
HAL Id: hal-04473702
https://hal.science/hal-04473702

Submitted on 19 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Large Kernel Sparse ConvNet Weighted by
Multi-Frequency Attention for Remote Sensing Scene

Understanding
Junjie Wang, Wei Li, Mengmeng Zhang, Jocelyn Chanussot

To cite this version:
Junjie Wang, Wei Li, Mengmeng Zhang, Jocelyn Chanussot. Large Kernel Sparse ConvNet Weighted
by Multi-Frequency Attention for Remote Sensing Scene Understanding. IEEE Transactions on Geo-
science and Remote Sensing, 2023, 61, pp.5626112. �10.1109/TGRS.2023.3333401�. �hal-04473702�

https://hal.science/hal-04473702
https://hal.archives-ouvertes.fr


1

Large Kernel Sparse ConvNet weighted by
Multi-frequency Attention for Remote Sensing

Scene Understanding
Junjie Wang, Wei Li, Senior Member, IEEE, Mengmeng Zhang, Jocelyn Chanussot, Fellow, IEEE

Abstract—Remote sensing scene understanding is a highly
challenging task, and has gradually emerged as a research hotspot
in the field of intelligent interpretation of remote sensing data.
Recently, the use of convolutional neural networks (CNNs) has
been proven to be a fruitful advancement. However, with the
emergence of visual transformers (ViTs), the limitations of tra-
ditional small convolutional kernels in directly capturing a large
receptive field have posed significant challenges to their dominant
role. Additionally, the fixed neuron connections between different
convolutional layers have weakened the practicality and adapt-
ability of the models. Furthermore, the global average pooling
also leads to the loss of effective information in the acquired
features. In this work, a Large kernel Sparse ConvNet weighted
by Multi-frequency Attention (LSCNet) is proposed. Firstly,
unlike traditional convolutional neural networks, it utilizes two
parallel rectangular convolutional kernels to approximate a
large kernel, achieving comparable or even better results than
ViTs-based methods. Secondly, an adaptive sparse optimization
strategy is employed to dynamically optimize the fixed neuron
connections between different convolutional layers, achieving a
favorable connectivity pattern for capturing abstract features
more accurately. Lastly, a novel multi-frequency attention (MFA)
module is used to replace global average pooling (GAP), so
as to preserve more useful information while weighting the
recognition features, thereby enhancing the discriminative and
learning abilities of the model. In the conducted experiments,
LSCNet achieves the best recognition results on three well-known
remote sensing aerial datasets when compared to the state-of-the-
art methods (including ViTs-based methods).

Index Terms—Remote sensing, scene understanding, large
kernel convolution, adaptive sparse optimization, multi-frequency
attention.

I. INTRODUCTION

REMOTE sensing scene understanding is a vital yet
difficult task in the field of intelligent interpretation of

remote sensing data. It aims to capture high-level semantic
information from images and precisely assign corresponding
class labels to them. It has applications in various military and
civilian domains, including natural disaster detection, weapon
guidance, traffic supervision, and land cover monitoring [1]–
[5]. In recent years, the advancement in remote sensing tech-
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nology has increased the level of data abstraction from pixels
to objects and ultimately to scenes [6]–[8]. In order to keep
pace with these advancements, numerous researchers have
dedicated their efforts over the past few decades to address the
challenges and achieve scene-level image understanding [9]–
[11]. In this task, effective feature extraction plays a crucial
role, and based on the means of feature extraction, existing
scene understanding works can be roughly divided into three
directions: methods using low-level visual features, methods
relying on mid-level visual representations, and methods based
on high-level visual information [12] [13].

Early works for scene understanding mainly used low-level
visual features and focused on designing various handcrafted
features, such as color, texture, shape, spatial, and spectral
information. For instance, one of the most straightforward
yet useful visual characteristics for scene understanding tasks
is the color histogram feature [14]. It is not only easy to
implement but also exhibits translation and rotation invariance.
Additionally, texture descriptors analyze the structural char-
acteristics of an image by computing relative differences in
local regions, which facilitates the recognition of textural scene
images [15]. The GIST descriptor provides a global represen-
tation by computing the spatial distribution of local feature
detector outputs in subregions, allowing for the representation
of scale and orientation information in scene images [13],
[16]–[19]. On the other hand, the methods based on scale-
invariant feature transform (SIFT) utilize gradient information
around key points in the scene for feature description [20].
These methods work well in scenes with homogenous spatial
distributions using low-level visual features. However, they
struggle to describe scenes with high spatial disparity and
heterogeneous distributions [21]. In contrast to methods that
use low-level visual features, methods relying on mid-level
visual representations aim to utilize basic functions for feature
encoding and take a series of low-level features or raw pixel
values as input. Among them, the well-known bag-of-visual-
words (BoVW) model is one of the most popular mid-level
feature-based methods [22]. It learns a vocabulary of visual
words by performing k-means clustering on local features. In
addition, methods such as principal component analysis (PCA)
[23], sparse coding [24], and autoencoders [25] are also typical
approaches that rely on mid-level visual representations.

With the popularity of deep learning methods, remarkable
achievements have been made in various application domains,
including image classification, object detection, and semantic
segmentation, and the feature representation of images has
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entered a new stage [26]–[30]. Unlike low-level and mid-
level features, deep learning models can extract more abstract,
effective, and discriminative high-level visual features without
the need for extensive engineering efforts or domain exper-
tise. Among all deep learning models, convolutional neural
networks (CNNs) have demonstrated an excellent application
for scene understanding tasks and have achieved satisfying
performance. He et al. [31] incorporated skip connections
and covariance pooling into CNNs, combining multi-resolution
feature maps and leveraging second-order information within
these feature maps. Zhang et al. [32] introduced dilated convo-
lutions and channel attention to the network so as to generate
more discriminative features, resulting in a lightweight and
efficient network architecture. To refine the abstract features
that the VGG-Net collected, a discriminant correlation analysis
(DCA) [33] was utilized to fuse different features. Xu et al.
[34] proposed a feature aggregation network that consists of
two streams, a discriminative feature stream and a general
feature stream, which are integrated using a weighted fusion
method. Fang et al. [35] introduced frequency domain features
into the traditional spatial domain structure, obtaining more
advanced feature representations through joint learning.

In addition to CNNs, a new deep learning model based
on visual transformers (ViTs) has been proposed and widely
applied in various domains [36]. The rise of ViTs can be partly
attributed to their ability to capture a larger receptive field.
Compared to CNNs that perform convolution operations on
a small sliding window, ViTs utilize global or local attention
with larger window sizes, enabling each layer to capture a
larger receptive field. As a result, some studies have started
to explore the integration of ViTs into remote sensing scene
understanding tasks. In [37], a remote sensing scene classifi-
cation method based on vision transformers was proposed. It
divided the image into small patches and transformed them
into sequences, after which the generated sequences were
fed into a multi-head attention layer to generate the final
representation. Ma et al. [38] proposed a feature learning
module to simultaneously explore homogeneous and hetero-
geneous features in remote sensing scenes. In [39], a model
called efficient multiscale transformer and cross-level attention
learning (EMTCAL) was proposed, and the multi-level feature
extraction modules and context information extraction mod-
ules were used to obtain rich perceptual information, combined
with a developed cross-level attention model to aggregate and
explore the correlation between multi-level features. However,
the core conclusion of the original ViTs is that when there is
enough data for training, ViTs outperform CNNs, surpassing
the limitations of the lack of inductive biases, and achieving
better performance in downstream tasks. However, when the
training dataset is not large enough, the performance of ViTs
is usually worse than equivalently sized CNNs. Inspired by
this, some researchers have attempted to design advanced pure
CNN architectures and equip them with larger convolutional
kernels to obtain a larger receptive field. For example, Ding
et al. [40] extended the size of the convolutional kernel to
31x31, successfully achieving results comparable to methods
based on ViTs. However, simply using large kernels makes the
training process very challenging [41], thus requiring a novel

approach and strategy to enlarge the convolutional receptive
field while mitigating training difficulty.

In summary, existing research has made efforts from various
aspects, such as feature extraction and network architecture
design, to address the challenges of aerial scene understand-
ing in practical applications. However, as remote sensing
technology develops and the growing demand for practical
applications, there are still some unresolved issues. 1) In
remote sensing image processing tasks, the acquisition process
of training samples requires significant manpower and material
resources, making the process time-consuming. As a result,
the number of available sample is usually limited. This poses
a challenge for ViTs to achieve satisfactory results under
such circumstances. On the other hand, traditional convolution
operations with small kernel sizes hinder the acquisition of a
large receptive field, thus limiting the further improvement of
model performance. 2) Convolutional neural networks (CNNs)
have successfully reduced network parameters through their
advantage of sparse connections. However, the fixedness of
sparse connections between different convolutional layers lim-
its the further evolution of the model, weakening its practi-
cality and adaptability. 3) Channel attention, which assigns
different weights to different channels of feature maps, has
become a popular and important tool in deep learning models.
Obtaining the weight coefficients of channels is a crucial step
in this process [42]–[44]. The commonly used global average
pooling (GAP) has been a standard choice for obtaining these
coefficients due to its simplicity and efficiency. However, GAP
only utilizes a small portion of the obtained features, leading to
a significant loss of potentially useful information and thereby
reducing the discriminative power and learning capacity of the
model.

To address the aforementioned issues, this paper proposes
a novel Large kernel Sparse ConvNet (LSCNet) weighted
by Multi-frequency attention for aerial scene understanding.
Firstly, to tackle the problem of small receptive fields in
traditional convolutional kernels, large-kernel convolution is
introduced into the model. Specifically, two parallel rect-
angular kernels are utilized to approximate a large kernel,
achieving comparable or even superior results compared to
ViTs-based methods. This decomposition strikes a balance
between capturing long-range dependencies and extracting
local detailed features. Subsequently, an adaptive sparse op-
timization strategy is proposed to dynamically adjust sparse
connections during the training process. This strategy allows
the model to gradually evolve its sparse structure, leading to
better performance. Finally, a multi-frequency attention (MFA)
module is designed to allocate weights to different feature
channels. In contrast to previous methods, it compresses and
encodes channel information to explore as much potentially
useful information as possible.

In conclusion, the key contributions are listed below.

1) Aiming at expanding the receptive field of the convo-
lutional kernel, a large kernel convolution is introduced
into the model. By replacing small convolutional kernels
with two parallel rectangular kernels, the receptive field
is expanded while preserving the ability to capture
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Fig. 1. Schematic illustration of the proposed LSCNet. First, the input image undergoes a Conv Block for basic feature extraction, followed by four Conv
Layers that include the multi-frequency attention module to focus on important information. Next, large kernel convolutions are applied to achieve feature
extraction and learning with a large receptive field. The entire network utilizes an adaptive sparse optimization strategy to dynamically adjust the connections,
ensuring that the model can evolve into a better pattern. Finally, the results are obtained through a classifier.

local detailed features, thus achieving comparable per-
formance to ViTs-based methods.

2) To adjust the fixed sparse connections between layers, an
adaptive sparse optimization strategy is proposed, which
adaptively adjusts the fixed connections between original
layers through a dynamic ”prune-and-grow” scheme. By
pruning the least important weights and adding new
ones, the network connections are gradually optimized
towards a favorable pattern, thereby encouraging finer
capturing of local features.

3) To obtain effective channel attention weights, a novel
multi-frequency attention (MFA) module is designed.
In contrast to traditional methods, this paper regards
the channel attention representation as a compression
process. By incorporating frequency domain analysis, it
provides a fresh perspective that preserves more use-
ful information while weighting the final recognition
features, thus enhancing the discriminative power and
learning capability of the model.

The rest of the paper is organized as follows. Section
II provides a detailed description of the proposed LSCNet,
including how two parallel rectangular small convolutional
kernels are used to approximate a large kernel, how the
connections between layers are adaptively pruned, and how
more frequency components are utilized to achieve more

effective attention. The efficiency of the suggested modules
and the function of each module are tested through detailed
experiments and discussions in Section III. Finally, section IV
draws the conclusion.

II. PROPOSED LSCNET FRAMEWORK

The proposed LSCNet framework is illustrated in Fig.1.
Firstly, the scene images are fed into a feature extraction net-
work consisting of Conv Block and Conv Layer, where large-
kernel convolutions are employed to obtain a larger receptive
field, and each Conv Layer contains multiple convolution and
regularization operations. Subsequently, the multi-frequency
attention module is added to the Conv Layer to weigh impor-
tant information on the obtained feature vectors to improve
the model’s attention to crucial information. Throughout the
training process, an adaptive sparse optimization strategy is
applied to dynamically adjust the sparse connections between
different layers, enabling the network to evolve to a more
optimal state. By combining these modules, the understanding
and learning capabilities of the model are enhanced, achieving
state-of-the-art aerial scene understanding.

A. Large Kernel Convolution

Although ViTs have achieved remarkable performance in
various fields, their reliance on a large amount of training data
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Fig. 2. Dynamic sparse connection enables the training of neural networks with initially sparse components (sparse kernels) from scratch. Throughout the
training process, it adaptively fine-tunes the sparse weights by removing the least significant weights while growing new ones. This dynamic procedure
gradually optimizes the sparse kernels into an effective pattern, thereby facilitating a more comprehensive extraction of local features.

limits their application in remote sensing, so it is natural to
think whether it is possible to obtain larger receptive fields
by using convolutions with larger kernels, thus achieving
performance comparable to or even better than ViTs. Here, a
K ×K large-kernel convolution is replaced with two parallel
rectangular convolutions, with sizes of K × L and L × K,
where K is equal to the length and width of the feature
map, and L < K. The benefit of this approach lies in
its ability to balance the performance of the convolutional
kernels in capturing global dependencies and extracting local
detailed features (the longer side is used to capture global
dependencies, while the shorter side is used to extract local
detailed features). Some previous works attempted to utilize
two parallel or stacked complementary K × 1 and 1 × K
convolutional kernels [45] [46]. However, the length limitation
of the shorter side to 1 affected its effectiveness in extracting
features along the corresponding dimension. To address this
limitation, the proposed large kernel convolution increases
the length of the shorter side to L (the specific value of L
will be discussed in Section III-B 1), thereby improving the
training stability and memory scalability of the large kernel
convolution.

B. Adaptive Sparse Optimization

The popularity of Convolutional Neural Networks (CNNs)
attributes to their powerful representational capabilities and
the reduction of the number of parameters, among which
the sparse connection between different layers is also one
of the important reasons for the reduction of the number of
parameters. However, these fixed sparse connections limit the
further evolution of the model. As for now, related work has
been proposed to obtain a new sparse connection network,
including methods such as dropout and model compression.
However, the stochastic nature of these sparse techniques
affects the stability of the model [47] [48]. Therefore, an
adaptive sparse optimization strategy is developed to adjust the
sparse connections in the model by pruning the least important
weights and adding new ones, which is executed once for every
100 batches of data fed into the model by the dataloader.

Firstly, neural network pruning is formulated as an opti-
mization problem. Given a dataset D = (xi, yi)

num
i=1 , and a

desired dense level k. neural network pruning can be written
as the following constrained optimization problem:

minL(w;D) = min
1

num

num∑
i=1

l(w; (xi, yi))

w ∈ Rm, ∥w∥0 ≤ k.

(1)

where l(·) is the loss function used in the model, w is the
set of parameters of the neural network, m is the number of
parameters, and ∥·∥0 is the L0 normalization.

However, to adaptively prune the neural network, a criterion
is designed to measure the importance of each connection.
Firstly, an auxiliary indicator variable c is introduced to
represent the connections between parameters w. Now, given
a dense level k, Eq. 1 is reformulated as:

minL(c⊙ w;D) = min
1

num

num∑
i=1

l(c⊙ w; (xi, yi))

w ∈ Rm, c ∈ {0, 1}m, ∥c∥0 ≤ k.

(2)

where ⊙ represents the Hadamard product. Different from
Eq. 1, the key idea here is that since the connection weights
w and the existence of connections c have been separated,
the importance of each connection can be determined by
measuring its impact on the loss function. For example, the
value of cj represents whether connection j exists (cj = 1)
or not (cj = 0) in the network. Therefore, the impact of
connection j on the model loss can be measured by changing
the value of cj while keeping other values unchanged,

△Lj(w;D) = L(1⊙ w;D)− L((1− ej)⊙ w;D), (3)

where ej is the indicator vector for connection j (it has a
value of 1 only at index j, and 0 everywhere else) and 1
is the vector of dimension m. However, computing △Lj for
each connection is computationally expensive, and since c is
binary, L is non-differentiable with respect to c. Therefore, by
relaxing the binary constraint on c, △Lj can be approximated
by the derivative of L with respect to cj , denoted as dj(w;D),
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△Lj(w;D) ≈ dj(w;D) =
∂L(c⊙ w;D)

∂cj

∣∣∣
c=1

= limδ→0
L(c⊙ w;D)− L((c− δej)⊙ w;D)

δ

∣∣∣
c=1

(4)

Returning to the original objective, the goal is to identify
important connections in the neural network and remove
unimportant ones, thereby achieving model pruning. For this
purpose, the magnitude of the derivative dj is used as an
evaluation metric (if the magnitude of the derivative is high, it
indicates that connection j has a significant impact on the loss
and should be retained to ensure the learning of wj). Based on
these assumptions, the importance of a connection is defined
as the normalized magnitude of the derivative,

sj =
|dj(w;D)|∑m
k=1 |dk(w;D)|

(5)

After computing the importance of the connections, only the
top-k dense level. As a result, the target variable c is updated
accordingly,

cj = 1 [sj − s̃k ≥ 0], j ∈ 1...m (6)

where s̃k is the kth largest element in the vector s and 1 [·] is
the indicator function. At this point, neural network pruning
has been completed, and the next step is to randomly grow the
same number of connections (as shown in Fig. 2) to achieve
prune-and-grow scheme. The weights of the new connections
in the random growth process are randomly initialized. By
doing so, the model can adaptively adjust the sparse weights,
gradually evolving the connections in the model toward a
better pattern.

C. Multi-frequency Attention Module

The commonly used channel attention modules typically
include a Global Average Pooling (GAP) operation to assign
a scalar weight to each channel. The initial operation is to
average the information at all positions in the spatial dimension
into a single value. This is done because the final weights act
on the entire channel, and thus, it is essential to calculate the
weights based on the overall channel information. Addition-
ally, the aim is to leverage inter-channel correlations rather
than spatial distribution correlations. Employing Global Aver-
age Pooling (GAP) to suppress spatial distribution information
enables more accurate weight computation. However, due to
the simplicity of GAP, it might be difficult to successfully
extract complicated information from a variety of inputs,
leading to a loss of significant information. Therefore, a multi-
frequency attention (MFA) module is designed, which treats
the acquisition of scalar weights as a compression process
while preserving the overall representation capability of the
channels. Specifically, a discrete cosine transform (DCT) is
applied to compress the channels, followed by the utilization of
multiple frequency components to achieve channel attention.

Before proceeding to the detailed method introduction, some
necessary content review as well as detailed derivations are
first performed, including a revisiting of the DCT and the

representation flaws of the GAP. Typically, a 2D DCT is
expressed as:

FDCT (u, v) = a0c(u, v)

K−1∑
x=0

K−1∑
y=0

F (x, y)

cos
(2x+ 1)uπ

2K
cos

(2y + 1)vπ

2K

u, v = 0, 1 . . .K − 1, a0 =
2

K
,

c(u, v) =


1/2 u = v = 0

1/
√
2 uv = 0, u ̸= v

1 uv > 0

(7)

where F is the input. While GAP can be viewed as a special
case of 2D DCT, where its result is proportional to the lowest
frequency unit of the 2D DCT. Assuming that the variables u
and v in Eq. 7 are set to 0:

FDCT (0, 0) =
a0
2

K−1∑
x=0

K−1∑
y=0

F (x, y)

cos
(2x+ 1)0π

2K
cos

(2y + 1)0π

2K

=
a0
2

K−1∑
x=0

K−1∑
y=0

F (x, y)

=
a0
2
GAP (F )KK

(8)

From the above equations, GAP only utilizes the lowest
frequency information in the frequency domain, disregard-
ing a significant amount of potentially useful information,
resulting in information loss. Therefore, addressing this issue,
the proposed multi-frequency attention module leverages more
information from the transformed 2D DCT, including the low-
est frequency unit, to achieve a more comprehensive channel
attention mechanism.

First, the input F ∈ RC×K×K is divided into n parts
along the channel dimension, represented as [F 0, ..., Fn−1],
where F i ∈ RC

′
×K×K , C

′
= C

n . For each part, a 2D DCT
transformation is applied, and the resulting outputs are used
for channel attention,

T i = 2DDCTui,vi(F i)

= α

K−1∑
x=0

K−1∑
y=0

F i(x, y)cos
(2x+ 1)uiπ

2K
cos

(2y + 1)viπ

2K

(9)

where α = a0c(u
i, vi) represents a constant normalization

factor, [ui, vi] are the frequency component 2D indices corre-
sponding to F i, and T i ∈ RC

′

is the C
′

dimensional vector af-
ter the compression. The frequency component indices [ui, vi]
for each part F i are chosen by applying ”zig-zag” scanning,
which is a method of content selection, where it starts from
the top-left corner and proceeds to select frequencies along a
diagonal pattern [49]. After obtaining the DCT transformation
vectors for each part, they are concatenated and passed through
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a sigmoid function to obtain the corresponding attention vector
A,

A = sigmoid(fc(cat(T 0, T 1, ..., Tn−1))) (10)

The above equations demonstrate that the proposed MFA
module improves upon the original GAP by utilizing multi-
ple frequency components, enriching the compressed channel
representation. After obtaining the attention vector A, each
channel of input F is scaled by the corresponding attention
value:

F̂ = alFl, l ∈ 0, 1..C − 1 (11)

where F̂ is the output of attention mechanism, al is the l-th
element of attention vector A, and Fl is the l-th channel of
input.
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Fig. 3. Sample images of the UCM dataset: two images of each class are
exhibited. (Semantic category ∼ Number of samples in this category)

Airport~360 Breland~310 Baseball Field~220 Beach~400 Bridge~360

Center~260 Church~240 Commercial~350 Dense Residential~410 Desert~300

Farmland~370 Forset~250 Industrial~390 Meadow~280 Medium Residential~290

Mountain~340 Park~350 Parking~390 Playground~370 Pond~420

Port~380 Railway Station~260 Resort~290 River~410 School~300

Sparse Residential~300 Square~330 Stadium~290 Storage Tanks~360 Viaduct~420

Fig. 4. Sample images of the AID dataset: two images of each class are
exhibited. (Semantic category ∼ Number of samples in this category)

III. EXPERIMENTAL RESULTS AND DISCUSSIONS

A. Datasets Descriptions and Evaluation Metrics

1) Datasets Descriptions: (1) The UCM dataset [62] con-
sists of 2100 scene images, which are divided into 21 land-use
classes, including airplane, forest, freeway, overpass, etc. Each
class comprises 100 RGB images with the size of 256×256
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TABLE I
COMPARISON OF OVERALL ACCURACY AND STANDARD DEVIATIONS (%)
OF STATE-OF-THE-ART METHODS ON UCM DATASET WITH THE TRAINING

RATIO OF 80%

Type Method Publication Year Training ratio (80%)

△

BoVW(LBP) [13] TGRS2017 77.12±1.93
BoVW(SIFT) [13] TGRS2017 74.12±3.30

salM3LBP-CLM [50] JSTARS2017 95.75±0.80
salCLM(eSIFT) [50] JSTARS2017 94.52±0.79

□

Two-Fusion [51] CIN2018 98.02±1.03
CCPNet [52] RS2018 97.52±0.97
SCCov [31] TNNLS2019 99.05±0.25

ARCNet-VGG [53] TGRS2019 99.12±0.40
GBNet [54] TGRS2020 98.57±0.48

MG-CAP [55] TIP2020 99.00±0.10
SEMSDNet [56] JSTARS2021 99.41±0.14

CSDS [57] JSTARS2021 99.52±0.13
T-CNN [58] TGRS2022 99.33±0.11

DFAGCN [59] TNNLS2022 98.48±0.42

♢

ViT-B-16 [36] ICLR2021 99.28±0.23
T2T-ViT-12 [60] ICCV2021 99.10±0.30
EMTCAL [39] TGRS2022 99.57±0.28

SCViT [61] TGRS2022 99.14±0.27
Ours LSCNet 99.81±0.19

△:Methods using Low-level Visual Features □:Convolution-Based Methods
♢:Vision Transformer-Based Methods

pixels and a spatial resolution of 0.3 meters per pixel. This
dataset is extracted from aerial orthophotos downloaded from
the United States Geological Survey (USGS), and has been
extensively used for tasks such as remote sensing scene
recognition and retrieval. Fig. 3 shows some samples of this
benchmark dataset. (2) The AID dataset is extracted by Wuhan
University from Google Earth images [13]. Fig. 4 illustrates
some images of each class in this dataset. Compared to
datasets with images from a single source (such as the UCM
dataset), the AID dataset presents more challenges in scene
recognition due to the diverse remote sensing sensors used in
Google Earth imagery. The dataset consists of 10,000 RGB
images across 30 classes, including field, meadow, medium
residential, mountain, and more. Between 220 and 420 im-
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(c)(a) (b)

Fig. 6. Analysis of parameters contained in the model. (a) Analysis of short edge length in large kernel convolutions. (b) Analysis of dense level. (c) Analysis
of the number of frequency components.

ages are included in each scene class, which is a significant
variation in the amount of example images. The collection
contains images with resolutions that vary from 0.5 to 8
meters, each with a fixed size of 600×600 pixels. (3) The
NWPU-RESISC45 dataset is a large-scale scene recognition
dataset with rich image variation and diversity created by
Northwestern Polytechnical University [18]. The dataset con-
tains 31,500 RGB images, covering 45 scene classes, including
beach, church, cloud, desert, river, etc. Each class consists
of 700 images with a fixed size of 256×256 pixels. The
spatial resolution of the images ranges from approximately 0.2
meters to 30 meters. Compared to other datasets, the NWPU-
RESISC45 dataset is characterized by its large scale in terms
of the number of scenes and total images. It also exhibits sig-
nificant variations in translation, spatial resolution, viewpoint,
object pose, lighting, background, and occlusion. Furthermore,
it possesses high intra-class diversity and inter-class similarity,
making it a challenging dataset for scene recognition task. Fig.
5 exhibits some images of this challenging dataset.

Fig. 7. Confusion matrix (CM) on UCM dataset with 80% of the dataset for
training and 20% for testing.

2) Evaluation Metrics and Experimental Setting: To
demonstrate the superiority of the proposed method compared

to other state-of-the-art methods, a widely used quantitative
analysis metric - overall accuracy (OA), is introduced. OA
refers to the ratio of correctly classified samples to the total
number of samples in the dataset. Additionally, to provide a
more intuitive representation of the specific recognition results
of the proposed method on different datasets, a confusion
matrix is introduced to visualize intra-class recognition and
inter-class confusion. Specifically, the columns of the con-
fusion matrix describe the prediction of the model, and the
sum of each column denotes the number of samples predicted
as that class. The total of each row represents the actual
number of samples for that class, whereas each row itself
depicts the actual distribution of the data. Therefore, the
cells on the diagonal represent the proportion of correctly
recognized samples, while the other cells represent cases of
misrecognition.

To demonstrate the performance of this method, a series of
experiments on the three datasets were conducted to evaluate
the results. All the experiments were run on a GPU of NVIDIA
RTX 3070 with 8 GB RAM. For a fair comparison, the
frameworks were all based on Pytorch. The Adam optimizer
is used to train the network parameters. The learning rate was
set to 0.0001. The epoch was set to 500. The best training
model on the validation set is used to verify the test set. The
average values with standard deviation were obtained from the
results of 5 repeated experiments.

B. Parameter Analysis

1) Analysis of short edge length in large kernel convolu-
tions: The length of the short edge L in the large kernel con-
volution, mentioned in Section II-A, is an important parameter
that controls the receptive field and feature extraction effec-
tiveness along the corresponding dimension. To ascertain how
various quantities of L affect the outcomes of the experiment,
L is set to [1, 3, 5, 7], and its performance on three datasets
is reported. From Fig.6 (a), it can be observed that the overall
accuracy shows improvement as the length of the short side
increases from 1 to 5, and the accuracy has not improved or
even decreased after that. This is because with the increase of
the length of the short edge, the receptive field of the model is
expanded, allowing it to capture more local features. However,
once a certain scale is reached, further expansion introduces
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TABLE II
COMPARISON OF OVERALL ACCURACY AND STANDARD DEVIATIONS (%) OF STATE-OF-THE-ART METHODS ON AID DATASET WITH THE TRAINING

RATIO OF 20% AND 50%

Type Method Publication Year
Training ratios

20% 50%

△

BoVW(LBP)) [13] TGRS2017 56.73±0.54 64.25±0.55
BoVW(SIFT) [13] TGRS2017 61.40±0.41 67.65±0.49

salM3LBP-CLM [50] JSTARS2017 86.92±0.35 89.76±0.45
salCLM(eSIFT) [50] JSTARS2017 85.58±0.83 88.41±0.63

□

Two-Fusion [51] CIN2018 92.32±0.41 94.58±0.25
GCFs+LOFs [63] RS2018 92.48±0.38 96.85±0.23

SCCov [31] TNNLS2019 93.12±0.25 96.10±0.16
ARCNet-VGG [53] TGRS2019 88.75±0.40 93.10±0.55

GBNet [54] TGRS2020 92.20±0.23 95.48±0.12
MG-CAP [55] TIP2020 93.34±0.18 96.12±0.12

CSDS [57] JSTARS2021 94.29±0.35 96.70±0.14
PSGAN [64] TGRS2022 89.47±0.34 92.67±0.55
T-CNN [58] TGRS2022 94.55±0.27 96.27±0.23

♢

ViT-B-16 [36] ICLR2021 93.81±0.21 96.08±0.14
T2T-ViT-12 [60] ICCV2021 94.39±0.22 96.29±0.24
EMTCAL [39] TGRS2022 94.69±0.14 96.72±0.23

SCViT [61] TGRS2022 95.31±0.11 96.72±0.16
Ours LSCNet 95.38±0.15 97.14±0.14

△:Methods using Low-level Visual Features □:Convolution-Based Methods ♢:Vision Transformer-Based Methods

(a) (b)

Fig. 8. Confusion matrix (CM) on AID dataset. (a) 20% of the dataset for training and the rest for testing. (b) 50% of the dataset for training and the rest
for testing.

additional noise and complicates model training. Therefore, in
the subsequent experimental settings, the length of the short
edge in the large kernel convolution is set to 5.

2) Analysis of dense level: As mentioned in Section II-B,
in the process of adaptive sparse optimization, the importance
of each connection is determined based on its impact on the
loss function. Therefore, it is necessary to set a dense level k,
only the top k connections are retained, and the remaining
connections are pruned. In this subsection, corresponding
experiments are conducted to select the optimal value for k.
k is set to [0.1, 0.3, 0.5, 0.7, 0.9], and its optimal value

was determined based on performance on three datasets. It
can be seen from Fig.6 (b) that the optimal performance is
achieved when k is set to 0.7. When k is small, only a few
connections are retained while a large number of connections
are pruned and randomly regrown, resulting in difficulties
in model optimization. On the other hand, when k is large,
most connections remain unchanged, preventing the model
from fully evolving into a better pattern. Therefore, in the
subsequent experimental settings, the dense value k is set to
0.7.
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TABLE III
COMPARISON OF OVERALL ACCURACY AND STANDARD DEVIATIONS (%) OF STATE-OF-THE-ART METHODS ON NWPU-RESISC45 DATASET WITH THE

TRAINING RATIO OF 10% AND 20%

Type Method Publication Year
Training ratios

10% 20%

△
BoVW [18] RPOC2017 41.72±0.21 44.79±0.28

BoVW+SPM [18] RPOC2017 27.83±0.61 32.96±0.47
LLC [18] RPOC2017 38.81±0.23 40.03±0.34

□

Fine-tuned VGG-16 [18] RPOC2017 87.15±0.45 90.36±0.18
Two-Fusion [51] CIN2018 80.22±0.22 83.16±0.18

CNN-CapsNet [12] RS2019 89.03±0.21 92.60±0.11
SCCov [31] TNNLS2019 89.30±0.35 92.10±0.25

MF2Net [10] GRSL2020 90.17±0.25 92.73±0.21
MG-CAP [55] TIP2020 90.83±0.12 92.95±0.11

SEMSDNet [56] JSTARS2021 91.68±0.39 93.89±0.63
CSDS [57] JSTARS2021 91.64±0.16 93.59±0.21

PSGAN [64] TGRS2022 84.72±0.72 88.47±0.56
T-CNN [58] TGRS2022 90.25±0.14 93.05±0.12

♢

ViT-B-16 [36] ICLR2021 90.96±0.08 93.36±0.17
T2T-ViT-12 [60] ICCV2021 90.62±0.18 93.19±0.10
EMTCAL [39] TGRS2022 91.63±0.19 93.65±0.12

SCViT [61] TGRS2022 92.65±0.20 94.24±0.16
Ours LSCNet 92.80±0.14 94.54±0.19

△:Methods using Low-level Visual Features □:Convolution-Based Methods ♢:Vision Transformer-Based Methods

3) Analysis of the number of frequency components: In the
multi-frequency attention module, n represents the number of
frequency components to be selected in the DCT transforma-
tion. To examine the impact of different values of n on the
learning ability of the model, experiments are conducted in
this section with n set to [1, 2, 4, 8, 16], and the results on
three datasets are shown in Fig.6 (c). Firstly, all experiments
utilizing multiple frequency components showed a significant
performance gain compared to using only GAP (equivalent
to n = 1). This validates the importance of utilizing multiple
frequency components to enhance channel attention. Secondly,
among the remaining choices, the experiment achieves optimal
results when n is set to 16. Therefore, in the subsequent
settings, n is set to 16.

C. Comparison with State-of-the-art Methods

1) Results on the UCM dataset: To validate the recognition
performance of the proposed method, Table I presents a com-
parative evaluation of LSCNet and several other representative
recognition methods on the UCM dataset with 80% of the
samples as the training set and the remaining samples as
the test set. The results in the table reveal that methods
using low-level visual features make it difficult to achieve
better experimental results due to the fixity of their feature
extraction process. The convolution-based methods not only
obtain the abstract features automatically but also understand
the scene information with the assistance of labeling informa-
tion, achieving satisfactory classification results. The vision
transformer-based approaches also achieve good performance
because they capture the long-range dependencies in the scene
and better model the global information in the image. The
proposed method expands the receptive field of the model
through large kernel convolutions and strengthens the preser-

vation of channel attention information, achieving the best
recognition performance under improved sparse connections.
When the training data accounts for 80%, LSCNet achieves the
highest overall accuracy (OA) of 99.81% among all methods,
showing a significant improvement of at least 4.06% compared
to methods using low-level visual features. It also demonstrates
notable performance gains compared to deep learning methods
based on CNNs and ViTs, indicating that LSCNet not only
inherits the powerful feature extraction capabilities of CNNs
but also captures long-range dependencies comparable to ViTs.

Fig.7 shows the confusion matrix generated by LSCNet
based on the recognition results when the training rate is
80%. Among the 21 scene classes, only medium residential
is misclassified as dense residential, while all other classes
achieve 100% recognition accuracy. This misrecognition oc-
curs due to the high similarity between two scenes, such
as the similarity in building structures and background. It
becomes challenging to distinguish them accurately, leading
to confusion and affecting the experimental results.

2) Results on the AID dataset: Table II lists the comparison
results between LSCNet and other state-of-the-art methods on
the AID dataset, where two columns of results represent using
20% and 50% samples for training, and the remaining samples
as the test set. Compared to methods using low-level visual
features, LSCNet leverages deep network structures to obtain
richer feature representations, enhancing the representation
and discriminative power of recognition features. It achieves
accuracy improvements of 8.46% and 7.38% at training rates
of 20% and 50%, respectively. Compared to methods based on
CNNs, LSCNet achieves improvements of 0.83% and 0.44%
at different training rates by utilizing larger convolutional
kernels to obtain a larger receptive field, while enhancing the
rationality of network connections and the effectiveness of
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Fig. 9. Confusion matrix (CM) on NWPU-RESISC45 dataset with 10% of the dataset for training and the rest for testing

Fig. 10. Confusion matrix (CM) on NWPU-RESISC45 dataset with 20% of the dataset for training and the rest for testing.

channel attention. In comparison to methods based on ViTs,
LSCNet retains the ability of CNNs to capture local details
while bridging the gap in the receptive field between CNNs
and ViTs, achieving comparable or even superior performance
than the relevant methods.

Fig.8 shows the confusion matrices on the AID dataset
under different training rates. Among the 30 classes, only
five (under 20% training rate) and three (under 50% training
rate) classes have recognition accuracy below 90%, while the
recognition accuracy of mountain, parking and other classes
has reached 100%. Classes with small inter-class differences,

such as sparse residential, medium residential, and dense
residential, are also accurately classified with accuracy ex-
ceeding 99%. However, classes like resort, school, and square
have relatively lower recognition accuracy compared to other
classes. For example, resort is often misclassified as park,
as they have similar spatial distribution, including buildings
and lakes. Nevertheless, LSCNet still achieves satisfactory
recognition performance.

3) Results on the NWPU-RESISC45 dataset: Compared to
the previous two datasets, the NWPU-RESISC45 dataset is
richer in terms of scene classes and the number of images,
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TABLE IV
ABLATION STUDIES FOR THE PROPOSED LSCNET ON THREE DATASETS.(SKC: SMALL KERNEL CONVOLUTION; LKC: LARGE KERNEL CONVOLUTION;

ASO: ADAPTIVE SPARSE OPTIMIZATION; FSC: FIXED SPARSE CONNECTION; MAF: MULTI-FREQUENCY ATTENTION MODULE)

Variant
Convolutional module Layer connection method Attention module OA (%) on different dataset

SKC LKC K × 1 + 1×K ASO FSC MAF SENet(using GAP) UCM
(80%)

AID
(20%)

AID
(50%)

NWPU-RESISC45
(10%)

NWPU-RESISC45
(20%)

1 ! ! ! 99.81 95.38 97.14 92.80 94.54
2 ! ! ! 99.10 94.82 96.60 92.05 93.86
3 ! ! ! 98.74 94.38 96.29 91.53 93.47
4 ! ! ! 99.40 94.89 96.65 92.11 94.06
5 ! ! ! 99.47 94.83 96.74 92.22 93.98
6 ! ! ! 98.93 94.40 96.17 91.75 93.66
7 ! ! ! 98.61 94.10 95.96 91.47 93.13
8 ! ! ! 98.58 93.97 95.73 91.20 93.18

making it more challenging. Table III lists a comparison
of LSCNet and existing state-of-the-art methods in terms
of recognition performance on this dataset. Similarly, the
experimental accuracies of the high-level visual information-
based methods (convolution-based and vision transformer-
based) are generally better than methods based on low-level
visual features. The convolution-based and vision transformer-
based methods have their own strengths and weaknesses,
achieving better feature extraction in local and global features,
respectively. With 10% and 20% of the samples respectively
chosen as the training set, and the remaining samples are
used for testing, the proposed method outperforms other
comparative methods. Compared to the second-best model
trained under 10% and 20% training rates, LSCNet achieved
an OA improvement of 0.15% and 0.30% respectively. These
results demonstrate a significant advancement over methods
using low-level visual features, highlighting the exceptional
recognition performance of LSCNet. Moreover, they further
confirm the effectiveness of large kernel convolution, adaptive
sparse optimization, and multi-frequency attention module in
enhancing the experimental results.

Fig.9 and Fig.10 illustrate two confusion matrices on the
NWPU-RESISC45 dataset with training rates of 10% and
20%. In both cases, more than 90% accuracy is achieved
for 34 and 41 out of 45 classes, respectively. This demon-
strates not only the outstanding performance but also the
balanced recognition ability of the model. In the two sets of
experiments, palace and church have exhibited relatively poor
recognition performance compared to other classes, which can
be attributed to the similarity in the distribution of images,
leading to confusion by the classifier. However, for most
classes, including overpass and intersection, which are similar
classes, LSCNet still achieves excellent recognition results.

D. Ablation Studies

Aiming at the limitations of traditional CNNs methods on
the receptive field, this paper proposes a large kernel convo-
lution to expand receptive fields. Additionally, to overcome
the issue of limited model generalization caused by fixed
connections between layers, an adaptive sparse optimization
strategy is designed. Furthermore, through further analysis of

channel attention weights, the utilization of useful informa-
tion is enhanced by employing a multi-frequency attention
module. To validate their contributions to scene understanding
tasks, a series of ablation experiments were conducted in this
subsection to examine the effects of different modules on
performance improvement. The specific experimental results
are listed in Table IV. Firstly, to individually assess the
superiority of each module compared to traditional methods,
#2 - #5 demonstrate the recognition accuracy under different
variants (#1 represents the result of the proposed method).
The comparison between #1 and #2, #3 demonstrates the
advantages of large kernel convolution over small kernel
convolution. Here, K×1+1×K represents the utilization of
two rectangular convolution kernels with a short side length
of 1. The comparison of their results further verifies the
advantages of rectangular convolution kernels with a longer
short side, as mentioned earlier. When the length is 1, it fails
to capture local features in the other direction, leading to in-
complete feature extraction. On the other hand, the comparison
between #1 and #4 showcases the benefits of the adaptive
sparse optimization strategy, which continuously optimizes
the connection between layers through the pruning-growth
process, and improves the fitting ability of the model. And the
comparison between #1 and #5 illustrates the improvement in
channel attention achieved by multiple frequency components.
GAP, which corresponds to utilizing the lowest frequency
component, neglects the useful information inherent in other
components. Secondly, the comparison between #1 and #6,
#7, #8 demonstrates the impact of solely using large kernel
convolution, adaptive sparse optimization, and multi-frequency
attention modules on experimental results. The significant
improvement of #1 compared to the other three variants also
confirms the complementarity among these three components.
The combination of these three components can effectively
enhance the understanding and learning abilities of the modal,
resulting in LSCNet achieving state-of-the-art performance
across all three datasets.

E. Running time and Memory Requirement

To demonstrate the execution time and the resources (mem-
ory usage) of the model, relevant statistics are performed on



12

the UCM dataset. The training time of the model is calculated
with 32 images within a round of training, while the test
time is obtained using the entire test set (420 images). The
training time is 0.413s and the testing time is 0.825s. In
addition, the memory requirement of the model is 10.69 MB.
From the obtained results, the model runs efficiently and
requires a moderate amount of memory, which is sufficient
for subsequent applications.

IV. CONCLUSIONS

In this paper, a novel Large kernel Sparse ConvNet weighted
by Multi-frequency Attention is proposed for remote sensing
scene understanding. Firstly, to address the limited receptive
field of traditional small kernel convolutions, two parallel
rectangular kernels are utilized to approximate a large kernel,
enabling a larger receptive field. The long and short sides
of the rectangular kernel capture long-range dependencies
and local detailed information, respectively. Additionally, an
adaptive sparse optimization strategy is introduced to modify
the fixed sparse connections in the network, allowing the
model to evolve into a better recognition pattern. Lastly,
instead of simple global average pooling, multiple components
in the frequency domain are used to obtain more reasonable
and effective channel attention weights, improving the perfor-
mance of the modal. Extensive experiments on three publicly
available datasets demonstrate the effectiveness and superiority
of LSCNet from both quantitative and qualitative analyses,
showcasing its applicability in scene understanding tasks.
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