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19 ABSTRACT20
21

Fracture distribution plays a significant role in the behavior of subsurface environments, af-22

fecting such activities as geothermal production, exploitation and management of groundwater23

resources, and long-term storage of nuclear waste and carbon dioxide. A key challenge in these24

and other applications is to estimate the fracture network properties from sparse and noisy obser-25

vations. We evaluate the utility of cross-borehole thermal experiments for this task, using both26

physics-based particle-tracking (PBPT) heat-transfer approach and deep neural network (DNN)27

surrogates. Synthetic data are provided by the PBPT models and used to train and test the DNN28

surrogates over a full range of the fracture network properties. We propose regionalized and step-29

by-step training techniques to reduce the computational cost of expensive PBPT forward solves30

over large ranges of the (to-be-estimated) parameters. Our numerical experiments suggest the31

feasibility of training a regionalized DNN surrogate over parameter ranges for which the PBPT32

solves are fast and extrapolating its predictions to parameter ranges with few additional data. We33

analyze the balance between computational cost and model accuracy, and provide both PBPT34

and DNN models for applications to others kinds of data, always considering systems in which35

the fractures are highly conductive structures in comparison with the matrix that is considered36

as impermeable to flow.37
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1. Introduction45

Geothermal energy is a significant renewable resource that can be used for district heating and power generation46

(e.g., Anderson and Rezaie, 2019; Fridleifsson, 2001; Gérard et al., 2006). Most high-temperature resources are in47

the deep subsurface, which poses economic and technical challenges for their efficient exploitation (e.g., DiPippo,48

2012; Giardini, 2009; Song et al., 2021; Wang et al., 2012). Heat extraction performance and thermal lifetime of a49

geothermal system are typically controlled by fracture networks (e.g., Han et al., 2020; Mahmoodpour et al., 2022;50

Shi et al., 2019), since they serve as main conduits for fluid flow and heat transfer. An accurate characterization of the51

fracture distribution provides a necessary input for the optimal design of operation schemes and hydraulic fracturing52

during the development of geothermal reservoirs (e.g., Pollack et al., 2021; Song et al., 2022; Xu et al., 2022). Among53

other applications, characterization of fractured rocks is also necessary for management and protection of groundwater54

resources (e.g., Carneiro, 2009; Rotter et al., 2008; Viswanathan et al., 2022).55
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Information about the presence and properties of fractures are acquiredwith different characterizationmethods such56

as geophysical techniques (e.g., Kwiatek et al., 2014; Linde et al., 2006), hydraulic experiments (e.g., Fischer et al.,57

2018; Zou and Cvetkovic, 2021) and tracer tests (e.g., Cvetkovic et al., 2020; Koelbel et al., 2021; Suzuki et al., 2015;58

Vogt et al., 2012). Each method provides complementary information and presents its own advantages and drawbacks.59

For instance, the induced seismicity monitored in response to changes in injection pressure can yield an estimate of60

spatial changes in permeability and porosity (e.g., Kwiatek et al., 2014; Tarrahi and Jafarpour, 2012; Xu et al., 2022),61

while (cross-borehole) hydraulic experiments relying on flow velocity and piezometric data collected in observation62

wells provide information directly related to fractures intersecting the boreholes (e.g., Fischer et al., 2018; Le Borgne63

et al., 2006; Paillet, 1998). At larger scales, both chemical and heat tracer tests result in breakthrough curves (BTCs),64

whose shape and amplitude depend on the properties of the fractured domains. Chemical tracer experiments are widely65

used to define an equivalent representation of the systems at various scales and with various properties of the tracer66

(e.g., Liu et al., 2019; Kuo et al., 2018; Reimus et al., 2018). Alternatively, in thermal-tracer experiments, the water67

temperature in a borehole is modified by either using a heating cable or injecting hot water, and the subsequent temporal68

changes in temperature are monitored in the same borehole and/or a different observation borehole (e.g., Pehme et al.,69

2007; Klepikova et al., 2016). These thermal-tracer data have been shown to contain valuable information about the70

presence of fractures and the properties of either fractures or fracture-matrix configurations (e.g., de La Bernardie71

et al., 2018; Klepikova et al., 2016; Pehme et al., 2013). For example, synthetic data from cross-borehole thermal72

experiments (CBTEs) provide sufficient information about the statistical properties of fracture networks (Zhou et al.,73

2021). An attractive feature of thermal experiments is the ease of their implementation in the natural environment,74

without environmental constraints associated with solute injection in boreholes.75

Regardless of the tracer type, identification of fracture network characteristics from such experiments is an inverse76

problem (e.g., Kang et al., 2021; Mo et al., 2020), whose solution typically requires a large number (thousands) of77

solves of a forward model of heat/mass transfer in multiple realizations of a discrete fracture networks (DFN). Although78

this problem can be simplified by considering equivalent 1D representations of discrete fracture networks (e.g., Ma79

et al., 2019; Xu et al., 2018; Zou et al., 2023), we focus on the inversion of the standard statistical properties of80

these systems. To make this computation feasible, we adopt a meshless particle-tracking (PBPT) method (Roubinet81

et al., 2013; Gisladottir et al., 2016) to solve flow and transport in fractured rock and use it to train a deep neural82

network (DNN) surrogate. The PBPT simulations are referred to as “physics-based” because they solve the differential83

equations encapsulating physical information such as conservation of mass, momentum, and thermal energy; this in84

contrast to DNNs, which map inputs on outputs without explicitly enforcing any conservation law. In a similar context,85

this strategy has been shown to reduce the computational burden of inverse modeling by four orders of magnitude86

(Zhou et al., 2021). The negligible cost of DNN surrogates makes it possible to generate large numbers of forward-87

model runs—corresponding to different realizations of the model parameters—that are sufficient for both accurate88

computation of posterior probability density functions (PDFs) and parameter estimation via such greedy algorithms as89

grid search methods.90

An important caveat to this strategy is that DNNs yield accurate predictions of the system’s behavior within the91

system-parameter ranges used for its training (interpolation mode), but often fail outside these ranges (extrapolation92

mode). The study of Zhou et al. (2021) also identifies a related challenge posed by the high cost of data generation93

for DNN training: it is not uncommon for the computational cost of a forward model in one parameter regime to be94

significantly higher than in another. Specifically, these authors found the PBPT solver to perform well for a range95

of two parameters (fracture density and fractal dimension) characterizing the DFN representation of Watanabe and96

Takahashi (1995), while experiencing convergence problems in other ranges. As a result, their DNN was trained on97

the PBPT output corresponding to the “good” parameter subspace, limiting its ability to estimate the DFN parameters98

over the whole range of the parameter variability.99

To alleviate this computational bottleneck, we present a newmethod for the evaluation of the inverse PDFs of these100

parameters over the full ranges of their definition. The method employs a step-by-step regionalized technique, wherein101

a high-resolution DNN, first trained over a restricted range of the model parameters, is then retrained on the simulation102

data generated by the PBPT solver with the parameter values covering progressively larger ranges. We demonstrate103

our method’s ability to accurately estimate statistical properties of a popular DFN representation (e.g., Bour and Davy,104

1997; de Dreuzy et al., 2001; Li and Zhang, 2010; Roubinet et al., 2018; Li et al., 2009; Demirel et al., 2019). Section 2105

contains a description of both the DFN representation and the PBPT method to solve fluid flow and heat transfer in106

fractured rock. In Section 3, we describe the architecture and training of a DNN capable of acting as a surrogate of107

the PBTP solver and detail our strategy for extending the DNN surrogate from one parameter subspace (in which the108
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Table 1
Parameter values used to generate the fracture networks.

Parameter Value

Domain size, L 10.0 m

Minimum fracture length, lmin 1.0 m

Minimum fracture aperture, bmin 0.1 mm

Maximum fracture aperture, bmax 2.5 mm

Mean of the aperture log, �ln b −6.87

Standard deviation of the aperture log, �ln b 0.2

Power-law exponent, a [1, 3]

Percolation parameter, p [8, 18]

PBPT solver is fast to execute) to another (in which it is slow). The expression of the considered inversion model109

and its accuracy for various definitions of the (extended) surrogate models are presented in Section 4 with the results110

obtained for the case of synthetic CBTE data. Discussion and conclusions are provided in Section 5.111

2. Model description112

2.1. Fracture network generation113

We use the following strategy to generate two-dimensional fracture networks. The center of each fracture in a DFN114

is uniformly distributed over a square simulation domain of size L. The length, l, and aperture, b, of each fracture are115

randomly generated from the expressions (de Dreuzy et al., 2001; Li and Zhang, 2010; Demirel et al., 2019)116

l = lminX
1∕(1−a), c =

√

2 �c erf−1
{

(1 −X)[g(bmax) − g(bmin)] + g(bmin)
}

+ �c , c = ln b (1a)117
118

where lmin is the fracture’sminimum length; bmin and bmax are itsminimum andmaximum aperture values, respectively;119

natural logarithm of the aperture, b = exp(c), has the mean �c and the standard deviation �c ; a is the power-law120

exponent; the random variableX is distributed uniformly on U (0, 1); erf−1(⋅) is the inverse of the error function erf(⋅);121

and122

g(b) = erf
(

ln b − �c
√

2�c

)

. (1b)123

124

Since the length, l, and aperture, b, of each fracture are mutually correlated, they are expressed in terms of the same125

random variable X. Fractures are added to the system until the percolation parameter126

p =
Nf
∑

i=1

l2i
L2

(2)127

128

reaches a chosen value. Here, li is the length of the ith fracture, i.e., a realization from Eq. (1). Table 1 collates the129

parameter values used in our simulations and many other studies (e.g., Bour and Davy, 1997; de Dreuzy et al., 2001;130

Li and Zhang, 2010; Roubinet et al., 2018; Li et al., 2009; Demirel et al., 2019), the chosen domain size, L = 10 m,131

is representative of thermal dilution experiments (e.g., Klepikova et al., 2022). Two model parameters, a and p, are132

uncertain and given in terms of their plausible intervals of variability; values of the percolation parameter, p ∈ [8, 18],133

are chosen to ensure the connectivity of the systems, since the percolation threshold is p ∼ 6. Examples of the134

corresponding fracture networks are provided in Figure 1.135
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2.2. Physics-based model of fluid flow and heat transfer136

In a CBTE, the water temperature in the left borehole is modified by either injecting warm water or using a heating137

cable, which induces temperature changes in the right borehole (Figure 2). These changes are monitored and reported138

in the form of breakthrough curves. A constant hydraulic gradient is enforced between the boreholes, and no flow139

condition is assumed at the top and bottom of the domain. The injected water is warmer than the ambient environment,140

and heat transfer between the two boreholes is the result of convection in the fractures and conduction in the matrix.141

Following the standard practice, we assume the fluid flow in individual fractures to be single-phase, steady, and142

laminar; and the rock matrix to be impervious to the fluid. With these assumptions, average flow velocity (Darcy flux)143

in the ith fracture segment of the DFN, ui, is given by the Poiseuille law (e.g., Renshaw, 1995; Adler et al., 2013),144

ui = −
�gb2i
12�

Ji, (3)145

146

where � and � are the fluid density and dynamic viscosity, respectively; g is the gravitational acceleration constant;147

and Ji is the hydraulic head gradient in the ith fracture segment. By defining fracture intersections and extremities148

as nodes of a graph and by enforcing mass conservation at each of these nodes, one computes the values of hydraulic149

head at each node and flow velocity at each fracture segment (e.g., Roubinet et al., 2013, and referenes therein).150

We deploy the PBPT method of Gisladottir et al. (2016) to model heat transfer by advection in fractures and con-151

duction in the ambient matrix. While other particle-tracking techniques have been used to solve heat-transfer problems152

(e.g., Emmanuel and Berkowitz, 2007; Geiger and Emmanuel, 2010), our method’s advantage stems from its utilization153

of semi-analytical expressions (Ruiz Martinez et al., 2014). That enables one to account for the effect of the matrix154

block size on diffusion without meshing the matrix domain, greatly reducing the computational cost in comparison155

with standard numerical methods. Heat transfer between the injection and observation boreholes is simulated by in-156

jectingNpar particles on the left side of the domain and recording their arrival times, �n (n = 1,… , Npar), on the right157

side. These data are then used to estimate the cumulative distribution function (CDF), F (�) = ℙ[ ≤ �], of the158

particle arrival time  , which is treated as a random variable. The CDF F (�) coincides with the temporal change in159

the relative temperature,160

T ∗(t) =
Tobs(t) − Tin
Tinj − Tin

, (4)161

162

at the observation borehole. Here, Tin is the initial fluid temperature in the system; and Tinj and Tobs are the temperatures163

in the injection and observation boreholes, respectively. The relative temperature T ∗ = T ∗(t) is indeed a CDF because164

it is a non-negative function that varies monotonically from 0 to 1; at the beginning (t = 0) and the end (t = tend) of the165

experiment, Tobs(0) = Tin and Tobs(tend) = Tinj, respectively. Figure 3 shows examples of these CDFs for various values166

of the DFN parameters m = (p, a). These results show that increasing the parameters p and a results in decreasing167

and increasing the arrival times, respectively (Figures 3a-b). As shown in Figure 1 (first column), increasing p for a168

given value of a results in adding fractures that create smaller matrix blocks in which the diffusion is limited, and thus169

the late arrival times are reduced (Figure 3a). Increasing a for a given value of p results in a different behavior, where170

in this case the addition of small fractures results in fracture segments with small flow velocities (Figure 1, first row),171

which increase the particle arrival times (Figure 3b).172

3. DNN surrogates173

For the CDF F (�) ∶ [0, tend] → [0, 1] or, equivalently, T ∗(t) ∶ [0, tend] → [0, 1], we define the inverse CDF174

(iCDF) t = Q(T ∗) ∶ [0, 1] → [0, tend]. This iCDF curve is represented byNdis = 50 discretization points,175

Q(T ∗) ∶ {Q1,… , QNdis}, Qn = Q(T ∗
n ), T ∗

n = n
Ndis

, n = 1,…Ndis. (5)176

177

Examples of iCDFs are shown in Figures 3 for various values of the fracture network parameters m. We consider a178

DNN that takes the DFN parameters m = (p, a) as input and returns the iCDF Q(T ∗) as output. In our experiments,179

the DNN returns a monotonic function Q(T ∗), even though no explicit monotonicity constraint is enforced during its180

training.181

Song et al.: Preprint submitted to Computers & Geosciences Page 4 of 11



Surrogate models of heat transfer in fractured rock

Table 2
Parameters related to the FCCN definition with their corresponding search region being uniformly sampled from either a
discrete set of values, U{⋅, ⋅,… , ⋅}, or an interval, U [⋅, ⋅], as described in Zhou et al. (2021).

FCCN parameter Search region

Number of layers U{3, 4, 5, 6}

Number of neurons U{22, 23, ..., 29}

Optimizer name U{rms, sgd, ada, adam}

Learning rate, lr log10(lr) ∼ U [−4,−2]

3.1. Fully connected neural network182

Our framework allows for different DNN architectures; we demonstrate it on a fully connected neural network183

(FCNN) implemented with the Python package PyTorch (Paszke et al., 2019). Let d = (d1,… , dNdis ), where dn = Qn184

with n = 1,… , Ndis, denote the PBPT solution in Eq. (5); and d̂ = FCNN(m;�) denote its estimate obtained via the185

FCNN. The weights of this FCNN, �, are obtained by minimizing the discrepancy between d and d̂,186

� = argmin
�

�(d, d̂). (6)187

188

The loss function� represents the discrepancy between two distributions,Q and Q̂, or, more precisely, their discretized189

versions d and d̂. Among several alternative metrics, we select the Hellinger distance (Le Cam, 2012),190

�(d, d̂) = 1
√

2
‖

√

d −
√

d̂‖2 =
[

1
2

Ndis
∑

n=1

(

√

dn −
√

d̂n
)2
]1∕2

. (7)191

192

The parameters defining the architecture of our FCNN are provided in Table 2. A precise description of this architecture193

is provided in (Zhou et al., 2021).194

3.2. Strategy for surrogate model extension195

Figure 4 shows the simulation times sim required to generate the fracture network and solve the fluid flow and196

heat transfer problem with the PBPT model for different values of the DFN parameters, a ∈ [1.1, 3.0] and p ∈ [8, 18].197

These simulation times represent the average values of sim over 20 realizations of the DFN for each parameter pair198

(p, a) (see Section 4 for details). The simulation time sim remains small for all values of p ∈ [8, 18] as long as a199

is sufficiently small, a ∈ [1.1, 1.8]; outside of that interval, sim increases with p. The highest simulation times are200

observed for high values of a and p, which correspond to dense fracture networks characterized by the presence of201

small fractures. As shown in Figure 1 and explained in Section 2.2, large values of p and a result in increasing the202

number of small fractures with low flow velocities and producing smaller matrix blocks. The former feature results in203

longer exposure to relatively cooler rock and therefore greater loss of heat, which is expressed by a larger probability204

that particles diffuse into the matrix and transfer to another fracture, the transfer phenomenon being enhanced in small205

matrix blocks. Thus, the computational time is increased due to longer paths through which the particles travel by206

advection and in more opportunities to transfer from one fracture to the other by diffusing through matrix blocks.207

We define three regions in the (p, a) parameter space (Figure 5): “small range” (SR) corresponds to small values of208

sim (mostly ∼ 1 s, with few values as large as 10 s) and has a rectangular shape (p, a) ∈ [8, 18]×[1.1, 1.8] (Figure 5a);209

“medium range” (MR) corresponds to intermediate values of sim (mostly ranging from 1 s to 10 s) and is defined by210

a polynomial expression a = a(p) in Figure 5b; and “large range” (LR) corresponds to the values of sim ranging from211

10 s to 100 s and is defined by a polynomial expression a = a(p) in Figure 5c. The SR, MR, and LR regions occupy212

36.84%, 66%, and 88.95% of the parameter space (p, a) ∈ [8, 18] × [1.1, 3.0], respectively (Table 3). We investigate213

how the simulation time and model accuracy can be optimized by working with (low-cost) regionalized models defined214

over a large number of data and extended to the full range of parameters with fewer data.215
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Table 3
Characteristics of the SR (small-range), MR (medium-range) and LR (large-range) surrogates: amax is the maximum value
considered for the power-law exponent parameter a; � is the proportion of the parameter ranges that is considered when
varying a from 1.1 to 3 and p from 8 to 18; Ndata is the number of PBPT solutions; sim is the simulation time (in
hours); and "red and "full are the mean training losses for the surrogates over the reduced and full ranges of parameters,
respectively.

Regionalized models Extended models

amax � Ndata sim "red "ful Ndata sim "ful

SR model 1.8 36.84%

10,000

7.35 0.118 0.286 0.102

MR model 10 s 66% 21 0.101 0.471 3,000 93.6 0.101

LR model 100 s 88.95% 134.5 0.096 0.161 0.0997

4. Results216

4.1. Surrogate model assessment217

Besides the Hellinger loss in (7), we evaluate the accuracy of the FCNN model over the full ranges of parameters218

(p, a) in terms of the relative error219

 =

√

√

√

√

Ndis
∑

n=1
(dn − d̂n)2

/

√

√

√

√

Ndis
∑

i=1
d2i , (8)220

221

where d = (d1,… dNdis ) and d̂ = (d̂1,… d̂Ndis ) are the discretized inverse CDFs computed via the PBPT method and222

its FCNN surrogate, respectively, for a pair of the DFN parameters (p, a) not used in the FCNN training. As in Zhou223

et al. (2021), the efficiency of the surrogate models is evaluated by computing the conditional PDF224

fm|d(m̃; d̃) =
fd|m(m̃; d̃)
fd(d̃)

, (9)225

226

with the likelihood function227

fd|m(m̃; d̃) = 1
√

2��d
exp

[

− 1
2�2d

�(d̃, Q(m̃))

]

(10)228

229

and the normalizing factor230

fd(d̃) = ∫ fd|m(m̃; d̃) dm̃. (11)231

232

Here, d̃ and m̃ are the deterministic outcomes of random variables d andm, respectively; �d is the standard deviation233

(set to 0.4 hereinafter, corresponding to the measurement noise) of the PDF fd|m that is centered on the square root of234

the Hellinger distance � between the data d̃ and the prediction of the forward model (5), Q(m̃).235

4.2. Regionalized surrogate models236

The regionalized models described in Table 3 are trained on 10,000 realizations of the PBPT method for different237

values of parameters a and p that are randomly drawn from the SR, MR, and LR regions (Figure 5). Out of the 10,000238

simulations, 8,000 are used to train the surrogate models and 2,000 to test the model accuracy. The times required to239

run these simulations are 7.35, 21, and 134.5 hours for the SR, MR, and LR models, respectively; the increase from240

the SR model to the LR models is related to the increase in the size of the domain definition that results in larger241
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computational times (Figure 4). In the following, these models are first applied to the range of parameters over which242

they have been defined, and then over the full range of parameters (i.e., 1.1 ≤ a ≤ 3 and 8 ≤ p ≤ 18).243

Applying thesemodels to the range of parameters over which they are defined results in the (examples of) prediction244

curves in Figure 6. The comparison with the BTCs computed via the reference PBPT solver shows that the FCNN245

surrogates accurately reproduce the training data, resulting in small training errors "red (Table 3) for the SR, MR, and246

LR surrogates.247

These regionalized FCNN surrogates are deployed to compute the posterior PDF f (m̃; d̃) of parameters p and a;248

during NN training, these parameters are sampled over their domain of definition; Figure 7 provides three examples249

of these PDFs for each kind of model (SR, MR and LR), for several realizations of the DFN parameters a and p drawn250

randomly from the domain of definition of the surrogates. The reference values of parameters (p, a) are represented251

by a blue point in each plot. Figure 7 also shows the corresponding posterior PDFs obtained from 10,000 realizations252

of the PBPT model. The computational cost of a FCNN prediction is negligible, such that 107 FCNN runs—used in253

our FCNN estimation of the posterior PDFs in Figure 7—carry the same computational cost as the 104 PBPT model254

runs do. Hence, the use of a NN surrogate to compute a posterior PDF presents several advantages. First, it improves255

the estimation quality of posterior PDFs, allowing one to accurately delineate the regions of high probability (shown256

in deep red), which is essential for accurate inversion. Second, it enables one to extend the definition range of the257

PDF fm|d out of its initial domain definition with consistent values that can be used for inversion purpose. For all258

the examples in Figure 7, the reference point (true value) is located in the highest probability zone, as it should. The259

sole exception is the first example of the SR model, in which the reference point is located near the highest probability260

zone. In this case, although the 10,000 realizations of the reference PBPT model are located in the smallest range of261

the parameters considered, the resulting function is not sufficiently well defined to train the FCNN surrogate and more262

data might be necessary.263

We first attempted to train and test the surrogate models on the data generated with 3000 model runs, for the264

parameter values of a and p drawn randomly from their full definition domain. The resulting DNN surrogate was265

computationally expensive to build and exhibited poor performance; this attempt motivated the development of our266

regionalized approach. In all our numerical experiments, the limiting factor is computational time rather than memory.267

The simulations were performed on nodes composed of 28 cores (dual Intel Xeon E5-2680 v4 2.4 Ghz Broadwell268

processors 2 × 14 cores/nodes) with 128G of allocated memory.269

4.3. Extrapolation to extended domains270

To test the extrapolation (aka generalization) power of the regionalized FCNN surrogates we use them to predict271

iCDFs for values of (p, a) that fall outside the parameter regions on which these FCNNs have been trained. Fig-272

ure 8 shows representative examples of iCDFs computed for (p, a) = (16.72, 1.75), (13.03, 1.31), (11.17, 2.76), and273

(17.20, 2.84), which were randomly drawn from the full parameter range. The first two (p, a) pairs are from the three274

domains defined in Figure 5, while the third pair falls within the large range (LR) and the fourth pair does not belong275

to any of the three ranges. All three regionalized surrogates (SR, MR, and LR) accurately reproduce the data provided276

by the PBPT method for the first two pairs of (p, a), i.e., these surrogates yield accurate predictions in the interpola-277

tion mode. For the third pair of (p, a), the SR and MR surrogates slightly deviate from the reference PBPT solution,278

while the LR surrogate yields an accurate prediction. All three regionalized surrogates do not reproduce well the data279

associated with the fourth pair of reference (p, a) values. These findings confirm a well established notion that NNs280

do not generalize well to parameter values that are out of the training-data range.281

Figure 9 exhibits the posterior PDFs, for three realizations of parameters (p, a) randomly drawn from the full range282

of parameters. The first (p, a) pair falls within the domains corresponding to the MR and LR models, while the second283

and third pairs belong to the LR region. The comparison with the reference PBPT solution demonstrates the failure284

of the SR surrogate to accurately reproduce the posterior PDFs in all cases. This FCNN surrogate has been trained on285

the reduced range of parameter a (a < 1.8) and does not generalize well to the situation in which the most important286

part of the posterior PDFs (i.e., the highest probability region) is located out of this range. Likewise, the MR surrogate287

yields inaccurate predictions for the remaining two reference (p, a) pairs, since these pairs fall outside the definition288

range of the model. The MR surrogate yields better predictions for the first pair of parameters, and the LR surrogate289

yields better predictions for all three pairs, since the reference (p, a) values are located within the high probability zone.290

However, the trend observed in the reference PBPT solution is not well captured over the whole domain. These results291

are confirmed by both the relatively high mean training loss "ful (Table 3) and the error maps in Figure 10, which reveal292

that the error is highest in regions of the (p, a) space that are not included in the initial definition of the surrogates.293
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4.4. Extended NN surrogate294

Our study demonstrates that regionalized surrogates defined in the context of thermal experiments can be corrected295

with a relatively small number of additional PBPT simulations (about 1/3 of the initial number of simulations) defined296

over the full range of parameters. We supplemented the original Ndata = 10000 PBPT runs with 3000 PBPT simula-297

tions carried out for the (p, a) values randomly drawn from the full parameter range. These additional simulations took298

93.6 hours, as reported in Table 3. We used 2400 of the 3000 additional simulations to retrain the regionalized surro-299

gates, and the remaining 600 simulations to test the resulting extended surrogates. The mean training losses, "ful, for300

the extended SR, MR, and LR surrogates are reported in Table 3. They are similar to those of the regionalized models301

applied to their restricted parameter ranges ("red), and significantly better than their counterparts for the regionalized302

models applied to the full range of parameters ("ful for regionalized models). This improvement translates into more303

accurate predictions of iCDFs (Figure 11). These results correspond to the same parameter pairs (p, a), for which the304

regionalized surrogates in Figure 8 failed to perform adequately.305

This NN-training strategy also greatly improves the estimation of posterior PDFs (Figure 12) in comparison with306

the results presented in Figure 9. In all cases considered, the reference parameter pairs (p, a) are located in the highest307

probability zones and the trends observed in the reference PBPT solutions are reproduced by the FCNN surrogates.308

The map of errors between the reference PBPT solutions and the extended FCNN surrogates for the full range of309

parameters (right column in Figure 10) shows these errors to be small and uniformly distributed over the parameter310

space. We also observe that the extended SR, MR, and LR surrogates are equally improved by the additional training311

step. This performance is reminiscent of strategies for NN training on multi-fidelity data, which aim to reduce the cost312

of training-data generation (Song and Tartakovsky, 2021).313

5. Conclusions314

We introduced an efficient way to train DNN surrogates on data from simulated thermal experiments in fractured315

rock. Our regionalized and sequential training techniques enable one to handle wide ranges of fracture parameters,316

including those giving rise to computationally expensive PBPT models. The surrogates were used to estimate pos-317

terior PDFs of thermal breakthrough curves with high degree of accuracy; such PDFs are required for Bayesian data318

assimilation and estimation of statistical properties of fracture networks. Quantitative error maps were obtained to319

evaluate the reliability of prediction and inversion. Our study leads to the following major conclusions.320

• DNN surrogates can be trained for parameter ranges associated with low computational cost of data generation;321

their subsequent extensions to wider ranges require relative few additional data.322

• Such regionalized DNNs, trained on narrow parameter ranges, yield accurate predictions for parameters from323

those ranges, but their extrapolation to other parameter ranges results in high errors and inconsistent posteriors.324

• DNN surrogates trained on about 60% of the parameter space strike an optimal balance between computational325

cost and inversion performance.326

• Fracture percolation p and power-law exponent a determine the variability of the arrival (breakthrough) time.327

Generally, larger values of p and smaller values of a accelerate the thermal breakthrough.328

• High computational cost of thermal models with large values of p and a precludes the ensemble physics-based329

computation in these ranges, p ∈ [8, 18] and a ∈ [1.1, 3]. DNN surrogates are invaluable for this purpose.330

These conclusions are drawn for the practical ranges of fracture-network parameters (p, a), while having other331

characteristics—minimum (bmin) and maximum (bmax) fracture apertures, and the mean (�ln b) and standard deviation332

(�ln b) of log-normally distributed fracture aperture b—fixed at their representative values (Table 1). One could increase333

the dimensionality of the parameter space from 2 (used in this study) to 6, turning these parameters into the DNN input,334

and to draw realizations of this input from distributions other than log-normal. Our previous results (Zhou et al., 2021)335

show that keeping the aperture constant (and log-normally distributed) for all fractures does not impact the prediction336

accuracy of DNN surrogates. In field applications of our methodology, the choice of a distribution for b and its statistics337

should be dictated by expert knowledge and/or site-specific information.338

In a follow-up study, we will use regionalized DNN surrogates to invert thermal data collected at several field339

experiments, starting with thermal dilution experiments at the Grimsel Test Site (Klepikova et al., 2022). We will340
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investigate whether the construction of new surrogates is required, and whether it can be done via transfer learning341

(Song and Tartakovsky, 2021) to significantly reduce the data generation and DNN training costs. Extensions of our342

work to chemical tracer experiments and 3D simulations are another area of future research, which would rely on343

physics-based models for 3D fracture networks (De Simone et al., 2023) to generate training data. Estimation of the344

minimal number of physics-based simulations required to generate data in the initial and extended parameter ranges345

has to be done to optimize the computational cost; this is especially so when dealing with expensive 3D simulations.346
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Figure 1: Examples of fracture networks for different values of parameters p and a. The color of the fractures is related
to their aperture with increasing aperture from black to red.
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Figure 2: Schematic representation of a cross-borehole thermal experiment (CBTE) in fractured rocks considering flow
and heat transfer processes.
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Figure 3: Examples of thermal (a and b) cumulative distribution functions (CDFs) and (c and d) inverse cumulative
distribution functions (iCDFs) for different values of (a and c) the percolation parameter p and (b and d) power-law
exponent a. These results are obtained with the PBPT method using 1000 particles.
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Figure 4: Computational time Tc determined from the linear interpolation of the times averaged over 20 fracture network
realizations and for 373 values of parameters a and p. The color bar represents the log value of the computational time.
The two black lines represent the polynomial interpolations whose expressions are provided in Figure 5, the simulations
being smaller than 10 and 100 seconds for the parameters located below these lines.
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Figure 5: Definition of the (a) small, (b) medium, and (c) large ranges over which 10,000 random pairs of parameters
(p, a) are drawn. The polynomial expressions that define the medium and large ranges come from the simulation times
sim reported in Figure 4.
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Figure 6: Examples of iCDFs computed with the reference PBPT solver (denoted as truth) and the SR (top), MR (middle),
and LR (bottom) regionalized surrogate models (denoted as prediction) for several realizations of parameters a and p drawn
from the definition domains of the respective models.
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Figure 7: Examples of posterior PDFs computed with the PBPT method (first, third, and fifth rows) and the regionalized
(SR, MR, and LR) FCNN surrogates (second, fourth, and sixth rows), for realizations of DFN parameters (p, a) drawn
from these ranges (represented by a blue point on each figure).
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Figure 8: Examples of iCDFs computed with the reference PBPT solution (denoted as truth) and the SR (top), MR
(middle), and LR (bottom) regionalized surrogates (denoted as prediction) for realizations of (p, a) drawn from the full
range of parameters.
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Figure 9: Examples of posterior PDFs computed with the PBPT reference model (first row) and the SR, MR, and LR
surrogate DNN models (second, third, and fourth rows) for reference random values of parameters a and p drawn in the
full range of parameters (represented as a blue point on each figure).
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Figure 10: Maps of the relative error � defined in (8) with the regionalized (left column) and extended (right column)
surrogate models applied to the full range of parameters.
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Figure 11: Examples of iCDFs computed with the reference PBPT model (denoted as truth) and the extended surrogate
SR (top), MR (middle), and LR (bottom) models (denoted as prediction) for random values of parameters a and p that
are drawn in the full range of parameters.
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Figure 12: Examples of posterior PDFs computed with the PBPT reference model (first row) and the extended SR, MR,
and LR surrogates (second, third, and fourth rows) for the reference realizations of DFN parameters a and p (represented
as a blue point on each figure) drawn from their full range of variability.
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