335 ; 0.904 ± 0.120 ; 13.638 ± 11.367 ; 0.494 ± 0.438 , and (d) 10.008 ± 8.247 ; 0.500 ± 0.405 ; 17.518 \pm 10.917; 0.358 \pm 0.394.

 Under the ADMM algorithm framework, the proposed ISR degradation model avoids the computational complexity (i.e., $\mathcal{O}(HWS)$) of solving $\frac{1}{2} || \mathcal{Z} \downarrow_r - \mathcal{Y} ||_F^2$. As depicted in Fig. 12, the computational times are reduced. Moreover, since the 581 downsampling operator \downarrow_r is eliminated by the tensor comple-582 tion step, the matrixization of \downarrow_r is not included in the resulting model. Consequently, the proposed LRTCFPan model can be formulated in the tensor-based form, which is more physically intuitive than the matrix-based modeling or the mixture of

TABLE VI THE HYPER-PARAMETER SETTINGS OF THE PROPOSED MODEL FOR DIFFERENT CASES. (R: REDUCED RESOLUTION; F: FULL RESOLUTION)

Dataset	$Case \, $	λ_1	λ_2	λ_3	η_1	η_2	η_3 Blocksize
	R			0.05 18 10^{-4} 10^{-4} 8.1 1.8			8×8
Guangzhou	F						1.00 50 10^{-4} 10^{-4} 2.1 4.7 10×10
Indianapolis	R			$\begin{array}{ rrrr} 0.11 & 65 & 10^{-4} & 10^{-4} & 1.1 & 8.7 \end{array}$			8×8
	F						0.40 75 10^{-1} 10^{-3} 2.1 6.7 10×10
Rio	R			$\frac{1}{10.14}$ 56 $\frac{10^{-4}}{10^{-4}}$ 4.2 8.3			8×8
	F						1.10 36 10^{-4} 10^{-4} 6.2 3.3 10×10

Fig. 11. The curves of the objective function values on the reduced-resolution (a) Guangzhou (sensor: GF-2), (b) Indianapolis (sensor: QB), and (c) Rio (sensor: WV-3) datasets.

Fig. 12. The comparison of the computational burden between two ISR degeneration models by using two different cases, i.e., (a) the runtime versus the number of iterations when the spatial size of the LR-MS image is 64×64 and (b) the runtime versus the spatial size of the LR-MS image when the number of iterations is fixed to 200. The reduced-resolution Guangzhou dataset (source: GF-2) is employed.

unfolding-based and tensor-based modeling, e.g., [39]. 586

5) Applicable Scope: Since the proposed LRTCFPan model 587 incorporates the low-tubal-rank prior, we further perform the 588 applicability analysis by investigating the tubal-rank character-
₅₈₉ istic of numerous multispectral images. For such a statistical ⁵⁹⁰ analysis, all simulated experimental data, i.e., 82 Guangzhou ⁵⁹¹ images (sensor: GF-2), 42 Indianapolis images (sensor: QB), ⁵⁹² and 15 Rio images (sensor: WV-3), are employed. According 593 to Fig. 13 , the corresponding multispectral images demonstrate $\frac{594}{2}$ specific low-rank characteristics. Consequently, the applicabil-

s95 ity of the proposed LRTCFPan model can be established. 596

6) Comparison with CNN-based Method: In the previous ⁵⁹⁷ numerical experiments, only the traditional CS, MRA, and 598 variational pansharpening methods are involved. To compre- ⁵⁹⁹ hensively demonstrate the performance, we further compare 600 the proposed LRTCFPan model with the CNN-based DCFNet $_{601}$ method $[73]$ on all reduced-resolution data, i.e., 82 Guangzhou 602 images (sensor: GF-2), 42 Indianapolis images (sensor: QB), 603 and 15 Rio images (sensor: WV-3). Particularly, the pretraining 604 datasets of the DCFNet model for the GF-2, QB, and WV- ⁶⁰⁵ 3 cases are the Beijing (sensor: GF-2), Indianapolis (sensor: ⁶⁰⁶

TABLE VII THE QUANTITATIVE RESULTS OF THE ABLATION EXPERIMENT ON THE REDUCED-RESOLUTION GUANGZHOU DATA (SOURCE: GF-2). (BOLD: BEST; UNDERLINE: SECOND BEST)

Configuration	ISR Degradation Model	Low-Rank Prior for $\mathcal{X} \bullet \mathcal{B} + \mathcal{N}_1$	Low-Rank Prior for $\mathcal X$	Local-Similarity-Based DDM Regularizer	PSNR	SSIM	SAM	SCC	ERGAS	O4
EXP [61]					29.3053	0.8016	2.4860	0.9429	3.1620	0.8360
Submodel-I					35.0918	0.9150	2.0104	0.9802	1.6582	0.9359
Submodel-II					34.9260	0.9109	2.0373	0.9794	.6971	0.9327
Submodel-III					29.9401	0.7899	2.5329	0.9494	2.9143	0.8332
LRTCFPan					35.1550	0.9155	2.0089	0.9803	1.6470	0.9364
Ideal value	۰	$\overline{}$	۰		$+\infty$		0		0	

TABLE VIII

THE QUALITY METRICS OF DIFFERENT METHODS ON THE REDUCED-RESOLUTION GUANGZHOU (SENSOR: GF-2), INDIANAPOLIS (SENSOR: QB), AND RIO (SENSOR: WV-3) DATASETS. (BOLD: BEST; UNDERLINE: SECOND BEST)

Dataset	Sensor	Method	PSNR	SSIM	SAM	SCC	ERGAS	$\mathbf{O}2^n$
Guangzhou	$GF-2$	DCFNet [73]	34.695 ± 1.450	0.899 ± 0.018	1.834 ± 0.265	0.957 ± 0.017	1.598 ± 0.179	0.898 ± 0.042
		LRTCFPan	35.918 ± 2.087	$0.921 + 0.022$	$1.391 + 0.274$	$0.968 + 0.014$	$1.496 + 0.275$	0.926 ± 0.039
Indianapolis	QB	DCFNet [73]	31.295 ± 2.231	$0.877 + 0.022$	$6.002 + 0.914$	0.896 ± 0.018	$8.105 + 0.890$	0.848 ± 0.095
		LRTCFPan	32.727 ± 2.132	$0.873 + 0.025$	$7.032 + 1.264$	0.922 ± 0.016	$6.964 + 0.596$	$0.861 + 0.092$
Rio	$WV-3$	DCFNet [73]	$36.692 + 0.494$	$0.964 + 0.006$	$3.699 + 0.723$	$0.982 + 0.004$	$2.388 + 0.625$	$0.971 + 0.010$
		LRTCFPan	$32.251 + 1.333$	$0.891 + 0.018$	$6.132 + 0.880$	$0.945 + 0.015$	$4.834 + 0.576$	$0.901 + 0.004$
Ideal value		$+\infty$						

Fig. 13. The statistics of the approximation of the tubal rank on different simulated datasets, including (a) 82 Guangzhou images (sensor: GF-2), (b) 42 Indianapolis images (sensor: QB), and (c) 15 Rio images (sensor: WV-3). The standard deviation of Gaussian noise is 0.01.

 QB), and both Rio and Tripoli (sensor: WV-3), respectively. The numerical metrics are reported in Table VIII. For the WV-3 case, the DCFNet method is significantly superior to the LRTCFPan method, which is reasonable provided that the Rio dataset is included in the training data of the former. Furthermore, when applied to the Indianapolis dataset (testing images), the DCFNet method does not exhibit the advantage over the LRTCFPan method, even if the former is pretrained on the Indianapolis dataset. Instead, the DCFNet method is inferior to the LRTCFPan method on the Guangzhou dataset owing to its limited generalization ability. Consequently, the superior algorithm robustness and generalization capability of the LRTCFPan method are mainly demonstrated, which may endow such a method with more practical significance.

VI. CONCLUSIONS 621

In this paper, we proposed a novel LRTC-based framework $\epsilon_{0.82}$ for pansharpening, called LRTCFPan. Specifically, we first 623 deduced an ISR degradation model, thus eliminating the down- ⁶²⁴ sampling operator and transforming the original pansharpening 625 problem into the LRTC-based framework with the deblurring 626 regularizer. Moreover, we designed a local-similarity-based 627 DDM regularizer, which dynamically and locally integrates the ϵ_{628} spatial information from the PAN image to the underlying HR - 629 MS image. For better completion and global characterization, 630 two low-tubal-rank constraints are simultaneously imposed. 631 To regularize the proposed model, we developed an efficient 632 ADMM-based algorithm. The numerical experiments demon- 633 strated the superiority of the proposed LRTCFPan method. 634

REFERENCES ⁶³⁵

- [1] M. Zanetti, F. Bovolo, and L. Bruzzone, "Rayleigh-Rice mixture param- ⁶³⁶ eter estimation via EM algorithm for change detection in multispectral 637 images," *IEEE Trans. Image Process.*, vol. 24, no. 12, pp. 5004–5016, ⁶³⁸ $2015.$ $2015.$ $2015.$ 1 639
- [2] X. Yu, L. E. Hoff, I. S. Reed, A. M. Chen, and L. B. Stotts, "Automatic 640 target detection and recognition in multiband imagery: A unified ML 641 detection and estimation approach," *IEEE Trans. Image Process.*, vol. ⁶⁴² 6, no. 1, pp. 143–156, 1997. [1](#page-0-0) ⁶⁴³
- [3] P. Zhong and R. Wang, "Learning conditional random fields for each classification of hyperspectral images," IEEE Trans. Image Process., eas classification of hyperspectral images," *IEEE Trans. Image Process.*, ⁶⁴⁵ vol. [1](#page-0-0)9, no. 7, pp. 1890–1907, 2010. 1 646
- [4] P. X. Zhuang, Q. S. Liu, and X. H. Ding, "Pan-GGF: A probabilistic 647 method for pan-sharpening with gradient domain guided image filtering," 648 *Signal Process.*, vol. [1](#page-0-0)56, pp. 177-190, 2019. 1 649
- [5] P. Kwarteng and A. Chavez, "Extracting spectral contrast in landsat the- ⁶⁵⁰ matic mapper image data using selective principal component analysis," 651 *Photogramm. Eng. Remote Sens.*, vol. 55, no. [1](#page-0-0), pp. 339-348, 1989. 1 652
- [6] W. Carper, T. Lillesand, and R. Kiefer, "The use of intensity-hue- ⁶⁵³ saturation transformations for merging SPOT panchromatic and multi- ⁶⁵⁴ spectral image data," *Photogramm. Eng. Remote Sens.*, vol. 56, no. 4, ⁶⁵⁵ pp. 459–467, [1](#page-0-0)990. 1 656
- ⁶⁵⁷ [7] B. Aiazzi, S. Baronti, and M. Selva, "Improving component substitution ⁶⁵⁸ pansharpening through multivariate regression of MS + Pan data," *IEEE* ⁶⁵⁹ *Trans. Geosci. Remote Sens.*, vol. 45, no. 10, pp. 3230–3239, 2007. [1](#page-0-0)
- ⁶⁶⁰ [8] A. Garzelli, F. Nencini, and L. Capobianco, "Optimal MMSE pan ⁶⁶¹ sharpening of very high resolution multispectral images," *IEEE Trans.*
- ⁶⁶² *Geosci. Remote Sens.*, vol. 46, no. 1, pp. 228–236, 2007. [1](#page-0-0) ⁶⁶³ [9] J. Choi, K. Yu, and Y. Kim, "A new adaptive component-substitution-⁶⁶⁴ based satellite image fusion by using partial replacement," *IEEE Trans.* ⁶⁶⁵ *Geosci. Remote Sens.*, vol. 49, no. 1, pp. 295–309, 2010. [1,](#page-0-0) 7, 8, 9, 10, ⁶⁶⁶ 11, 12, 13
- ⁶⁶⁷ [10] G. Vivone, L. Alparone, J. Chanussot, M. Dalla Mura, A. Garzelli, G. A. ⁶⁶⁸ Licciardi, R. Restaino, and L. Wald, "A critical comparison among ⁶⁶⁹ pansharpening algorithms," *IEEE Trans. Geosci. Remote Sens.*, vol. 53, ⁶⁷⁰ no. 5, pp. 2565–2586, 2014. [1,](#page-0-0) 4
- ⁶⁷¹ [11] M. J. Shensa, "The discrete wavelet transform: Wedding the a trous and ⁶⁷² Mallat algorithms," *IEEE Trans. Signal Process.*, vol. 40, no. 10, pp. ⁶⁷³ 2464–2482, 1992. [1](#page-0-0)
- ⁶⁷⁴ [12] X. Otazu, M. Gonzalezaudicana, O. Fors, and J. Nunez, "Introduction ⁶⁷⁵ of sensor spectral response into image fusion methods. Application to ⁶⁷⁶ wavelet-based methods," *IEEE Trans. Geosci. Remote Sens.*, vol. 43, ⁶⁷⁷ no. 10, pp. 2376–2385, 2005. [1,](#page-0-0) 7, 8, 9, 10, 11, 12, 13
- ⁶⁷⁸ [13] J. G. Liu, "Smoothing filter-based intensity modulation: A spectral ⁶⁷⁹ preserve image fusion technique for improving spatial details," *Int. J.* ⁶⁸⁰ *Remote Sens.*, vol. 21, no. 18, pp. 3461–3472, 2000. [1](#page-0-0)
- ⁶⁸¹ [14] J. F. Yang, X. Y. Fu, Y. W. Hu, Y. Huang, X. H. Ding, and J. Paisley, ⁶⁸² "PanNet: A deep network architecture for pan-sharpening," in *Int. Conf.* ⁶⁸³ *Comput. Vision (ICCV)*, 2017, pp. 5449–5457. 2
- ⁶⁸⁴ [15] J. F. Hu, T. Z. Huang, L. J. Deng, T. X. Jiang, G. Vivone, and J. Chanus-⁶⁸⁵ sot, "Hyperspectral image super-resolution via deep spatiospectral ⁶⁸⁶ attention convolutional neural networks," *IEEE Trans. Neural Netw.* ⁶⁸⁷ *Learn. Syst.*, pp. 1–15, 2021. 2
- ⁶⁸⁸ [16] Z. Zhu, J. Hou, J. Chen, H. Zeng, and J. Zhou, "Hyperspectral image ⁶⁸⁹ super-resolution via deep progressive zero-centric residual learning," ⁶⁹⁰ *IEEE Trans. Image Process.*, vol. 30, pp. 1423–1438, 2020. 2
- [17] T. Huang, W. Dong, J. Wu, L. Li, X. Li, and G. Shi, "Deep hyperspectral ⁶⁹² image fusion network with iterative spatio-spectral regularization," *IEEE* ⁶⁹³ *Trans. Comput. Imaging*, vol. 8, pp. 201–214, 2022. 2
- ⁶⁹⁴ [18] L. J. Deng, G. Vivone, C. Jin, and J. Chanussot, "Detail injection-based ⁶⁹⁵ deep convolutional neural networks for pansharpening," *IEEE Trans.* ⁶⁹⁶ *Geosci. Remote Sens.*, vol. 59, no. 8, pp. 6995–7010, 2020. 2, 4
- ⁶⁹⁷ [19] P. Addesso, G. Vivone, R. Restaino, and J. Chanussot, "A data-driven ⁶⁹⁸ model-based regression applied to panchromatic sharpening," *IEEE* ⁶⁹⁹ *Trans. Image Process.*, vol. 29, pp. 7779–7794, 2020. 2
- ⁷⁰⁰ [20] Z. R. Jin, L. J. Deng, T. J. Zhang, and X. X. Jin, "BAM: Bilateral acti-⁷⁰¹ vation mechanism for image fusion," in *ACM Int. Conf. on Multimedia* ⁷⁰² *(ACM MM)*, 2021. 2
- ⁷⁰³ [21] Y. D. Wang, L. J. Deng, T. J. Zhang, and X. Wu, "SSconv: Explicit ⁷⁰⁴ spectral-to-spatial convolution for pansharpening," in *ACM Int. Conf.* ⁷⁰⁵ *on Multimedia (ACM MM)*, 2021. 2
- ⁷⁰⁶ [22] X. Y. Fu, W. Wang, Y. Huang, X. H. Ding, and J. Paisley, "Deep ⁷⁰⁷ multiscale detail networks for multiband spectral image sharpening," ⁷⁰⁸ *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 32, no. 5, pp. 2090–2104, ⁷⁰⁹ 2021. 2
- ⁷¹⁰ [23] X. Lu, J. Zhang, D. Yang, L. Xu, and F. Jia, "Cascaded convolutional ⁷¹¹ neural network-based hyperspectral image resolution enhancement via ⁷¹² an auxiliary panchromatic image," *IEEE Trans. Image Process.*, vol. 30, ⁷¹³ pp. 6815–6828, 2021. 2
- ⁷¹⁴ [24] Z. C. Wu, T. Z. Huang, L. J. Deng, J. F. Hu, and G. Vivone, "VO+Net: ⁷¹⁵ An adaptive approach using variational optimization and deep learning ⁷¹⁶ for panchromatic sharpening," *IEEE Trans. Geosci. Remote Sens.*, vol. ⁷¹⁷ 60, pp. 1–16, 2022. 2, 3, 4, 12
- ⁷¹⁸ [25] X. Y. Fu, Z. H. Lin, Y. Huang, and X. H. Ding, "A variational pan-⁷¹⁹ sharpening with local gradient constraints," in *IEEE Conf. Comput.* ⁷²⁰ *Vision Pattern Recognit. (CVPR)*, 2019, pp. 10265–10274. 2, 7, 8, 9, ⁷²¹ 10, 11, 12, 13
- ⁷²² [26] F. Fang, F. Li, C. Shen, and G. Zhang, "A variational approach for pan-⁷²³ sharpening," *IEEE Trans. Image Process.*, vol. 22, no. 7, pp. 2822–2834, ⁷²⁴ 2013. 2
- ⁷²⁵ [27] X. He, L. Condat, J. M. Bioucas-Dias, J. Chanussot, and J. Xia, "A ⁷²⁶ new pansharpening method based on spatial and spectral sparsity priors," ⁷²⁷ *IEEE Trans. Image Process.*, vol. 23, no. 9, pp. 4160–4174, 2014. 2
- ⁷²⁸ [28] H. A. Aly and G. Sharma, "A regularized model-based optimization ⁷²⁹ framework for pan-sharpening," *IEEE Trans. Image Process.*, vol. 23, ⁷³⁰ no. 6, pp. 2596–2608, 2014. 2
- ⁷³¹ [29] C. Chen, Y. Li, W. Liu, and J. Huang, "SIRF: Simultaneous satellite ⁷³² image registration and fusion in a unified framework," *IEEE Trans.* ⁷³³ *Image Process.*, vol. 24, no. 11, pp. 4213–4224, 2015. 2
- [30] C. Ballester, V. Caselles, L. Igual, J. Verdera, and B. Rouge, "A 734 variational model for P+XS image fusion," *Int. J. Comput. Vis.*, vol. ⁷³⁵ 69, no. 1, pp. 43–58, 2006. 2 736
- [31] Y. Y. Jiang, X. H. Ding, D. L. Zeng, Y. Huang, and J. Paisley, "Pan- ⁷³⁷ sharpening with a hyper-Laplacian penalty," in *Int. Conf. Comput. Vision* 738 *(ICCV)*, 2015, pp. 540–548. 2 739
- [32] T. Wang, F. Fang, F. Li, and G. Zhang, "High-quality Bayesian ⁷⁴⁰ pansharpening," *IEEE Trans. Image Process.*, vol. 28, no. 1, pp. 227– ⁷⁴¹ 239, 2018. 2, 7, 8, 9, 10, 11, 12, 13 ⁷⁴²
- [33] L. J. Deng, G. Vivone, W. H. Guo, M. Dalla Mura, and J. Chanussot, 743 "A variational pansharpening approach based on reproducible Kernel ⁷⁴⁴ Hilbert space and Heaviside function," *IEEE Trans. Image Process.*, ⁷⁴⁵ vol. 27, no. 9, pp. 4330–4344, 2018. 2
- [34] A. M. Teodoro, J. M. Bioucas-Dias, and M. A. Figueiredo, "A con- 747 vergent image fusion algorithm using scene-adapted Gaussian-mixture- ⁷⁴⁸ based denoising," *IEEE Trans. Image Process.*, vol. 28, no. 1, pp. 451– ⁷⁴⁹ 463, 2018. 2 750
- [35] L. J. Deng, M. Y. Feng, and X. C. Tai, "The fusion of panchromatic and 751 multispectral remote sensing images via tensor-based sparse modeling 752 and hyper-Laplacian prior," *Inf. Fusion*, vol. 52, pp. 76–89, 2019. 2, 7, 753 8, 9, 10, 11, 12, 13 ⁷⁵⁴
- [36] Z. C. Wu, T. Z. Huang, L. J. Deng, G. Vivone, J. Q. Miao, J. F. ⁷⁵⁵ Hu, and X. L. Zhao, "A new variational approach based on proximal ⁷⁵⁶ deep injection and gradient intensity similarity for spatio-spectral image 757 fusion," *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.*, vol. 13, pp. ⁷⁵⁸ 6277–6290, 2020. 2, 6 ⁷⁵⁹
- [37] Q. Wei, N. Dobigeon, and J. Y. Tourneret, "Fast fusion of multi-band 760 images based on solving a Sylvester equation," *IEEE Trans. Image* ⁷⁶¹ *Process.*, vol. 24, no. 11, pp. 4109–4121, 2015. 2, 3 762
- [38] R. W. Dian, S. T. Li, A. J. Guo, and L. Y. Fang, "Deep hyperspectral ⁷⁶³ image sharpening," *IEEE Trans. Neural Netw. Learn. Syst.*, vol. 29, no. ⁷⁶⁴ 99, pp. 1–11, 2018. 2 765
- [39] R. W. Dian and S. T. Li, "Hyperspectral image super-resolution via ⁷⁶⁶ subspace-based low tensor multi-rank regularization," *IEEE Trans.* 767
Image Process. vol. 28, no. 10, pp. 5135–5146, 2019, 2, 3, 13 *Image Process.*, vol. 28, no. 10, pp. 5135–5146, 2019. 2, 3, 13
- [40] M. E. Kilmer, K. Braman, N. Hao, and R. C. Hoover, "Third- 769 order tensors as operators on matrices: A theoretical and computational 770 framework with applications in imaging," *SIAM J. Matrix Anal. Appl.*, 771 vol. 34, no. 1, pp. 148–172, 2013. 2, 3, 5 772
- [41] M. E. Kilmer and C. D. Martin, "Factorization strategies for third-order 773 tensors," *Linear Alg. Appl.*, vol. 435, no. 3, pp. 641–658, 2011. 3 774
- [42] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, "Novel methods for 775 multilinear data completion and de-noising based on tensor-SVD," in 776 *IEEE Conf. Comput. Vision Pattern Recognit. (CVPR)*, 2014, pp. 3842– ⁷⁷⁷ $3849. \, 3$ 778
- [43] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, "Tensor robust 779 principal component analysis with a new tensor nuclear norm," *IEEE* ⁷⁸⁰ *Trans. Pattern Anal. Mach. Intell.*, vol. 42, no. 4, pp. 925–938, 2020. 3 ⁷⁸¹
- [44] Y. B. Zheng, T. Z. Huang, X. L. Zhao, T. X. Jiang, T. H. Ma, and T. Y. 782 Ji, "Mixed noise removal in hyperspectral image via low-fibered-rank ⁷⁸³ regularization," *IEEE Trans. Geosci. Remote Sens.*, vol. 58, no. 1, pp. ⁷⁸⁴ 734–749, 2020. 3, 5 785
- [45] Y. B. Zheng, T. Z. Huang, T. Y. Ji, X. L. Zhao, T. X. Jiang, and T. H. ⁷⁸⁶ Ma, "Low-rank tensor completion via smooth matrix factorization," 787 *Appl. Math. Model.*, vol. 70, pp. 677–695, 2019. 3 788
- [46] X. L. Zhao, W. H. Xu, T. X. Jiang, Y. Wang, and M. Ng, "Deep plug- 789 and-play prior for low-rank tensor completion," *Neurocomputing*, vol. ⁷⁹⁰ 400, pp. 137–149, 2020. 3 791
- [47] K. Zhang, W. Zuo, and L. Zhang, "Deep plug-and-play super-resolution 792 for arbitrary blur kernels," in *IEEE Conf. Comput. Vision Pattern* ⁷⁹³ *Recognit.* (CVPR), 2019, pp. 1671–1681. 3 794
- [48] Q. Song, R. Xiong, D. Liu, Z. Xiong, F. Wu, and W. Gao, "Fast image 795 super-resolution via local adaptive gradient field sharpening transform," 796 *IEEE Trans. Image Process.*, vol. 27, no. 4, pp. 1966–1980, 2018. 3 797
- [49] J. L. Xiao, T. Z. Huang, L. J. Deng, Z. C. Wu, and G. Vivone, "A ⁷⁹⁸ new context-aware details injection fidelity with adaptive coefficients ⁷⁹⁹ estimation for variational pansharpening," IEEE Trans. Geosci. Remote 800 *Sens.*, 2022. 3, 7, 8, 9, 10, 11, 12, 13 801
- [50] L. Loncan, L. B. Almeida, J. M. Bioucasdias, X. Briottet, et al., ⁸⁰² "Hyperspectral pansharpening: A Review," *IEEE Geosci. Remote Sens.* ⁸⁰³ *Mag.*, vol. 3, no. 3, pp. 27–46, 2015. 4 804
- [51] H. Lu, Y. Yang, S. Huang, W. Tu, and W. Wan, "A unified pansharpening 805 model based on band-adaptive gradient and detail correction," *IEEE* 806 *Trans. Image Process.*, vol. 31, pp. 918–933, 2022. 4, 7, 8, 9, 10, 11, ⁸⁰⁷ 12, 13 808
- [52] F. L. Hitchcock, "The expression of a tensor or a polyadic as a sum of 809 products," *J. Math. Phys.*, vol. 6, no. 1-4, pp. 164-189, 1927. 5 810
- [53] L. R. Tucker, "Some mathematical notes on three-mode factor analysis," *Psychometrika*, vol. 31, no. 3, pp. 279–311, 1966. 5
- [54] C. I. Kanatsoulis, X. Fu, N. D. Sidiropoulos, and W. K. Ma, "Hyper- spectral super-resolution: A coupled tensor factorization approach," *IEEE Trans. Signal Process.*, vol. 66, no. 24, pp. 6503–6517, 2018.
- 817 [55] C. Prévost, K. Usevich, P. Comon, and D. Brie, "Hyperspectral super- resolution with coupled Tucker approximation: Recoverability and SVD- based algorithms," *IEEE Trans. Signal Process.*, vol. 68, pp. 931–946, 2020. 5
- [56] M. Ashraphijuo and X. Wang, "Fundamental conditions for low-CP-rank tensor completion," *J. Mach. Learn. Res.*, vol. 18, no. 1, pp. 2116–2145, 2017. 5
- [57] Y. Liu, Z. Long, H. Huang, and C. Zhu, "Low CP rank and Tucker rank tensor completion for estimating missing components in image data," *IEEE Trans. Circuits Syst. Video Technol.*, vol. 30, no. 4, pp. 944–954, 2019. 5
- [58] X. Y. Liu, S. Aeron, V. Aggarwal, and X. Wang, "Low-tubal-rank tensor completion using alternating minimization," *IEEE Trans. Inf. Theory* , vol. 66, no. 3, pp. 1714–1737, 2019. 5
- [59] T. G. Kolda, "Orthogonal tensor decompositions," *SIAM J. Matrix Anal. Appl.*, vol. 23, no. 1, pp. 243–255, 2001. 5
- [60] B. Aiazzi, L. Alparone, S. Baronti, A. Garzelli, and M. Selva, "MTF- tailored multiscale fusion of high-resolution MS and Pan imagery," *Photogramm. Eng. Remote Sens.*, vol. 72, no. 5, pp. 591–596, 2006. 6, 7, 8, 9, 10, 11, 12, 13
- [61] B. Aiazzi, L. Alparone, S. Baronti, and A. Garzelli, "Context-driven fusion of high spatial and spectral resolution images based on oversam- pled multiresolution analysis," *IEEE Trans. Geosci. Remote Sens.*, vol. 840 40, no. 10, pp. 2300–2312, 2002. 7, 8, 9, 10, 11, 12, 13, 14
- [62] R. Restaino, M. Dalla Mura, G. Vivone, and J. Chanussot, "Context- adaptive pansharpening based on image segmentation," *IEEE Trans. Geosci. Remote Sens.*, vol. 55, no. 2, pp. 753-766, 2016. 7, 8, 9, 10, 11 , 12 , 13
- [63] G. Vivone, "Robust band-dependent spatial-detail approaches for panchromatic sharpening," *IEEE Trans. Geosci. Remote Sens.*, vol. 57, 847 no. 9, pp. 6421–6433, 2019. 7, 8, 9, 10, 11, 12, 13
- [64] G. Vivone, R. Restaino, and J. Chanussot, "Full scale regression-based injection coefficients for panchromatic sharpening," *IEEE Trans. Image Process.*, vol. 27, no. 7, pp. 3418–3431, 2018. 7, 8, 9, 10, 11, 12, 13
- [65] R. Restaino, G. Vivone, M. Dalla Mura, and J. Chanussot, "Fusion of multispectral and panchromatic images based on morphological operators," *IEEE Trans. Image Process.*, vol. 25, no. 6, pp. 2882–2895, 854 2016. 7, 8, 9, 10, 11, 12, 13
- [66] F. Palsson, M. O. Ulfarsson, and J. R. Sveinsson, "Model-based reduced- rank pansharpening," *IEEE Geosci. Remote Sens. Lett.*, vol. 17, no. 4, 857 pp. 656–660, 2019. 7, 8, 9, 10, 11, 12, 13
- [67] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, "Image quality assessment: From error visibility to structural similarity," *IEEE Trans. Image Process.*, vol. 13, no. 4, pp. 600–612, 2004. 7
- [68] R. H. Yuhas, A. F. H. Goetz, and J. W. Boardman, "Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm," in *Proc. Summaries 3rd Annu. JPL Airborne Geosci. Workshop*, 1992, vol. 1, pp. 147–149. 7
- [69] L. Alparone, L. Wald, J. Chanussot, C. Thomas, P. Gamba, and L. M. Bruce, "Comparison of pansharpening algorithms: Outcome of the 2006 GRS-S data-fusion contest," *IEEE Trans. Geosci. Remote Sens.*, vol. 45, no. 10, pp. 3012–3021, 2007. 8
- [70] L. Alparone, S. Baronti, A. Garzelli, and F. Nencini, "A global quality measurement of pan-sharpened multispectral imagery," *IEEE Geosci. Remote Sens. Lett.*, vol. 1, no. 4, pp. 313–317, 2004. 8
- [71] L. Alparone, B. Aiazzi, S. Baronti, A. Garzelli, F. Nencini, and M. Selva, "Multispectral and panchromatic data fusion assessment without refer- ence," *Photogramm. Eng. Remote Sens.*, vol. 74, no. 2, pp. 193–200, 2008. 8
- [72] G. Vivone, R. Restaino, M. Dalla Mura, G. Licciardi, and J. Chanus- sot, "Contrast and error-based fusion schemes for multispectral image pansharpening," *IEEE Geosci. Remote Sens. Lett.*, vol. 11, no. 5, pp. 930–934, 2013. 8
- [73] X. Wu, T. Z. Huang, L. J. Deng, and T. J. Zhang, "Dynamic cross feature fusion for remote sensing pansharpening," in *Int. Conf. Comput. Vision (ICCV)*, 2021, pp. 14687–14696. 13 , 14