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A NOVEL ACTIVITY DETECTOR APPLIED TO SENTINEL-1 FOR SURVEILLANCE

Axel Davy, Max Dunitz

CMLA, ENS Cachan, CNRS, Université Paris-Saclay, 94235 Cachan, France

ABSTRACT

Change detection is the challenging process of identifying
meaningful changes on an image sequence. In this work, we
propose a new change detector for SAR images. We show that
by controlling the a priori number of false alarms, one can
detect events and filter out very small detections without first
applying an anti-speckle filter. A detection is made in the ab-
solute log-ratio image when enough pixels in a neighborhood
exceed a statistically pre-determined threshold. This flexible
approach allows several neighborhood shapes and sizes to be
tested while controlling the number of false alarms. A global
bound on the desired expected number of false alarms auto-
matically determines the detection thresholds for each tested
configuration.

Index Terms— Change detection, small target detection,
a contrario statistical model.

1. INTRODUCTION

SAR images have been successfully used to monitor agricul-
ture [1], human activities, and the impact of disasters such as
floods [1], forest fires [2], and earthquakes [3, 4]. SAR images
have the advantage of being reliable even with adverse atmo-
spheric conditions. Several techniques have been proposed to
perform a variety of change detection tasks in SAR images.
These include detecting complex coherence or inter-channel
correlation changes [3, 4], looking at backscatter changes
with a CFAR test [5], and catching textural changes [6, 1]
by using techniques such as wavelets and PCA. These meth-
ods usually detect changes between two successive images
using the log-ratio, which is recommended over a mere dif-
ference [7]. Clustering techniques may be used to locate a
change [8] if one is known to have occurred.

In our work, we are interested in following human activ-
ities of small size compared to the image resolution, though
very small and isolated activities of fewer than a predeter-
mined number of pixels should be ignored. The detection
thresholds should be adapted to ensure sensitivity to the tar-
gets of the intended size. To this end, we introduce a new
detection technique. Similar to CFAR, its aim is to control
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the number of false alarms under a null hypothesis, which in
our application is the assumption that no change occurs. Our
detection method naturally avoids triggering small detections
due to speckle or small targets below the intended size. Plus
it can detect directly in noise, eliminating the need for pre-
processing with a potentially distortive anti-speckle filter. We
will illustrate the performance of the detector on Sentinel-1
sequences. Sentinel-1 is a constellation of satellites run by
the ESA with global coverage and free data access. The con-
stellation is currently composed of two satellites with a repeat
cycle of 6 days.

2. OUR STATISTICAL ANOMALY DETECTOR

2.1. A short introduction to a contrario detection

Anomaly detection by an unsupervised method can be per-
formed using the a contrario detection theory [9], which is
a probabilistic formalization of the non-accidentalness prin-
ciple [10]. The a contrario framework has produced impres-
sive results in many different detection or estimation com-
puter vision tasks, such as segment detection [11], ellipse de-
tection [12], spots detection [13], and vanishing points de-
tection [14], among others. The fundamental property of the
a contrario theory is that it provides a way to automatically
compute detection thresholds that yield a bound on the overall
number of false alarms (NFA). It can be seen as an extension
of the classic CFAR method.

The a contrario framework is a general methodology to
set a detection threshold in terms of hypothesis testing. This
is done by computing a number of false alarms (NFA) rather
than just the probability of false alarm (PFA) used in hypoth-
esis testing. It relies on the following definition.

Definition 1 [13] Given a set of random variables (Xi)i∈[1,N ]

with known distribution under a null-hypothesis (H0), a test
function f is called an NFA if it guarantees a bound on the
expectation of its number of false alarms under (H0), namely:

∀ε > 0,E[#{i, f(i,Xi) ≤ ε}] ≤ ε.

To put it in words, raising a detection every time the test func-
tion is below ε should give under (H0) fewer than ε false
alarms in expectation. An observation xi is said to be “ε-
meaningful” if it satisfies f(i,xi) ≤ ε, where ε is the prede-
fined target for the expected number of false alarms.



While the definition of the background model (H0)
doesn’t contain any a priori information on what should
be detected, the design of the test function f reflects ex-
pectations on what is an anomaly. In short, applying the a
contrario framework requires only a stochastic background
model (H0) of the random variables Xi, and a test function
f . We refer the reader to [15] for several examples of NFA
tests for image anomaly detection.

2.2. A novel detector for anomalous areas

For our detection framework, we assume the image on
which we wish to perform anomaly detection follows the
given model (H0): the (Xi), which represent the pixel
intensities, are independent random variables each follow-
ing a known continuous distribution of survival functions
Si(x) := P(Xi > x).

Our proposed NFA test is the following function:

NFAk(i) := NCn,k
(
{Sj(xj) : j ∈ B(i)}(k)

)k
where k is an integer, Cn,k denotes a binomial coefficient and
{·}(k) denotes the k-th smallest value over a set, which in this
case is the set of Sj(xj) for pixels j in B(i) a neighborhood
of pixel i. It can be shown that NFAk(i) ≤ ε ⇔ {Sj(xj) :
j ∈ B(i)}(k) ≤ αN,ε,k ⇔ DN,ε,k(i) = 1 where

DN,ε,k(i) := 1(∑
j∈B(i) 1(Sj(xj)≤αN,ε,k)

)
≥k

and

• N is the number of tests, i.e. a multiple of the number
of pixels in the image (ignoring border pixels).

• B(i) is the neighborhood (such as a square or rectan-
gular patch) of pixel i and is composed of n pixels.

• αN,ε,k :=
(

ε
NCn,k

)1/k
, with ε the target number of

false alarms per image.

We present here a proof that this test indeed raises fewer
than the target ε false alarms under the null hypothesis:

E

[∑
i

DN,ε,k(i)

]
= NP

 ∑
j∈B(i)

1(Sj(Xj)≤αN,ε,k)

 ≥ k


= N

n∑
l=k

P

 ∑
j∈B(i)

1(Sj(Xj)≤αN,ε,k)

 = l


= N

n∑
l=k

Cn,l(αN,ε,k)
l(1− αN,ε,k)n−l

≤ NCn,k(αN,ε,k)k = ε

The passage from the third to fourth line in the demon-
stration above is effected by the following result:
n∑
l=k

Cn,lp
l(1− p)n−l = pkn!

n∑
l=k

1

l!(n− l)!
pl−k(1− p)n−l

= pkCn,k

n−k∑
l=0

k!(n− k)!
(l + k)!(n− k − l)!

pl(1− p)n−k−l

= pkCn,k

n−k∑
l=0

k!l!

(l + k)!
Cn−k,lp

l(1− p)n−k−l

≤ pkCn,k
n−k∑
l=0

Cn−k,lp
l(1− p)n−k−l

≤ pkCn,k(p+ 1− p)n−k = pkCn,k

Since E [
∑
iDN,ε,k(i)] ≤ ε, this test is an NFA. Thus,

DN,ε,k(i) gives us a simple, statistically justified way to raise
a detection if the values of (Xi) are anomalous (with respect
to the background model) on a tested neighborhood B(i).

To put the test in words, an anomaly is declared when a
pixel i has a neighborhood B(i) with at least k pixels j ∈
B(i) more intense than S−1j (αN,ε,k), where αN,ε,k is com-
puted to limit to ε the number of false alarms under the null
hypothesis.

The larger the number k of pixels required to exceed
their intensity thresholds, the lower those thresholds. Hence,
a faint anomaly can be detected with sufficiently large k;
conversely, an anomaly that affects fewer pixels will require
higher thresholds. Since the intensity thresholds are derived
from ε, multiple tests involving different choices of neighbor-
hood B or anomaly size k may be flexibly combined. As the
number of tests N increases, the detection thresholds adapt
accordingly. Thus, the set of test windows must be com-
plete enough to fit any targeted anomaly, while remaining
reasonably limited in number to avoid under-detection.

2.3. Model for Sentinel-1

For our experiments, we took series of registered Sentinel-1
SLC images acquired from the same relative orbit on the same
sub-swath, hence guaranteeing an almost identical incidence
angle. The image size was 1000×1000 pixels. A radiometric
correction was applied to ensure comparable intensities along
the series. No speckle-removal filter was applied to the im-
ages to prevent targets from being hidden or distorted by de-
noising. In addition, we wanted to verify that our detector can
perform well even on noisy images. We shall show the detec-
tion results on the log-ratio between consecutive images and
on the log-ratio between an image and the geometric mean of
the ten previous images. Under (H0), no changes occurred,
and the absolute log-ratio images are just noise with identical
distribution per pixel.

The distribution of the log-ratio between consecutive im-
ages can be reasonably estimated with a Generalized Gaus-
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Fig. 1. Histogram of the log-ratio between two consecutive
images, and the pdf of the estimated distribution [Left]. His-
togram of the log-ratio between one image and the geometric
average of the ten previous images, and the pdf of the esti-
mated distribution [Right]

sian distribution, as shown in Figure 1. The distribution’s pa-
rameters were estimated on a segment centered on the head
of the distribution and of length four times the empirical stan-
dard deviation, to avoid being affected by potential targets in
the histogram tail. We used the same model for the distribu-
tion of the log-ratio between an image and the average of the
previous images, even though the model is less accurate, as
shown on Figure 1. Once the log-ratio distribution is mod-
elled, the absolute log-ratio survival function comes directly.

3. EXPERIMENTAL RESULTS

We shall compare the detection results on two scenarios.
(A) corresponds to the log-ratio on two consecutive images,
which is typically used in the context of change detection.
(B) corresponds to the log-ratio of an image with the geomet-
ric average of the ten previous images. (B) has thus a lower
noise level, but its practical application is more limited as it
assumes no change occurred on the ten previous images. (B)
can be used in areas with few changes to enhance detection.
The log-ratios and the associated detections for (A) and (B)
are shown on Figure 2, on the third and fourth columns, and
the fifth and sixth columns, respectively.

Our results were obtained with the proposed detector, us-
ing several sets of parameters (the framework allows combi-
nations of tests). We use two neighborhoods B: A square
patch of size 2× 2 and a square patch of size 3× 3. For each
B, we tested several k (i.e. the minimum number of pixels
above the threshold to trigger a detection): 3 and 4 for the
first neighborhood, and 7, 8 and 9 for the second.

To compare our results, we show in the second column of
Figure 2 the detections made using a standard 7 × 7 Lee fil-
ter followed by a log-ratio of consecutive images and a man-
ual thresholding (of the same value for all examples). This
is most comparable to (A), which uses the same images for
its log-ratio. Note, however, that the log-ratios displayed in
Figure 2 do not have any Lee filter applied before compu-
tation. Our method detects directly on this log-ratio, unlike
the compared log-ratio thresholding method, which requires

a first denoising pass to get acceptable performance. Not re-
quiring denoising enables better detection contours.

The target number of false alarms per image for our de-
tector was set to ε = 10−2. White pixels correspond to pixels
that were above the tested thresholds in at least one successful
NFA test.

In the first row of the example Figure 2, a boat and the
water waves surrounding it are detected. In the second row,
the disappearance or appearance of a few vessels and sev-
eral ground structure changes are detected. In the third row,
a novel human construction is detected. The detection results
for (A) and (B) differ slightly. In the case of the second and
third rows, the discrepancies are due to actual differences in
the log-ratios. In the case of the first row, though, the lower
noise level due to the averaging improves the contour of the
detection. Overall, our detector shows a more accurate de-
tection contour on these examples than the standard log-ratio
test.

These examples highlight the specificity of the detector.
Indeed, no very small detections of one or two pixels are
present. Furthermore, targets are detected even in the pres-
ence of strong speckle noise. The contours of the detections
are faithful to the changes detected.

4. CONCLUSION

This paper presented a novel detection test, based on the
a contrario methodology. The performance of the detector
was shown on Sentinel-1 images, on the log-ratio between
consecutive images, and on the log-ratio between an image
and the geometric average of the ten previous images. The
log-ratio images’ distributions were estimated with Gener-
alized Gaussian distributions, and the proposed framework
gave automatic detection thresholds with false alarms control.
With these thresholds, our detector, in the presence of speckle
noise, identified the contours of the targeted changes more
accurately than a classical method relying on the use of a dis-
tortive speckle filter, and without raising smaller detections.

While the detector has been demonstrated here on log-
ratio Sentinel-1 images using small square patches as neigh-
borhoods, it need not be limited in this way. Detection prob-
lems involving periodic change, subtle but widespread or per-
sistent change, perturbations in patterns of change, or change
on different sorts of images could profit from different design
choices and parameter combinations.
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