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Les premières horloges marines de John Harrison : étude de la dérive temporelle en mer de leurs résonateurs

La mesure précise de la longitude d'un navire fut un problème majeur pour la navigation jusqu'au XVIII e . Une solution passait par le développement d'horloges marines fiables, insensibles aux mouvements du navire, permettant d'estimer sa position par comparaison entre le temps local et le temps au méridien d'origine. Il revint à John Harrison, horloger anglais de génie, de mettre au point en 1735 la première horloge marine de précision connue sous le nom de H1 : une oeuvre d'art mécanique fascinante qui marqua son temps. L'objet de cet article est d'étudier le mouvement de son résonateur dans le référentiel non galiléen du navire. On montre qu'il est décrit par l'équation différentielle d'un oscillateur paramétrique. La résolution approchée de cette équation par une méthode de perturbation permet de prédire la sensibilité du résonateur aux mouvements du navire et les erreurs qui en résultaient sur la mesure de la longitude.

I INTRODUCTION

La détermination de la longitude à bord des navires fut un défi scientifique et technique majeur sans solution satisfaisante jusqu'au début du XVIII e . Les premières méthodes précises et fiables ne furent développées qu'au milieu du XVIII e en suivant deux approches. La première s'appuyait sur des moyens purement astronomiques : c'est la méthode des « distances lunaires », qui reposait sur la conception d'éphémérides lunaires fiables. La seconde passait par la mise au point d'horloges marines précises embarquées à bord des navires. Dans son principe, cette deuxième solution est la plus simple. On sait que la terre fait un tour sur elle-même en 24 heures, soit une rotation de 15° par heure. Donc, si au lieu d'observation le soleil culmine 1 heure plus tard qu'à Paris, cela signifie que nous en sommes éloignés de 15° de longitude vers l'ouest. Pour déterminer ce décalage horaire et en déduire la longitude, il suffit d'embarquer une horloge réglée sur l'heure du méridien de référence (Paris pour les Français jusqu'à la fin du XIX e , Greenwich pour les Anglais) et d'y lire l'heure à midi solaire en mer : le décalage donne la longitude par une simple règle de trois. Mais il faut pour cela concevoir une horloge insensible aux mouvements du bateau et aux variations de température. On mesure les difficultés techniques à surmonter dans un environnement difficile, la mer. Une erreur de 4 secondes se traduit à l'équateur par une erreur de position d'un mille marin, soit 1852 mètres ! Au XVIII e , deux grandes puissances maritimes, la France et l'Angleterre, s'attelèrent à cette quête de la longitude en mer en soutenant financièrement des travaux de recherche. Le parlement anglais vota ainsi en 1714 le Longitude Act. Il attribuait un prix de 20 000 Livres à celui qui trouverait le moyen de déterminer la longitude avec une précision de 0,5° après un voyage de 6 semaines en mer correspondant à la durée moyenne des traversées de l'Atlantique [1, pp.77-78] : la dérive de l'horloge ne devait pas excéder 2 minutes à l'issue du voyage pour y prétendre. En France, les noms des horlogers Pierre Le Roy et Ferdinand Berthoud sont attachés à cette aventure scientifique, mais la primauté des horloges marines fiables revient à John Harrison en Angleterre. Cet horloger de génie consacra sa vie à la conception d'horloges marines de précision, élaborant des solutions pertinentes aux nombreux obstacles techniques. Le livre de Dava Sobel [START_REF] Sobel | [END_REF] relate cette épopée. John Harrison conçut en 1735 sa première horloge marine, connue sous le nom de H1. Elle fut testée en mer l'année suivante dans un voyage aller-retour du sud de l'Angleterre à Lisbonne. On ne connait pas précisément les performances de H1 pendant cette navigation. Mais on sait que le résultat fut encourageant et valut à John Harrison le soutien des autorités anglaises pour la poursuite de ses travaux. Laissant H1 de côté, John Harrison entreprendra dès son retour la construction d'une version améliorée, H2, qui fut achevée en 1739. Puis viendra H3 en 1757. Suivra enfin H4, son célèbre chronomètre de marine qui lui vaudra la gloire en 1761 après un essai concluant dans un voyage vers les Antilles. Ces horloges sont aujourd'hui exposées au National Maritime Museum de Greenwich. Leur histoire et le détail de leur conception sont présentés dans l'ouvrage encyclopédique de Jonathan Betts [START_REF] Betts | Marine chronometers at[END_REF]. De nombreuses vidéo sur internet montrent H1 en fonctionnement : j'invite le lecteur intéressé à voir cette horloge fascinante battre la seconde. Le résonateur des 2 premières horloges marines de John Harrison H1 et H2, leur coeur battant, est une paire de Publié dans Bulletin de l'Union des Physiciens, janv. 2021 p.2 balanciers jumeaux d'environ 3 kg chacun [3, p.146] qui rythment l'écoulement du temps : 1 seconde par demi-période des balanciers dans un référentiel galiléen. La figure 1 détaille le résonateur de H1, celui de H2 est pratiquement identique. Un dispositif d'entretien des oscillations est bien sûr présent mais il n'est pas figuré : notre étude est consacrée au résonateur. On voit sur la figure que les 2 balanciers sont contraints à osciller en opposition de phase grâce à une liaison par des rubans métalliques souples (notés AC et BD), non élastiques, tendus, s'appuyant sur des supports circulaires. A peine John Harrison avait-il achevé H2 sur ce principe commun à sa première horloge, qu'il comprit que ce résonateur était partiellement affecté par le mouvement du bateau. Il en fit le constat dans un manuscrit conservé à la Clockmakers' Company, non daté mais postérieur à 1740, transcrit dans [3, p.156] : John Harrison y consigne une analyse qualitative pertinente de la sensibilité du balancier aux forces centrifuges. C'est vraisemblablement la raison pour laquelle il renoncera à un essai en mer de H2, et entreprendra la réalisation d'une 3 ème horloge marine. Comme nous le verrons, la conception du balancier de H3 remédie aux défauts des résonateurs de H1 et H2. L'objet de cet article est de répondre à cette question : H1 et H2 auraient-elles pu gagner le prix du Longitude Act malgré les légers défauts de leurs résonateurs ? La réponse passe par une étude du mouvement de leurs balanciers lorsque le navire se déplace de manière quelconque, perturbant ainsi leurs oscillations. Nous établissons dans ce but, au paragraphe 1, l'équation différentielle qui régit le résonateur dans le référentiel non galiléen de l'horloge embarquée ; le détail des calculs est reporté en annexe. Une solution approchée basée sur une méthode de perturbation est ensuite proposée au paragraphe 2. Le paragraphe 3 établit l'expression de la dérive temporelle de l'horloge qui en résulte, et le paragraphe 4 particularise les résultats généraux au cas des horloges H1 et H2. Les simulations montrent que H1 et H2, mêmes montées sur des suspensions à cardan les maintenant horizontales, auraient difficilement pu prétendre au prix du Longitude Act en raison des seuls effets des variations de cap du navire sur le rythme de leurs balanciers.

EQUATION DU MOUVEMENT DES BALANCIERS

Examinons les balanciers de H1 sur la figure 1. L'axe de rotation de chaque balancier est perpendiculaire au plan de la figure : il est confondu avec un axe principal d'inertie et passe par le centre de gravité du balancier. Si l'on force le balancier de droite (B1) à tourner dans le sens trigonométrique d'un angle 𝜃 1 , le ruban métallique BD se tend, s'enroule à droite sur une longueur 𝑟𝜃 1 autour de son support circulaire de rayon 𝑟, et se déroule de la même longueur sur le support de gauche faisant ainsi tourner l'autre balancier B2 d'un même angle dans le sens opposé :

𝜃 2 = -𝜃 1 .
Nous verrons que cette liaison particulière rend les oscillations des balanciers partiellement insensibles aux mouvements du bateau, voire insensibles sous certaines conditions. Les oscillations des balanciers sont assurées par 4 ressorts identiques de raideurs 𝑘, compensés en température grâce à un dispositif original que nous ne détaillerons pas. Par raison de symétrie, la position d'équilibre des balanciers est verticale. La fixation d'un des ressorts (ressort R1) est représentée sur la figure 1. Une extrémité L de ce ressort est fixée au bâti de l'horloge. L'autre extrémité N est fixée au balancier en s'appuyant sur un support circulaire de rayon 𝑙 centré sur l'axe de rotation du balancier. Cet agencement garantit que l'étirement du ressort se fait selon une droite fixe passant par L et tangente au support circulaire. On vérifie alors facilement que les couples exercés par les ressorts sur les balancier B1 et B2 sont opposés et valent :

𝐶 1 = -2 𝑘 𝑙 2 𝜃 1 (1) 
= -𝐶 2 .

On l'oscillation du balancier est insensible à la rotation 𝛺 𝑧 (𝑡) de l'horloge autour de l'axe 𝑧. On remarque aussi que des balanciers dont les moments d'inertie satisfont 𝐼 𝑥 = 𝐼 𝑦 garantissent une insensibilité totale du résonateur au mouvement du bateau puisque l'équation (2) devient :

𝐼 𝑧 𝜃 ̈1 = -2 𝑘 𝑙 2 𝜃 1 + 𝑀 𝑓,1 -𝑀 𝑓,2 2 .
C'est précisément ce choix que John Harrison fit avec son modèle H3 dont les balanciers sont à symétrie de révolution autour de leur axe de rotation 𝐺 𝑖 𝑧. Mais ce n'est pas le cas pour H1 et H2 : ces deux horloges sont sensibles aux mouvements de rotation autour des axes 𝑥 et 𝑦, et John Harrison en prit conscience en 1740 comme le montrent ses notes manuscrites [3, p.156] . Négligeons maintenant les frottements (1) dans l'équation (2) et introduisons la pulsation propre du balancier :

𝜔 0 = √ 2 𝑘 𝑙 2 𝐼 𝑧 (3) 
dont la période vaut 𝑇 0 = 2 𝜋/𝜔 0 = 2 𝑠 (demi-période de 1 𝑠). L'équation (2) devient :

𝜃 ̈1 = -𝜔 0 2 𝜃 1 - 1 2 𝐼 𝑥 -𝐼 𝑦 𝐼 𝑧 (𝛺 𝑥 2 (𝑡) -𝛺 𝑦 2 (𝑡)) sin (2𝜃 1 ) . ( 4 
)
En pratique, les vitesses angulaires 𝛺 x (𝑡) et 𝛺 y (𝑡) sont petites devant 𝜔 0 : 4) est un terme de perturbation qui modifie le balancement sinusoïdal du balancier ainsi que sa période. Dans quelle proportion ? Les paragraphes qui suivent répondent à cette question.

|𝛺 x (𝑡)| ≪ 𝜔 0 et |𝛺 y (𝑡)| ≪ 𝜔 0 et le terme 𝐼 𝑥 -𝐼 𝑦 𝐼 𝑧 (𝛺 𝑥 2 (𝑡) -𝛺 𝑦 2 (𝑡)) sin (2𝜃 1 ) dans (

Résolution de l'équation différentielle linéarisée par une méthode de perturbation

L'amplitude du mouvement des balanciers est faible pour H1 comme pour H2 : |𝜃 1 | ≤ 6°. Dans ces conditions il est pertinent de linéariser l'équation (4) du mouvement qui devient :

𝜃 ̈1 + 𝜔 2 (𝑡) 𝜃 1 = 0 (5) où : 𝜔 2 (𝑡) = 𝜔 0 2 + 𝑎 (𝛺 𝑥 2 (𝑡) -𝛺 𝑦 2 (𝑡)) ; (5-a) 𝑎 = 𝐼 𝑥 -𝐼 𝑦 𝐼 𝑧 ; (5-b) |𝑎 (𝛺 𝑥 2 (𝑡) -𝛺 𝑦 2 (𝑡))| ≪ 𝜔 0 2 .
(5-c) (1) Dans toute horloge, l'effet des frottements est compensé par un mécanisme d'entretien des oscillations. 

Publié dans

𝜖(𝑡) = 𝑎 (𝛺 𝑥 2 (𝑡) -𝛺 𝑦 2 (𝑡)), (6) 
de sorte que l'expression (5-a) de la pulsation instantanée s'écrit :

𝜔 2 (𝑡) = 𝜔 0 2 + 𝜖(𝑡). (7) 
Précisons les ordres de grandeur : nous verrons au paragraphe 4 que 𝜖(𝑡) et 𝜔 0 2 sont dans un rapport maximal de l'ordre de 10 -3 . Posons

𝜙(𝑡) = ∫ 𝜔(𝑢) 𝑑𝑢 𝑡 0 . ( 8 
)
En l'absence de perturbation (𝜖(𝑡) = 0) nous aurions 𝜙(𝑡) = 𝜔 0 𝑡 qui s'accroitrait de 2 𝜋 tous les 𝑇 0 = 2 𝜋/𝜔 0 = 2 𝑠, mais cette évolution linéaire est affectée par 𝜖(𝑡). Réécrivons l'équation [START_REF] Stoker | Nonlinear Vibrations in Mechanical and Electrical Systems[END_REF] 

𝜃 1 ′ 𝜃 1 ′′ + 𝜃 1 𝜃 1 ′ = -𝜖 ′ 2 𝜔 2 ⁄ 𝜃 1 ′ 2 ,
ce qui donne :

𝑑 𝑑𝜙 ( 1 2 𝜃 1 ′ 2 + 1 2 𝜃 1 2 ) = -𝜖 ′ 2 𝜔 2 ⁄ 𝜃 1 ′ 2 . ( 17 
)
Notons 〈 〉 𝜙 l'opération de moyennage définie pour une fonction 𝑔(𝜙) quelconque par :

〈𝑔〉 𝜙 = 1 2 𝜋 ∫ 𝑔(𝑢) 𝑑𝑢 𝜙+2𝜋 𝜙 avec la propriété 〈 𝑔′ 〉 𝜙 = 𝑑 𝑑𝜙 〈 𝑔 〉 𝜙
Suivons maintenant l'approche de Feynman dans son analyse des régimes transitoires [START_REF][END_REF] et moyennons l'expression (17) : 

〈 ( 1 2 𝜃 1 ′ 2 + 1 2 𝜃 1 2 ) ′ 〉 𝜙 = 𝑑 𝑑𝜙 ( 〈 1 2 𝜃 1 ′ 2 + 1 2 𝜃 1 2 〉 𝜙 ) = -〈 𝜖 ′ 2 𝜔 2 ⁄ 𝜃 1 ′ 2 〉 𝜙 . (18) 
〈 1 2 𝜃 1 ′ 2 + 1 2 𝜃 1 2 〉 𝜙 ≅ 1 2 𝐴 2 (𝜙). (19) 
Par ailleurs, compte tenu de l'hypothèse (15), on a :

〈 𝜖 ′ 2 𝜔 2 ⁄ 𝜃 1 ′ 2 〉 𝜙 ≅ 𝜖 ′ 2 𝜔 2 ⁄ 〈 𝜃 1 ′ 2 〉 𝜙 ≅ 𝜖 ′ 4 𝜔 2 ⁄ 𝐴 2 (𝜙) . (20) 
Le report de (19) et (20) dans (18) donne l'équation différentielle de l'évolution de 𝐴 2 (𝜙) :

𝑑𝐴 2 𝑑𝜙 = - 𝜖 ′ 2 𝜔 2 𝐴 2 (21) 
Cette équation s'intègre immédiatement en remarquant que 𝜖 ′ = (𝜔 0 2 + 𝜖) ′ = 𝜔 2 ′ : 

𝑑𝐴 2 𝐴 2 = - 𝜔 2 ′ 2 𝜔 2 𝑑𝜙 ln 𝐴 2 = -
+ 𝜙 0 ) ≜ 𝜃 𝑊𝐾𝐵 (𝑡) . ( 23 
)
On reconnait l'approximation WKB [START_REF] Carl | Advanced mathematical methods for scientists and engineers[END_REF] couramment utilisée en mécanique quantique dans la résolution de l'équation de Schrödinger. Elle donne ici une solution très satisfaisante dont on a vérifié la validité par comparaison avec le résultat d'une intégration numérique. Enfin, dans la mesure où 𝜔(𝑡) s'écarte peu de 𝜔 0 avec des écarts maximaux de l'ordre de 10 -3 , l'approximation suivante est pertinente :

𝜃 1 (𝑡) ≅ 𝐴 0 cos (∫ 𝜔(𝑢) 𝑑𝑢 𝑡 0 + 𝜙 0 ) .

Dérive temporelle des horloges en mer

On se place dans le cadre de l'approximation WKB (23) du mouvement. Prenons comme origine des temps l'instant où l'horloge est « mise en route » et posons : (

) 24 
Dans cette expression, on a :

𝜙(𝑡) = ∫ 𝜔(𝑢) 𝑑𝑢 𝑡 0 = ∫ (𝜔 0 2 + 𝑎 (𝛺 x 2 (𝑢) -𝛺 y 2 (𝑢)) ) 1/2 𝑑𝑢 𝑡 0 ≅ ∫ 𝜔 0 𝑡 0 (1 + 𝑎 𝛺 𝑥 2 (𝑢)-𝛺 𝑦 2 (𝑢) 2 𝜔 0 2 ) 𝑑𝑢 (25) 
Introduisons les valeurs quadratiques moyennes de 𝛺 𝑥 (𝑡) et 𝛺 𝑦 (𝑡) calculées sur l'intervalle de temps [0 , 𝑡] : 

𝛺 𝑥 2 ̅̅̅̅ (𝑡) = 1 𝑡 ∫ 𝛺 𝑥 2 (𝑢) 𝑑𝑢 𝑡 0 , 𝛺 𝑦 2 ̅̅̅̅ (𝑡) = 1 𝑡 ∫ 𝛺 𝑦 2 (𝑢) 𝑑𝑢 𝑡 0 (26) 

Comportement en mer du résonateur des deux premières horloges marines de John Harrison

John Harrison embarqua avec son horloge H1 en 1736 pour un essai en mer lors d'un voyage aller-retour entre l'Angleterre et Lisbonne. Ce fut le seul essai de H1, et il n'y en eu aucun pour H2. Les résultats furent mitigés. A l'aller, dans des conditions de mer difficiles, l'horloge ne donna pas de résultats probants. Mais au retour, après 30 jours de navigation, se basant sur la longitude fournie par son horloge, John Harrison déclara que la terre en vue était le cap Lizard alors que les officiers du bord penchaient pour le Start Point à 60 Milles marins vers l'Est, à côté de Dartmouth. John Harrison avait raison. Cette localisation correcte du vaisseau à l'atterrage fit une grosse impression et lui permit d'obtenir un soutien financier pour la suite de ses travaux [START_REF] Betts | Marine chronometers at[END_REF][START_REF] Gould | The Marine Chronometer[END_REF]. Etait-ce un coup de chance, bénéficia-t-il de la compensation de plusieurs erreurs, la conception de son horloge permettait-elle une estimation correcte de la longitude ? Par la formule (27) nous pouvons quantifier l'impact des mouvements du bateau sur les oscillations des balanciers de H1 et H2, et estimer ainsi la dérive temporelle qui en résultait. Nous saurons en particulier si cette dérive était compatible avec les conditions du prix du Longitude Act : estimer la longitude à mieux que 0,5° après 42 jours de navigation, une précision de localisation qui nécessite une horloge dont la dérive temporelle est inférieure à 120 s au terme du voyage. Un bateau est sujet à 3 types de mouvements rotatoires : le roulis qui correspond aux balancements dans la largeur, le tangage qui désigne les oscillations dans le sens longitudinal, et le lacet qui désigne la rotation autour d'un axe vertical. Le lacet provoque des variations de cap autour de la route idéale dont l'amplitude et Publié dans Bulletin de l'Union des Physiciens, janv. 2021 p.8 la fréquence dépendent des conditions de mer, de la force du vent, et de l'adresse de l'homme de barre. H1 et H2 étaient montées sur une suspension à cardan qui les maintenait horizontales, tout au moins dans l'idéal. Nous supposerons cette suspension parfaite, annulant ainsi roulis et tangage pour l'horloge : 𝛺 𝑧 (𝑡) = 0 (absence de roulis), 𝛺 𝑥 (𝑡) = 0 (absence de tangage).

Restent donc les seules variations de cap qui provoquent une rotation de l'horloge autour d'un axe vertical 𝐻𝑦. Notons 𝑒(𝑡) l'écart angulaire entre le cap à suivre et le cap effectivement suivi par le bateau. On a alors : 2 vérifie la validité de l'expression (32) de la dérive temporelle de l'horloge pour des erreurs de cap sinusoïdales dont la fréquence varie entre 0,01 Hz et 0,3 Hz, et pour des amplitudes 𝑒 𝑚𝑎𝑥 allant de 1° à 10°. Les courbes en trait plein sont calculées selon l'équation (32) pour t = 1 heure, les croix sont des valeurs mesurées selon principe exposé sur la figure 3 : l'équation différentielle (5) est intégrée numériquement sous Matlab par la méthode de Runge Kutta sur un intervalle de temps de 1 heure, et le retard de l'horloge est mesuré par rapport à une oscillation idéale non perturbée. L'échelle des ordonnées a été limitée à la valeur maximale de la dérive compatible avec le prix du Longitude Act : 120 s en 42 jours, soit 0,12 s par heure. Sur la figure 2, l'accord entre les points mesurés et la valeur théorique (32) est très bon : l'erreur relative est inférieure à 0,2%. Cette figure permet aussi de prévoir la dérive temporelle de l'horloge lorsque l'erreur de cap est composée d'une somme de sinusoïdes : il suffit d'additionner la contribution de chaque sinusoïde. Pour répondre à cette question, il faut définir un scénario plausible et faire voguer ces horloges sur la mer simulée. Nous prendrons en compte 2 perturbations sur le cap suivi par le navire : l'effet de la houle sur la route du bâtiment, et les erreurs de barre. La fréquence typique de la houle est de l'ordre de 0,1 Hz, entraînant par son action sur la carène d'un navire des oscillations de lacet au même rythme. Quiconque a barré un voilier au portant connait les écarts de cap parfois importants qui en résultent, difficiles à contrecarrer. Nous prendrons en compte cette première perturbation en la modélisant par une variation de cap sinusoïdale d'amplitude 3° à 0,1 Hz. A ce mouvement se superpose généralement des oscillations plus lentes dues au barreur : nous les modéliserons par une oscillation sinusoïdale additionnelle d'amplitude 5° à 0,03 Hz. La dérive de l'horloge qui en résulte au bout de 42 jours est calculée par les formules (32) et (33). Les oscillations de cap de 3° à 0,1 Hz provoquent une dérive de près de 100 s , et les variations de cap de 5° à 0,03 Hz une dérive additionnelle d'environ 25 s. Dans ces conditions, l'horloge retarde de 125 s après 42 jours de mer, 5 s de plus que la limite affichée par le Longitude Act. La Figure 4 vérifie la validité de ce résultat en mesurant la dérive de l'horloge au bout d'une heure après intégration numérique de l'équation différentielle du mouvement. Ainsi, l'effet cumulé de ces deux seules erreurs de cap suffit à pousser H1 ou H2 dans leurs retranchements et à les disqualifier dans la course au prix du Longitude Act. 

𝛺 𝑦 (𝑡) = 𝑒 . (

Conclusion

La mesure de la longitude en mer passait par la conception d'horloges marines précises insensibles aux mouvements du bateau. H1, la première horloge de John Harrison conçue en 1735, a marqué l'histoire de la navigation. On peut l'admirer au musée de Greenwich à Londres où elle bat la seconde devant les visiteurs. Elle fut la première horloge à pouvoir peut-être relever le défi du Longitude Act : une précision de 2 minutes après un voyage de 6 semaines en mer selon les conditions votées par le parlement anglais en 1714 pour gagner un prix de 20 000 livres. Mais H1 ne fut jamais testée sur un voyage aussi long. Elle fit un seul essai en mer dans une navigation entre l'Angleterre et Lisbonne en 1736 : environ une semaine de mer à l'aller et à peu près un mois au retour. On ne connait pas précisément ses performances lors de ce voyage, on sait seulement qu'elle impressionna favorablement les officiers du bord à l'atterrage en permettant d'identifier le cap Lizard par sa 0,1234 s Publié dans Bulletin de l'Union des Physiciens, janv. 2021 longitude. De par sa conception, le résonateur de H1, comme celui de H2 qui lui succéda, était sensible aux mouvements de rotation du navire : ce défaut était-il rédhibitoire ? C'est la question à l'origine du travail présenté dans cette étude des oscillations des balanciers pour un mouvement arbitraire du bâti de l'horloge. Pour y répondre, nous avons déterminé l'équation différentielle régissant les résonateurs de H1 et H2. Celleci s'apparente à celle d'un oscillateur paramétrique dans lequel la fréquence naturelle des oscillations est modifiée par les vitesses de rotation de l'horloge selon deux axes. Cette sensibilité des horloges aux mouvements du navire tient à des moments d'inertie différents de leurs balanciers selon leurs axes principaux, un défaut que John Harrison corrigera avec H3. La résolution de l'équation différentielle par une méthode de perturbation nous a ensuite permis d'obtenir expression simple de la dérive ces horloges embarquées dans un navire. Restait à définir un scenario et faire concourir H1 et H2 sur la mer simulée en vue du prix du Longitude Act. Celui que nous avons retenu est le suivant : -les 2 horloges sont montées dans une suspension à cardan idéale les maintenant horizontales ; -la houle impose des oscillations de cap sinusoïdales de fréquence 0,1 Hz (valeur typique) et d'amplitude 3° ; -le barreur virtuel imprime au bateau une oscillation sinusoïdale supplémentaire sur la route suivie de ∓5° de fréquence 0,03 Hz . Dans de telles conditions, H1 et H2 accusent un retard de 2 minutes et 5 secondes après 42 jours : cela fait 5 secondes de trop. Tout scénario est discutable, mais ces résultats montrent une sensibilité importante de H1 et H2 aux mouvements des navires qui auraient pu les accueillir.

Annexe : Equation différentielle du mouvement des balanciers dans un référentiel lié à l'horloge

Cette annexe étudie le mouvement des balanciers dans un référentiel lié à l'horloge. On renvoie à la figure 1 pour la géométrie du dispositif mécanique. Le résultat final de l'annexe est l'équation différentielle du mouvement des balanciers. La liaison des 2 balanciers de l'horloge maintient leurs mouvements en opposition de phase : -la masse des rubans est négligeable ; -l'amplitude du mouvement est suffisamment faible pour que les rubans restent tangents aux supports en leurs point de contact (on est à la limite de validité de cette hypothèse en A et D sur la figure 5). Dans ces conditions, montrons que les moments 𝑀 𝑙,1 et 𝑀 𝑙,2 sont égaux. Considérons le ruban AC et partageons-le en 3 parties : le segment A'C' limité par les points de tangence aux supports, et les 2 bouts de rubans AA' et CC' en arcs de cercles s'appuyant sur les supports. Soit 𝑇 > 0 la tension de A'C', et 𝑀 𝐴𝐴 ′ ( resp. 𝑀 𝐶𝐶 ′ ) le moment des forces exercées par AA' (resp. CC') sur le balancier 𝐵 1 (resp. 𝐵 2 ) par rapport à son axe de rotation. Le moment des forces exercées sur AA' est nul car le ruban est sans masse (son moment cinétique est nul). Il se décompose en la réaction du support -𝑀 𝐴𝐴 ′ et le moment 𝑟 𝑇 exercé par le reste du ruban sur AA' au point A' : on a donc 𝑟 𝑇 -𝑀 𝐴𝐴 ′ = 0, c'est-à-dire 𝑟 𝑇 = 𝑀 𝐴𝐴 ′ . Le même raisonnement appliqué à CC' donne 𝑟 𝑇 = 𝑀 𝐶𝐶 ′ , d'où l'on déduit 𝑀 𝐴𝐴 ′ = 𝑀 𝐶𝐶 ′ : ceci montre que les moments exercés par le ruban AC sur chaque balancier sont identiques. Pour le deuxième ruban on montrerait de même que 𝑀 𝐷𝐷 ′ = 𝑀 𝐵𝐵 ′ . Or le moment total des forces exercées par les rubans sur les balanciers vaut 𝑀 𝑙,1 = 𝑀 𝐴𝐴 ′ + 𝑀 𝐵𝐵 ′ pour 𝐵 1 et 𝑀 𝑙,2 = 𝑀 𝐷𝐷 ′ + 𝑀 𝐶𝐶 ′ pour 𝐵 2 , et l'on en déduit le résultat annoncé : 𝑀 𝑙,1 = 𝑀 𝑙,2 . 

𝜃 2 (𝑡) = -𝜃 1 (𝑡) (A-
𝑀 𝑙 1 = - 𝑀 𝑓,1 +𝑀 𝑓,2 2 - 𝑀 1 +𝑀 2 2 (A-2)
L'équation du mouvement du premier balancier s'écrit donc :

𝐼 𝑧 𝜃 ̈1 = 𝐶 1 + 𝑀 𝑙,1 + 𝑀 𝑓,1 + 𝑀 1 ,
qui donne compte tenu de (A-2) et de l'expression du couple exercé par les ressorts: 

𝐼 𝑧 𝜃 ̈1 = = -2 𝑘 𝑙 2 𝜃 1 + 𝑀 𝑓,1 -𝑀 𝑓,2 2 + 𝑀 1 -𝑀 2

1 2

 1 ln 𝜔 2 + 𝑐 soit : 𝐴 = 𝐶/√𝜔 (22) Les équations (22), (11) et (8) nous donnent finalement l'équation du mouvement des balanciers dans l'hypothèse (16) où elles ont été élaborées : 𝜃 1 (𝑡) ≅ 𝐶/√𝜔(𝑡) . cos (∫ 𝜔(𝑢) 𝑑𝑢 𝑡 0

.= 2 𝜙

 2 Publié dans Bulletin de l'Union desPhysiciens, janv. 2021 p.7𝜙(𝑡) = ∫ 𝜔(𝑢) 𝑑𝑢 𝑡 0Un aller-retour des balanciers correspond à une variation de 2 𝜋 de la phase 𝜙(𝑡) : l'horloge compte 𝑇 0 = 2𝜋 𝜔 0 𝑠 pour ce balancement. A l'instant 𝑡, le temps 𝑡 𝐻 (𝑡) indiqué par l'horloge vaut donc : La dérive temporelle de l'horloge est l'écart entre le temps 𝑡 𝐻 (𝑡) qu'elle affiche et le temps vrai 𝑡 . Elle a pour valeur : Δ(𝑡) = 𝑡 𝐻 (𝑡) -𝑡 =

L

  ce qui donne, après report dans (24), l'expression de la dérive temporelle : Remarque : les expressions (26) de 𝛺 𝑥 2 ̅̅̅̅ (𝑡) et 𝛺 𝑦 2 ̅̅̅̅ (𝑡) tendent éventuellement vers des valeurs limites lorsque 𝑡 tend vers l'infini. C'est le cas dans deux situations intéressantes : lorsque 𝛺 𝑥,𝑦 (𝑡) est une somme de sinusoïdes, et lorsque 𝛺 𝑥,𝑦 (𝑡) est un signal aléatoire ergodique.

Figure 2 :

 2 Figure 2 : Dérive de l'horloge au bout d'une heure en fonction de la fréquence pour une erreur de cap sinusoïdale d'amplitude allant de 1°à 10° . Courbe en trait plein : formule (32). Croix : valeurs mesurées après intégration numérique de l'équation (5).

Figure 3 :

 3 Figure 3 : Oscillations des balanciers au bout de 1 heure, 2 dernières secondes. Courbe en trait plein : intégration numérique de l'équation différentielle du mouvement avec une erreur de cap sinusoïdale (𝑒 𝑚𝑎𝑥 = 10°, 𝑇 𝑒 = 30 𝑠). Courbe en pointillés : oscillations non perturbées (sans erreur de cap). Dérive de l'horloge mesurée au bout d'une heure : 0,1218 s. Dérive théorique par l'équation (32) : 0,1218 s

Figure 4 :

 4 Figure 4 : Oscillations des balanciers au bout de 1 heure, 2 dernières secondes. Courbe en trait plein : intégration numérique de l'équation différentielle du mouvement avec une erreur de cap somme de 2 sinusoïdes d'amplitudes 𝑒 𝑚𝑎𝑥 = 3° et 𝑒 𝑚𝑎𝑥 = 5° et fréquences respectives 0,1 Hz et 0,03 Hz. Courbe en pointillés : oscillations non perturbées (sans erreur de cap). Dérive de l'horloge mesurée au bout d'une heure : 0,1234 s. Dérive théorique par l'équation (33) : 0,1234 s

Figure 5 :

 5 Figure 5 : détail de la liaison des balanciers.

Figure 6 :

 6 Figure 6 : schéma simplifié de la liaison des balanciers.

2 .(A- 3 ) 5 )

 235 La suite de l'annexe est consacrée au calcul des moments des forces d'inertie 𝑀 1 et 𝑀 2 que le mouvement du bateau imprime à chaque balancier.Soit 𝑅 un référentiel galiléen et 𝑅 𝐻 = (𝐻, 𝑖 ⃗, 𝑗 ⃗, 𝑘 ⃗⃗ ) un référentiel lié au bâti de l'horloge, 𝐻 un point quelconque de ce bâti. Les centres de gravité des balanciers sont immobiles dans 𝑅 𝐻 . Soit 𝛺 ⃗⃗ (𝑡) le vecteur vitesse de rotation de 𝑅 𝐻 par rapport à 𝑅 et (𝛺 𝑥 (𝑡) 𝛺 𝑦 (𝑡) 𝛺 𝑧 (𝑡) ) ses composantes dans la base (𝑖 ⃗, 𝑗 ⃗, 𝑘 ⃗⃗ ). La force d'inertie 𝑑𝑓 ⃗ 𝑖 agissant sur un élément de masse 𝑑𝑚 autour d'un point 𝑃 de 𝐵 𝑖 vaut : Publié dans Bulletin de l'Union des Physiciens, janv. 2021, vol.115, n°1030, pp.7-28 p.13 𝑑𝑓 ⃗ 𝑖 = 𝑑𝑓 ⃗ 𝑒,𝑖 + 𝑑𝑓 ⃗ 𝑐𝑜𝑟,𝑖 (A-4) où les forces d'inertie d'entrainement 𝑑𝑓 ⃗ 𝑒,𝑖 et de Coriolis 𝑑𝑓 ⃗ 𝑐𝑜𝑟,𝑖 ont pour expression [4] : 𝑑𝑓 ⃗ 𝑒,𝑖 = -𝛾 ⃗ 𝑅 (𝐺 𝑖 ) 𝑑𝑚 -( 𝑑𝑓 ⃗ 𝑐𝑜𝑟,𝑖 = -2 𝛺 ⃗⃗ ∧ 𝑣 ⃗ 𝑅 𝐻 (𝑃) 𝑑𝑚 où 𝛾 ⃗ 𝑅 (𝐺 𝑖 ) désigne l'accélération de 𝐺 𝑖 dans le référentiel galiléen 𝑅, et 𝑣 ⃗ 𝑅 𝐻 (𝑃) la vitesse de 𝑃 dans le référentiel lié à l'horloge 𝑅 𝐻 . Le moment en 𝐺 𝑖 de ces forces pour chacun des balanciers s'écrit : 𝑀 ⃗⃗⃗ 𝑖 = ∭ 𝐺 𝑖 𝑃 → ∧ (𝑑𝑓 ⃗ 𝑒,𝑖 + 𝑑𝑓 ⃗ 𝑐𝑜𝑟,𝑖 )

  Figure 1 : Schéma des balanciers de la première horloge marine H1 (1735) de John Harrison. Les rubans métalliques au centre de la figure forcent les balanciers à osciller en opposition de phase. G1 et G2 sont les centres de gravité des 2 balanciers, situés sur leurs axes de rotation. Le point H est un point quelconque du bâti de l'horloge (partie fixe de l'horloge). Les axes (G1x, G1y, G1z) sont fixes dans le repère RH. Les axes en pointillés (G1x1, G1y1) sont liés au balancier B1. L'axe G1z pointe perpendiculairement au plan de la figure.Le mouvement du bateau imprime des forces d'inertie sur les balanciers. Soit 𝑅 un référentiel galiléen et 𝑅 𝐻 = (𝐻, 𝑖 ⃗, 𝑗 ⃗, 𝑘 ⃗⃗ ) un référentiel lié au bâti de l'horloge, centré sur un point quelconque 𝐻 de ce bâti. Soit 𝛺 ⃗⃗ (𝑡) le vecteur vitesse de rotation de 𝑅 𝐻 par rapport à 𝑅 et (𝛺 𝑥 (𝑡) 𝛺 𝑦 (𝑡) 𝛺 𝑧 (𝑡) ) ses composantes dans le repère 𝑅 𝐻 . On montre en annexe que l'équation générale du mouvement du balancier 𝐵 1 est :

	Publié dans Bulletin de l'Union des Physiciens, janv. 2021, vol.115, n°1030, pp.7-28 Publié dans Bulletin de l'Union des Physiciens, janv. 2021, vol.115, n°1030, pp.7-28	p.3 p.4
	𝐼 𝑧 𝜃 ̈1 = -2 𝑘 𝑙 2 𝜃 1 +	𝑀 𝑓,1 -𝑀 𝑓,2 2	-	𝐼 𝑥 -𝐼 𝑦 2	(𝛺 𝑥 2 (𝑡) -𝛺 𝑦 2 (𝑡)) sin (2𝜃 1 )	(2)
	où 𝑀 𝑓,𝑖 ( i =1, 2 ) désigne le moment des forces de frottements en 𝐺 𝑖 agissant sur balancier 𝐵 𝑖 .	
	Ce résultat appelle quelques remarques :					
	-l'accelération 𝛾 ⃗ 𝑅 (𝐻) de H dans 𝑅 n'intervient pas ;		
	-la dérivée 𝛺 ⃗⃗ ̇(𝑡) n'intervient pas ;					
	-la force de Coriolis n'intervient pas car elle ferait apparaître des termes du type 𝛺 𝑥 𝜃 ̇1 , 𝛺 𝑦 𝜃 ̇1 ,
	𝛺 𝑧 𝜃 ̇1dans (2) ;					
	convient par la suite d'indexer par 𝑖 (𝑖 = 1,2) les quantités relatives au balancier 𝐵 𝑖 , et l'on omet l'indice
	quand cela est superflu.					
	Les axes principaux d'inertie du balancier 𝐵 1 sont 𝐺 1 𝑥 1 , 𝐺 1 𝑦 1 , 𝐺 1 𝑧 ; on note 𝐼 𝑥 , 𝐼 𝑦 𝑒𝑡 𝐼 𝑧 les moments
	principaux d'inertie correspondants, communs aux 2 balanciers.	
	Illustration d'Isabelle Cobos Forster d'après [3].	

  On reconnait l'équation différentielle d'un oscillateur paramétrique, c'est-à-dire un oscillateur dont l'un des paramètres varie au cours du temps. D'autres dispositifs bien connus conduisent à une équation similaire : le pendule dont le point de suspension est soumis à un mouvement vertical, le pendule de longueur variable, l'oscillateur électronique dont la valeur d'un composant varie dans le temps… Sur le plan mathématique, le cas particulier où 𝜔 2 (𝑡) est une fonction périodique conduit à l'équation de Hill, et celui d'une variation sinusoïdale de 𝜔 2 (𝑡) autour d'une valeur moyenne donne l'équation de Mathieu.

	De manière qualitative, 𝜔(𝑡) = √𝜔 0 2 + 𝑎 (𝛺 𝑥 2 (𝑡) -𝛺 𝑦
	Les solutions analytiques de l'équation (5) sont rares et l'on doit se tourner en général vers une intégration
	numérique, ou vers une résolution approchée par une méthode de perturbation : choisissons cette deuxième
	voie.
	Convenons de poser
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p.5 2 (𝑡)) s'interprète comme une pulsation instantanée. On remarque que les vitesses de rotations 𝛺 𝑥 (𝑡) et 𝛺 𝑦 (𝑡) affectent le rythme de l'horloge de manière opposée. Dans le cas de H1 et H2, nous verrons que le paramètre 𝑎 (5-b) est positif. Par conséquent, une rotation selon l'axe horizontal ( terme 𝛺 𝑥 (𝑡) ) augmente 𝜔(𝑡) faisant ainsi avancer l'horloge, alors qu'une rotation selon l'axe vertical ( terme 𝛺 𝑦 (𝑡) ) la ralentit.

  'amplitude sont dues à la dissipation (𝜖 ′ > 0) ou l'apport d'énergie (𝜖 ′ < 0). Le balancier effectue donc des oscillations quasi sinusoïdales d'amplitude variable et de période 2 𝜋 en 𝜙. Notons que le terme 𝜖 ′ /(2 𝜔 2 ) dans (10) s'écrit aussi : L'expression de 𝐴(𝜙) peut être déterminée lorsque 𝜖 ′ /(2 𝜔 2 ) est une fonction lentement variable de 𝜙 , ce que nous supposons maintenant : 𝜖 ′ /(2 𝜔 2 ) ≅ constant sur un intervalle d'amplitude 2 𝜋 (15) ou ce qui revient au même d'après (12) : 𝜔̇ et 𝜔(𝑡) varient peu sur un intervalle de temps 2 𝜋/𝜔 0 .
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	Multiplions (10) par 𝜃 1 ′ :							
	𝑑 𝑑𝑡	= 𝜔	𝑑 𝑑𝜙	et	𝑑 2 𝑑𝑡 2 = 𝜔	𝑑𝜔 𝑑𝜙	𝑑 𝑑𝜙	+ 𝜔 2 𝑑 2 𝑑𝜙 2 , on obtient pour (5) :
	𝜔 2 𝜃 1 ′′ + 𝜔 𝜔 ′ 𝜃 1 ′ + 𝜔 2 𝜃 1 = 0	(9)
	où l'on convient de noter par ′ et ′′ les dérivées immédiatement 2 𝜔 𝜔 ′ = 𝜖′, et (9) s'écrit finalement : 𝑑 𝑑𝜙 et	𝑑 2 𝑑𝜙 2 par rapport à la variable 𝜙. L'expression (7) donne
	𝜃 1 ′′ + 𝜖′ ⁄ 2 𝜔 2	𝜃 1 ′ + 𝜃 1 = 0 .	(10)
	Ainsi, après changement de variable 𝑡 → 𝜙, l'équation du mouvement présente les propriétés suivantes : le terme oscillant 𝜃 1 ′′ + 𝜃 1 n'est pas affecté par la perturbation, celle-ci intervient maintenant via le terme 𝜖′ ⁄ 𝜃 1 ′ qui agit comme une force de freinage (𝜖 ′ > 0) ou comme une force motrice (𝜖 ′ < 0). L'analyse 2 𝜔 2 du mouvement en est simplifiée et l'on peut écrire :
	𝜃 1 ≅ 𝐴(𝜙) cos(𝜙 + 𝜙 0 )		(11)
	où les variations d𝜖 ′ /(2 𝜔 2 ) = 𝜔′ / 𝜔 = 𝜔̇/𝜔 2 .	(12)
	Nous verrons au paragraphe 4 qu'il est de l'ordre de 10 -4 . Cette faible valeur fait que l'amplitude 𝐴(𝜙) varie
	peu sur une période :							
	𝐴(𝜙) ≅ constant sur un intervalle d′amplitude 2 𝜋	(13)
	et l'on a :							
	𝜃 1 ′ ≅ -𝐴(𝜙) sin(𝜙 + 𝜙 0 ) .	(14)

du mouvement en fonction de la variable 𝜙. En remarquant que

  , et comme les fluctuations d'amplitude sont faibles sur [𝜙 , 𝜙 + 2 𝜋 ] on peut écrire dans (18) :

	D'après (11) et (14) on a	1 2 𝜃 1 ′ 2 +	1 2 𝜃 1 2 =	1 2 𝐴 2 (𝜙)

. Validité de l'expression de la dérive temporelle La figure

  

	Publié dans Bulletin de l'Union des Physiciens, janv. 2021, vol.115, n°1030, pp.7-28	p.9
	4.1					
							𝑡) ,
	et la dérive temporelle de l'horloge (27) prend la forme :
			Δ(𝑡) = -𝑎	𝑒 . 2 ̅̅̅̅ (𝑡) 2 𝜔 0 2 𝑡 avec 𝑒 . 2 ̅̅̅ (𝑡) =	1 𝑡	∫ 𝑒 . 2 (𝑢) 𝑑𝑢 𝑡 0	.	(28)
	Dans le cas de H1 et H2, le paramètre 𝑎 intervenant dans (28) a une valeur simple qui ne dépend pas des
	caractéristiques précises de ces horloges. En effet, la matière de leurs balanciers est concentrée dans les masses
	sphériques à leurs extrémités (cf. figure 1) ce qui conduit à :
					𝐼 𝑥 ≅ 𝐼 𝑧 ≫ 𝐼 𝑦 ,
	et donc :				𝑎 =	𝐼 𝑥 -𝐼 𝑦 𝐼 𝑧	≅ 1	(29)
	Supposons maintenant une variation de cap sinusoïdale :
					𝑒(𝑡) = 𝑒 𝑚𝑎𝑥 cos (𝜔 𝑒 𝑡 + 𝜓).	(30)
	L'équation différentielle du mouvement des balanciers prend alors une forme particulière connue sous le nom
	d'équation de Mathieu avec dans (5) :		
				𝜔 2 (𝑡) = 𝜔 0 2 -𝑒 𝑚𝑎𝑥 2	𝜔 𝑒 2 sin 2 (𝜔 𝑒 𝑡 + 𝜓) .
					𝑒 . 2 ̅̅̅ (𝑡) =	1 𝑡	∫ 𝑒 𝑡 . 2 (𝑢) 𝑑𝑢 0
						≅	1 2 𝑒 𝑚𝑎𝑥 2	𝜔 𝑒 2 .	(31)
	Le report de (31) dans (28) avec 𝑎 ≅ 1 conduit à une expression de la dérive temporelle Δ(𝑡) que nous noterons
	𝐷(𝑒 𝑚𝑎𝑥 , 𝜔 𝑒 , 𝑡) :				
			𝐷(𝑒 𝑚𝑎𝑥 , 𝜔 𝑒 , 𝑡) = -	𝜔 𝑒 2 4 𝜔 0 2 𝑒 𝑚𝑎𝑥 2	𝑡 = -	𝑇 0 2 4 𝑇 𝑒 2 𝑒 𝑚𝑎𝑥 2	𝑡	(32)
	Plus généralement, dans le cas d'une erreur de cap de la forme
	on a 𝑒 . 2 ̅̅̅ (𝑡) =	1 𝑡	∫ 𝑒 . 2 (𝑢) 𝑑𝑢 𝑡 0	𝑒(𝑡) = ∑ 𝑁 𝑛=1 1 2 𝑒 𝑚𝑎𝑥 2 𝑛 𝜔 𝑒 𝑒 𝑚𝑎𝑥 𝑛 cos (𝜔 𝑒 𝑛 𝑡 + 𝜓 𝑛 ) 2 𝑛 𝑛=1 ≅ ∑ 𝑁 et la dérive totale de l'horloge est la somme des dérives
	dues à chaque composante sinusoïdale :		
				Δ(𝑡) = ∑ 𝑁 𝑛=1	𝐷(𝑒 𝑚𝑎𝑥 𝑛 , 𝜔 𝑒 𝑛 , 𝑡)	.	(33)

L'équation de Mathieu est étudiée en détail dans la littérature

[START_REF] Stoker | Nonlinear Vibrations in Mechanical and Electrical Systems[END_REF][START_REF] Viterbo | Systèmes dynamiques et Équations différentielles[END_REF]

. On sait que les solutions peuvent être instables pour certaines valeurs du couple (𝑒 𝑚𝑎𝑥 , 𝜔 𝑒 ), mais aucune instabilité n'a été observée dans les simulations. En pratique, compte tenu des frottements que nous avons négligés, ces instabilités ne seraient susceptibles d'apparaître que si 𝑒 𝑚𝑎𝑥 dépasse une valeur seuil, et leur effet serait de toute façon limité par les non linéarités contraignant l'amplitude des oscillations

[START_REF] Arnold | Ordinary Differential Equations[END_REF]

. Pour 𝑡 grand devant la période 𝑇 𝑒 des oscillations de cap, on a : Cette expression est le point de départ de notre analyse de la tenue à la mer des horloges H1 et H2. Le paragraphe 4.1 vérifie la validité de la formule (32) , et le paragraphe 4.2 répond à la question : les 2 premières horloges de John Harrison pouvaient-elles gagner le prix du Longitude Act ?

  1) Ces 2 balanciers, 𝐵 1 et 𝐵 2 , sont identiques. On convient d'indexer par le numéro du balancier les quantités qui lui sont propres. Le balancier 𝐵 1 (resp. 𝐵 2 ) tourne autour d'un axe de rotation (𝐺 1 , 𝑘 ⃗⃗ ) (resp. (𝐺 2 , 𝑘 ⃗⃗ )) passant par son centre de gravité 𝐺 1 (resp. 𝐺 2 ) et perpendiculaire au plan de la figure. Ces axes de rotation sont des axes principaux d'inertie. Les moments des forces s'exerçant sur les balanciers 𝐵 1 et 𝐵 2 par rapport à leurs axes de rotation se décomposent en : -les couples 𝐶 1 = -2 𝑘 𝑙 2 𝜃 1 et 𝐶 2 = -𝐶 1 créés par les ressorts ; -les moments 𝑀 𝑙,1 et 𝑀 𝑙,2 des forces exercées par les rubans métalliques sur chaque balancier ; -les moments des forces de frottements 𝑀 𝑓,1 et 𝑀 𝑓,2 (axes de rotation, air) ; -les moments des forces d'inertie 𝑀 1 et 𝑀 2 . La figure 5 qui suit est un agrandissement de la liaison des balanciers. La figure 6 en donne un schéma simplifié qui représente les rubans métalliques reliant les balanciers en s'appuyant sur des supports circulaires de rayons 𝑟 centrés sur 𝐺 1 et 𝐺 2 . Nous supposerons que :

  et où 𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 , 𝑀 ⃗⃗⃗ 𝑖 𝑐𝑒𝑛𝑡 , 𝑀 ⃗⃗⃗ 𝑖 𝑐𝑜𝑟 désignent les moments des forces d'inertie d'Euler, centrifuge, et Coriolis. Le terme 𝑀 1 -𝑀 2 dans l'équation (A-3) du mouvement se décompose donc en : 𝑀 1 -𝑀 2 = 𝑘 ⃗⃗ . (𝑀 ⃗⃗⃗ 1 -𝑀 ⃗⃗⃗ 2 ) Les trois paragraphes qui suivent sont consacrés au calcul des trois termes composant le second membre de (A-6). dans la base (𝑖 ⃗, 𝑗 ⃗, 𝑘 ⃗⃗ ) liée au bâti de l'horloge, 𝐺 𝑖 𝑃 → = 𝑥 𝑖 ⃗ + 𝑦 𝑗 ⃗ + 𝑧 𝑘 ⃗⃗ , et projetons 𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 sur l'axe de rotation : 𝑘 ⃗⃗ . 𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 = -( ∭ (𝑥 2 + 𝑦 2 + 𝑧 2 ) 𝑑𝑚 Comme l'axe (𝐺 𝑖 , 𝑘 ⃗⃗ ) est un axe principal d'inertie pour chacun des balanciers, les intégrales en 𝑥𝑧 et 𝑦𝑧 sont nulles. Il reste : Comme l'orientation des deux balanciers diffère seulement par une rotation autour de 𝑘 ⃗⃗ , les intégrales cidessus prennent la même valeur pour 𝐵 1 et 𝐵 2 . Par conséquent :

		𝑃∈𝐵 𝑖
		= -∭ 𝑃∈𝐵 𝑖	𝐺 𝑖 𝑃 → 𝑑𝑚	∧ 𝛾 ⃗ 𝑅 (𝐺 𝑖 ) + 𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 + 𝑀 ⃗⃗⃗ 𝑖 𝑐𝑒𝑛𝑡 + 𝑀 ⃗⃗⃗ 𝑖 𝑐𝑜𝑟
	= 𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 + 𝑀 ⃗⃗⃗ 𝑖 𝑐𝑒𝑛𝑡 + 𝑀 ⃗⃗⃗ 𝑖 𝑐𝑜𝑟 , 𝑒𝑢𝑙𝑒𝑟 ) + 𝑘 ⃗⃗ . (𝑀 ⃗⃗⃗ 1 𝑒𝑢𝑙𝑒𝑟 -𝑀 ⃗⃗⃗ 2 → 𝑑𝑚 𝐺 𝑖 𝑃 = 0 = 𝑘 ⃗⃗ . (𝑀 ⃗⃗⃗ 1 𝑃∈𝐵 𝑖 où l'on a utilisé ∭ 𝑐𝑒𝑛𝑡 -𝑀 ⃗⃗⃗ 2 𝑐𝑒𝑛𝑡 ) + 𝑘 ⃗⃗ . (𝑀 ⃗⃗⃗ 1 𝑐𝑜𝑟 -𝑀 ⃗⃗⃗ 2 𝑐𝑜𝑟 ) .	(A-6)
	1. Moment des forces d'inertie d'Euler	
	𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 = -∭ 𝑃∈𝐵 𝑖	𝐺 𝑖 𝑃 → ∧ ( ( 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) 𝑅	∧ 𝐺 𝑖 𝑃 → ) 𝑑𝑚
	Exprimons 𝐺 𝑖 𝑃 → 𝑃∈𝐵 𝑖 (𝑗 ⃗. ( 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) 𝑅	= -( ∭ ‖𝐺 𝑖 𝑃 → ‖ 𝐵 𝑖 ) ( 𝑘 ⃗⃗ . ( 2 𝑑𝑚 𝑑𝛺 ⃗⃗⃗ ) ( 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) 𝑅 𝑑𝑡 ) 𝑅 ) + ( 𝑖 ⃗. ( + ∭ ( 𝐺 𝑖 𝑃 → . ( 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) 𝐵 𝑖 𝑅 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) ) ∭ 𝑥𝑧 𝑑𝑚 ) 𝐺 𝑖 𝑃 → 𝑑𝑚 𝑃∈𝐵 𝑖 + 𝑅 ) ∭ 𝑦𝑧 𝑑𝑚 𝑃∈𝐵 𝑖 + ( 𝑘 ⃗⃗ . ( 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) 𝑅 ) ∭ 𝑧 2 𝑑𝑚 𝑃∈𝐵 𝑖	.
	𝑘 ⃗⃗ . 𝑀 ⃗⃗⃗ 𝑖 𝑒𝑢𝑙𝑒𝑟 = -( 𝑘 ⃗⃗ . ( 𝑑𝛺 ⃗⃗⃗ 𝑑𝑡 ) 𝑅	) ∭ 𝑃∈𝐵 𝑖	(𝑥 2 + 𝑦 2 ) 𝑑𝑚
		𝑘 ⃗⃗ . (𝑀 ⃗⃗⃗ 1 𝑒𝑢𝑙𝑒𝑟 -𝑀 ⃗⃗⃗ 2 𝑒𝑢𝑙𝑒𝑟 ) = 0 .	(A-7)
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Moment des forces centrifuges